Traceability Information Model for Sustainability of Black Soybean Supply Chain: A Systematic Literature Review
Abstract
:1. Introduction
2. Theoretical Background
3. Materials and Methods
4. Literature Analysis: Themes and Trends
5. Theoretical Perspectives
5.1. Traceability Information for Sustainability of Supply Chain
5.2. Traceability Information Model
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No. | Reference | Research Item | Traceability | Model | Supply Chain | Sustainability | Product |
---|---|---|---|---|---|---|---|
1 | Anders et al. [80] | Breeding Technology | - | - | - | Technological | Agriculture |
2 | Medina & Thomé [60] | Soybean Supply Chain | - | - | √ | Social, economic, environmental, infrastructural, institutional | Soybean |
3 | Nurgazina et al. [52] | Technology Applications in Food Supply Chains | √ | Blockchain–IoT | √ | Economic | Agri-food |
4 | Liu & Guo [83] | Supply Chain Decision Model Based on Blockchain | √ | Blockchain | √ | - | Food |
5 | Kang & Li [53] | Blockchain for Data Sharing Traceability System Based on Blockchain Smart Contract | √ | Blockchain | - | - | Food |
6 | Aldrighetti, Canavari & Hingley [54] | Blockchain Application to Food Traceability | √ | Blockchain | - | - | Food |
7 | Ronaghi [55] | Blockchain Model in Agricultural Supply Chain | √ | Blockchain | √ | - | Agriculture |
8 | Wu, Fan & Cao [56] | Blockchain Technology in Fresh Product Supply Chain | √ | Blockchain | √ | - | Agri-food |
9 | Patel et al. [84] | Blockchain for AFSC | √ | Blockchain | √ | - | Agri-food |
10 | Rana et al. [58] | Blockchain-Based-Model for Digital Supply Chain | √ | Blockchain | √ | - | Agri-food |
11 | Pranto et al. [81] | Blockchain–IoT Smart Agriculture | √ | Blockchain | √ | Technological | Agri-food |
12 | Zhang et al. [57] | Blockchain–IPFS for Agriculture Product | √ | Blockchain–IPFS | √ | - | Agri-food |
13 | Guo et al. [87] | Blockchain Anti-Counterfeit Traceability Service Strategy | √ | Blockchain–OR | √ | - | Food |
14 | Ekawati et al. [71] | Blockchain Tech for White Sugar Supply Chain | √ | Blockchain | √ | Social | Sugar |
15 | Kurniawan, Pramono & Amalia [63] | Website-Based Traceability Information System on Subsidized Fertilizer Supply Chain | √ | Website–UML | √ | Environmental, economic | Fertilizer |
16 | Srivastava & Dashora [88] | A Fuzzy ISM Approach for Modeling Electronic Traceability in AFSC | √ | OR | √ | - | Agri-food |
17 | Monteiro et al. [76] | Model for Pervasive Traceability of Agrochemicals | √ | Blockchain | √ | Environmental | Agrochemical |
18 | Hong et al. [72] | Application of Blockchain in Food Safety Management | √ | Blockchain | √ | Social | Agri-food |
19 | Kaur, Kalra & Attri [86] | Secure Product Traceability in Food Supply Chain Based on Blockchain | √ | Blockchain | √ | - | Food |
20 | Zhang et al. [85] | Blockchain–IoT-Based Traceability System for Frozen Aquatic Product | √ | Blockchain–IoT | √ | - | Frozen Aquatic |
21 | Ng & Ker [74] | On the Changing Nature of Canadian Crop Yield Distributions | - | - | - | Technological, environmental | Soybean |
22 | Latif et al. [90] | Blockchain for Product Supply Chain | √ | Blockchain | √ | - | Food |
23 | Shahid et al. [91] | Blockchain-Based Agri-Food Supply Chain | √ | Blockchain | √ | - | Agri-food |
24 | Demestichas et al. [16] | Blockchain in Agriculture Traceability Systems | √ | Blockchain | √ | Economic | Agriculture |
25 | Ding et al. [68] | Blockchain-Based Double-Layer for Product Traceability System | √ | Blockchain | √ | Social | Agriculture |
26 | Sunny, Undralla & Pillai [92] | Supply Chain Transparency through Blockchain-Based Traceability | √ | Blockchain | √ | - | Agriculture |
27 | Casino et al. [59] | Blockchain-Based Food Supply Chain Traceability | √ | Blockchain | √ | - | Agriculture |
28 | Hidalgo et al. [31] | Traceability of Soybeans Produced in Argentina Based | √ | SIMCA | - | - | Soybean |
29 | You & Dong [32] | Examining Earliest Identifiable Timing of Crops Using All Available Sentinel ½ Imagery and Google Earth Engine | √ | GEE | - | - | Rice, Soybean, Corn |
30 | Zhang et al. [61] | Consumer Perception, Mandatory Labeling, and Traceability of GM Soybean Oil | √ | Logit | - | Economic, institutional | Soybean |
31 | Hinkes & Peter [30] | Traceability for Deforestation-Free Supply Chains Applied to Soy Certification | √ | - | √ | Economic | Soybean |
32 | Jose & Shanmugam [93] | Supply Chain Issues in SME Food Sector | √ | - | √ | - | Agriculture |
33 | Creydt & Fischer [77] | Blockchain Algorithm Driven Food Traceability | √ | Blockchain | √ | Environmental, technological | Food |
34 | Haleem et al. [89] | Traceability in Food Supply Chain: A Grey-DEMATEL Spproach | √ | DEMATEL | √ | Social | Food |
35 | Salah et al. [27] | Blockchain-Based Soybean Traceability in Agricultural Supply Chain | √ | Blockchain | √ | - | Soybean |
36 | Wang et al. [94] | Smart Contract-based Product Traceability System in the Supply Chain Scenario | √ | Blockchain | √ | - | Agriculture |
37 | Gardner et al. [26] | Transparency and Sustainability in Global Commodity Supply Chains | √ | - | √ | Social, economic, environmental | Soybean |
38 | Sjauw-Koen-Fa et al. [9] | Exploring the Integration of Business and CSR Perspectives in Smallholder Souring | - | - | √ | Social, economic | Black soybean |
39 | Mao et al. [79] | Innovative Blockchain-Based for Sustainable | √ | Blockchain | √ | Environmental | Food |
40 | Duan et al. [69] | Implementation of Food Traceability Systems | √ | - | √ | Social | Food |
41 | Morales et al. [42] | Information Systems in the Soybean Brazilian Supply Chain | √ | ERP | √ | - | Soybean |
42 | Godar et al. [64] | Tracing Fine-Scale Socio-Environmental Impacts of Production to Consumption | √ | SEI-PCS | √ | Social, economic, environmental | Soybean |
43 | Aung & Chang [25] | Traceability in a Food Supply Chain: Safety and Quality Perspectives | √ | - | √ | - | Food |
44 | Cheng et al. [65] | Optimal Product Quality of Supply Chain Based on Information Traceability in Fashion and Textiles Industry | √ | OR | √ | Economic | Textile |
45 | Storøy, Thakur & Olsen [7] | The TraceFood Framework for Implementing Traceability in Food Value Chains | √ | XML | √ | - | Food |
46 | Wang et al. [11] | Study for Organic Soybean Production Information Traceability System Based on Web | √ | Website-based | - | - | Soybean |
47 | Thakur dan Donnelly [28] | Modeling Traceability Information in Soybean Value Chains | √ | UML | √ | - | Soybean |
48 | Pelaez et al. [29] | Implementation of a Traceability and Certification System for Non-Genetically Modified Soybeans | √ | - | - | - | Soybean |
49 | Wang et al. [24] | Adding Value of Food Traceability to the Business: A Supply Chain Management Approach | √ | - | √ | - | Food |
50 | Regattieri, Gamberi & Manzini [23] | Traceability of Food Products | √ | - | - | - | Food |
51 | Folinas, Manikas & Manos [22] | Traceability Data Management for Food Chains | √ | XML, PML | - | - | Food |
52 | Moe [21] | Perspectives on Traceability in Food Manufacture | √ | - | - | - | Food |
References
- Jia, F.; Peng, S.; Green, J.; Koh, L.; Chen, X. Soybean Supply Chain Management and Sustainability: A Systematic Literature Review. J. Clean. Prod. 2020, 255, 120254. [Google Scholar] [CrossRef]
- Fearnside, P.M. Soybean cultivation as a threat to the environment in Brazil. Environ. Conserv. 2001, 28, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, G.D.L.T.; Schneider, M. The politics of flexing soybeans: China, Brazil and global agro-industrial restructuring. J. Peasant. Stud. 2016, 43, 167–194. [Google Scholar] [CrossRef]
- Ercin, A.E.; Aldaya, M.M.; Hoekstra, A.Y. The water footprint of soy milk and soy burger and equivalent animal products. Ecol. Indic. 2012, 18, 392–402. [Google Scholar] [CrossRef] [Green Version]
- Susilowati, I.; Kirana, M. Re-evaluation of value-chain and the strategy to secure soybeans as the main input for Javanese indigenous dish of “Tahu-Tempe-Kecap” (With a pilot project in Central Java Province). Espacios 2018, 39, 27. [Google Scholar]
- Wiloso, E.I.; Sinke, P.; Muryanto; Setiawan, A.A.R.; Sari, A.A.; Waluyo, J.; Putri, A.M.H.; Guinee, J. Hotspot identification in the Indonesian tempeh supply chain using life cycle assessment. Int. J. Life Cycle Assess 2019, 24, 1948–1961. [Google Scholar] [CrossRef]
- Storøy, J.; Thakur, M.; Olsen, P. The TraceFood Framework—Principles and guidelines for implementing traceability in food value chains. J. Food Eng. 2013, 115, 41–48. [Google Scholar] [CrossRef]
- Sjauw-Koen-Fa, A.R.; Blok, V.; Omta, O. Exploring the applicability of a sustainable smallholder sourcing model in the black soybean case in Java. Int. Food Agribus. Manag. Rev. 2017, 20, 709–728. [Google Scholar] [CrossRef]
- Sjauw-Koen-Fa, A.R.; Blok, V.; Omta, O. Exploring the integration of business and CSR perspectives in smallholder souring: Black soybean in Indonesia and tomato in India. J. Agribus. Dev. Emerg. Econ. 2018, 8, 656–677. [Google Scholar] [CrossRef] [Green Version]
- Teuscher, P.; Grüninger, B.; Ferdinand, N. Risk Management in Sustainable Supply Chain Management (SSCM): Lessons Learnt from the Case of GMO-Free Soybeans. Corp. Soc. Responsib. Environ. Manag. 2006, 13, 1–10. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Wang, X.; Zhuang, W. Study for organic soybean production information traceability system based on web. In IFIP Advances in Information and Communication Technology; Springer: Berlin/Heidelberg, Germany, 2011; Volume 345, pp. 567–572. [Google Scholar]
- Hizbi, M.S.; Ghulamahdi, M. Pertumbuhan dan Produksi Kedelai Hitam dengan Pemberian Jenis Biomassa dan Dosis Pemupukan Kalsium pada Budidaya Jenuh Air di Lahan Pasang Surut. Bul. Agrohorti 2019, 7, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Ginting, E.; Yulifianti, R.; Tarmizi, H.I.M.d. Varietas Unggul Kedelai Hitam Sebagai Bahan Baku Kecap. In Prosiding Seminar Agroindustri dan Lokakarya Nasional FKPT–TPI; Teknologi Industri Pertanian: Jambi, Indonesia, 2015. [Google Scholar]
- Wardani, A.K.; Wardani, I.R. Ekplorasi Potensi Kedelai Hitam Untuk Produksi Minuman Fungsional Sebagai Upaya Meningkatkan Kesehatan Masyarakat. J. Pangan Dan Agroindustri 2014, 2, 58–67. [Google Scholar]
- Fitry, N.; Herdiansah, D.; Hardiyanto, T. Analisis Nilai Tambah Agroindustri Kecap (Studi Kasus pada Pengusaha Kecap Cap Jago di Desa Cibenda Kecamatan Parigi Kabupaten Pangandaran). J. Ilm. Mhs. Agroinfo Galuh 2017, 4, 352–359. [Google Scholar]
- Demestichas, K.; Peppes, N.; Alexakis, T.; Adamopoulou, E. Blockchain in Agriculture Traceability Systems: A Review Featured Application: The paper elaborates on the applicability of blockchain technology in traceability systems of agri-food products. Appl. Sci. 2020, 10, 22. [Google Scholar]
- Paliwal, V.; Chandra, S.; Sharma, S. Blockchain Technology for Sustainable Supply Chain Management: A Systematic Literature Review and a Classification Framework. Sustainability 2020, 12, 7638. [Google Scholar] [CrossRef]
- Gayialis, S.P.; Kechagias, E.P.; Papadopoulos, G.A.; Masouras, D. A Review and Classification Framework of Traceability Approaches for Identifying Product Supply Chain Counterfeiting. Sustainability 2022, 14, 6666. [Google Scholar] [CrossRef]
- Santana, S.; Ribeiro, A. Traceability Models and Traceability Systems to Accelerate the Transition to a Circular Economy: A Systematic Review. Sustainability 2022, 14, 5469. [Google Scholar] [CrossRef]
- Dasaklis, T.K.; Voutsinas, T.G.; Tsoulfas, G.T.; Casino, F.A. A Systematic Literature Review of Blockchain-Enabled Supply Chain Traceability Implementations. Sustainability 2022, 14, 2439. [Google Scholar] [CrossRef]
- Moe, T. Perspectives on traceability in food manufacture. Trend Food Sci. Technol. 1998, 9, 211–214. [Google Scholar] [CrossRef]
- Folinas, D.; Manikas, I.; Manos, B. Traceability data management for food chains. Br. Food J. 2006, 108, 622–633. [Google Scholar] [CrossRef]
- Regattieri, A.; Gamberi, M.; Manzini, R. Traceability of food products: General framework andexperimental evidence. J. Food Eng. 2007, 81, 347–356. [Google Scholar] [CrossRef]
- Wang, X.; Li, D.; Li, L. Adding value of food traceability to the business: A supply chain management approach. Int. J. Serv. Oper. Inform. 2009, 4, 232–257. [Google Scholar] [CrossRef]
- Aung, M.M.; Chang, Y.S. Traceability in a food supply chain: Safety and quality perspectives. Food Control. 2014, 39, 172–184. [Google Scholar] [CrossRef]
- Gardner, T.A.; Benzie, M.; Börner, J.; Dawkins, E.; Fick, S.; Garrett, R.; Godar, J.; Grimard, A.; Lake, S.; Larsen, R.K.; et al. Transparency and sustainability in global commodity supply chains. World Dev. 2018, 121, 163–177. [Google Scholar] [CrossRef]
- Salah, K.; Nizamuddin, N.; Jayaraman, R.; Omar, M. Blockchain-Based Soybean Traceability in Agricultural Supply Chain. IEEE Access 2019, 7, 73295–73305. [Google Scholar] [CrossRef]
- Thakur, M.; Donnelly, K.A.-M. Modeling traceability information in soybean value chains. J. Food Eng. 2010, 99, 98–105. [Google Scholar] [CrossRef]
- Pelaez, V.; Aquino, D.; Hofmann, R.; Melo, M. Implementation of a Traceability and Certification System for Non-genetically Modified Soybeans: The Experience of Imcopa Co. in Brazil. Int. Food Agribus. Manag. Rev. 2010, 13, 27–44. [Google Scholar]
- Hinkes, C.; Peter, G. Traceability matters: A conceptual framework for deforestation-free supply chains applied to soy certification. Sustain. Account. Manag. Policy J. 2019, 11, 1159–1187. [Google Scholar] [CrossRef]
- Hidalgo, M.J.; Fechner, D.C.; Ballabio, D.; Marchevsky, E.J.; Pellerano, R.G. Traceability of soybeans produced in Argentina based on their trace element profiles. J. Chemom. 2020, 34, e3252. [Google Scholar] [CrossRef]
- You, N.; Dong, J. Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 161, 109–123. [Google Scholar] [CrossRef]
- Chowdhury, M.M.H.; Quaddus, M.A. Supply chain sustainability practices and governance for mitigating sustainability risk and improving market performance: A Dynamic capability Perspective. J. Clean. Prod. 2020, 278, 123521. [Google Scholar] [CrossRef]
- Kim, K.; Jeong, B.; Jung, H. Supply chain surplus: Comparing conventional and sustainable supply chains. Flex. Serv. Manuf. J. 2014, 26, 5–23. [Google Scholar] [CrossRef]
- Gurzawska, A. Towards Responsible and Sustainable Supply Chains–Innovation, Multi-stakeholder Approach and Governance. Philos. Manag. 2019, 19, 267–295. [Google Scholar] [CrossRef] [Green Version]
- Seuring, S.; Sarkis, J.; Müller, M.; Rao, P. Sustainability and supply chain management–an introduction to the special issue. J. Clean. Prod. 2008, 16, 1545–1551. [Google Scholar] [CrossRef]
- Seuring, S.; Müller, M. From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 2008, 16, 1699–1710. [Google Scholar] [CrossRef]
- Allaoui, H.; Guo, Y.; Sarkis, J. Decision support for collaboration planning in sustainable supply chains. J. Clean. Prod. 2019, 229, 761–774. [Google Scholar] [CrossRef]
- Stadtler, H.; Kilger, C. Supply Chain Management and Advanced Planning—Concepts, Models, Software and Case Studies, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Garrett, R.D.; Lambin, E.F.; Naylor, R.L. The new economic geography of land use change: Supply chain configurations and land use in the Brazilian Amazon. Land Use Policy 2013, 34, 265–275. [Google Scholar] [CrossRef]
- Zhao, D.-A.; Teng, C.-F.; Wang, X.-W. Design of traceability system for pork safety production based on RFID. In Proceedings of the 2009 Second International Conference on Intelligent Computation Technology and Automation, Changsha, China, 10–11 October 2009; IEEE: Piscataway, NJ, USA, 2009; Volume 3, pp. 562–565. [Google Scholar] [CrossRef]
- Morales, V.; Vendrametto, O.; Rois, J.G.M.d.; Toloi, R.G.; Canuto, S.A. Information Systems in the Soybean Brazilian Supply Chain: An Analysis from the Trading Companies Perspective. In Proceedings of the ILS Conference, Bordeaux, France, 1–4 June 2016. [Google Scholar]
- Liu, F.; Lai, K.-H.; Cai, W. Responsible Production for Sustainability: Concept Analysis and Bibliometric Review. Sustainability 2021, 13, 1275. [Google Scholar] [CrossRef]
- Dodgson, J.E. Critical analysis: The often-missing step in conducting literature review research. J. Hum. Lact. 2021, 37, 27–32. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, Z. The Collaborative Networks and Thematic Trends of Research on Purchasing and Supply Management for Environmental Sustainability: A Bibliometric Review. Sustainability 2018, 10, 1510. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Yusop, S.R.M.; Rasul, M.S.; Yasin, R.M.; Hashim, H.U.; Jalaludin, N.A. An Assessment Approaches and Learning Outcomes in Technical and Vocational Education: A Systematic Review Using PRISMA. Sustainability 2022, 14, 5225. [Google Scholar] [CrossRef]
- Utomo, D.S.; Onggo, B.S.; Eldridge, S. Applications of agent-based modelling and simulation in the agri-food supply chains. Eur. J. Oper. Res. 2017, 269, 794–805. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhou, X.; Yu, G.; Sun, X. The effects of the PRISMA statement to improve the conduct and reporting of systematic reviews and meta-analyses of nursing interventions for patients with heart failure. Int. J. Nurs. Pract. 2019, 25, e12729. [Google Scholar] [CrossRef] [PubMed]
- Tounakaki, O.; Tsakou, A.; Malamas, A.; Chrisoula, D.; Ioannis, S.; Elias, Z. Assessment of reporting quality of meta-analyses of randomized controlled trials in neovascular age-related macular degeneration published from April 2014 to May 2018 using PRISMA statement. Int. Ophthalmol. 2020, 40, 1163–1180. [Google Scholar] [CrossRef] [PubMed]
- Hermiatin, F.R.; Handayati, Y.; Perdana, T.; Wardhana, D. Creating Food Value Chain Transformations through Regional Food Hubs: A Review Article. Sustainability 2022, 14, 8196. [Google Scholar] [CrossRef]
- Nurgazina, J.; Pakdeetrakulwong, U.; Moser, T.; Reiner, G. Distributed Ledger Technology Applications in Food Supply Chains: A Review of Challenges and Future Research Directions. Sustainability 2021, 13, 4206. [Google Scholar] [CrossRef]
- Kang, Y.; Li, Q. Design and Implementation of Data Sharing Traceability System Based on Blockchain Smart Contract. Sci. Programing 2021, 2021, 1455814. [Google Scholar] [CrossRef]
- Aldrighetti, A.; Canavari, M.; Hingley, M.K. A delphi study on blockchain application to food traceability. Int. J. Food Syst. Dyn. 2021, 12, 6–18. [Google Scholar]
- Ronaghi, M.H. A blockchain maturity model in agricultural supply chain. Inf. Process. Agric. 2021, 8, 398–408. [Google Scholar] [CrossRef]
- Wu, X.Y.; Fan, Z.P.; Cao, B.B. An analysis of strategies for adopting blockchain technology in the fresh product supply chain. Int. J. Prod. Res. 2021, 1–18. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, W.; Jin, Z.; Su, Y.; Chen, H. A Research on Traceability Technology of Agricultural Products Supply Chain Based on Blockchain and IPFS. Secur. Commun. Netw. 2021, 2021, 3298514. [Google Scholar] [CrossRef]
- Rana, S.K.; Kim, H.C.; Pani, S.K.; Rana, S.K.; Joo, M., II; Rana, A.K.; Aich, S. Blockchain-based model to improve the performance of the next-generation digital supply chain. Sustainability 2021, 13, 10008. [Google Scholar] [CrossRef]
- Casino, F.; Kanakaris, V.; Dasaklis, T.K.; Moschuris, S.; Stachtiaris, S.; Pagoni, M.; Rachaniotis, N.P. Blockchain-based food supply chain traceability: A case study in the dairy sector. Int. J. Prod. Res. 2020, 59, 5758–5770. [Google Scholar] [CrossRef]
- Medina, G.; Thomé, K. Transparency in Global Agribusiness: Transforming Brazil’s Soybean Supply Chain Based on Companies’ Accountability. Logistics 2021, 5, 58. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, Y.; Chen, C.; Cao, J.; Pu, H. Consumer perception, mandatory labeling, and traceability of GM soybean oil: Evidence from Chinese urban consumers. GM Crop Food 2021, 12, 36–46. [Google Scholar] [CrossRef]
- Bashiri, M.; Tjahjono, B.; Lazell, J.; Ferreira, J.; Perdana, T. The Dynamics of Sustainability Risks in the Global Coffee Supply Chain: A Case of Indonesia–UK. Sustainability 2021, 13, 589. [Google Scholar] [CrossRef]
- Kurniawan, M.; Pramono, D.; Amalia, F. Design of a website-based traceability information system on subsidized fertilizer supply chain. IOP Conf. Ser. Earth Environ. Sci. 2021, 924, 012050. [Google Scholar] [CrossRef]
- Godar, J.; Persson, U.M.; Tizado, E.J.; Meyfroidt, P. Towards more accurate and policy relevant footprint analyses: Tracing fine-scale socio-environmental impacts of production to consumption. Ecol. Econ. 2015, 112, 25–35. [Google Scholar] [CrossRef]
- Cheng, Z.; Xiao, J.; Xie, K.; Huang, X. Optimal Product Quality of Supply Chain Based on Information Traceability in Fashion and Textiles Industry: An Adverse Logistics Perspective. Math Probl. Eng. 2013, 2013, 629363. [Google Scholar] [CrossRef] [Green Version]
- Sanjaya, S.; Perdana, T. Logistics system model development on supply chain management of tomato commodities for structured market. Procedia Manuf. 2015, 4, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Utami, H.N.; Sadeli, A.H.; Perdana, T. Customer Value Creation of Fresh Tomatoes Through Branding and Packaging as Customer Perceived Quality. J. Int. Soc. Southeast Asian Agric. Sci. 2016, 22, 123–136. [Google Scholar]
- Ding, Q.; Gao, S.; Zhu, J.; Yuan, C. Permissioned Blockchain-Based Double-Layer Framework for Product Traceability System. IEEE Access 2020, 8, 6209–6225. [Google Scholar] [CrossRef]
- Duan, Y.; Miao, M.; Wang, R.; Fu, Z.; Xu, M. A framework for the successful implementation of food traceability systems in China. Inf. Soc. 2017, 33, 226–242. [Google Scholar] [CrossRef]
- Rajesh, R. Sustainable supply chains in the Indian context: An integrative decision-making model. Technol. Soc. 2020, 61, 101230. [Google Scholar] [CrossRef]
- Ekawati, R.; Arkeman, Y.; Suprihatin; Sunarti, T.C. Proposed Design of White Sugar Industrial Supply Chain System based on Blockchain Technology. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 459–465. [Google Scholar] [CrossRef]
- Kaur, W.; Mao, J.; Wu, L.; Pu, X. Public cognition of the application of blockchain in food safety management—Data from China’s Zhihu platform. J. Clean. Prod. 2021, 303, 127044. [Google Scholar] [CrossRef]
- França, A.S.L.; Neto, J.A.; Gonçalves, R.F.; Almeida, C.M.V.B. Proposing the use of blockchain to improve the solid waste management in small municipalities. J. Clean. Prod. 2020, 244, 118529. [Google Scholar] [CrossRef]
- Ng, H.; Ker, A.P. On the Changing Nature of Canadian Crop Yield Distributions. J. Agric. Resour. Econ. 2021, 46, 101–125. [Google Scholar] [CrossRef]
- Zhu, Z.; Chu, F.; Dolgui, A.; Chu, C.; Zhou, W.; Piramuthu, S. Recent Advances and Opportunities in Sustainable Food Supply Chain: A Model-oriented Review. Int. J. Prod. Res. 2018, 56, 5700–5757. [Google Scholar] [CrossRef]
- Monteiro, E.S.; Righi, R.da.R.; Barbosa, J.L.V.; Alberti, A.M. APTM: A Model for Pervasive Traceability of Agrochemicals. Appl. Sci. 2021, 11, 8149. [Google Scholar] [CrossRef]
- Creydt, M.; Fischer, M. Blockchain and more—Algorithm driven food traceability. Food Control 2019, 105, 45–51. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, S.; Lopez, C.; Lu, H.; Elgueta, S.; Chen, H.; Boshkoska, B.M. Blockchain technology in agri-food value chain management: A synthesis of applications, challenges and future research directions. Comput. Ind. 2019, 109, 83–99. [Google Scholar] [CrossRef]
- Mao, D.; Hao, Z.; Wang, F.; Li, H. Innovative Blockchain-Based Approach for Sustainable and Credible Environment in Food Trade: A Case Study in Shandong Province, China. Sustainability 2018, 10, 3149. [Google Scholar] [CrossRef] [Green Version]
- Anders, S.; Cowling, W.; Pareek, A.; Gupta, K.J.; Singla-Pareek, S.L.; Foyer, C.H. Gaining Acceptance of Novel Plant Breeding Technologies. Trends Plant Sci. 2021, 26, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Pranto, T.H.; Noman, A.A.; Mahmud, A.; Haque, A.B. Blockchain and smart contract for IoT enabled smart agriculture. PeerJ Comput. Sci. 2021, 7, e407. [Google Scholar] [CrossRef] [PubMed]
- Boström, M.; Jönsson, A.M.; Lockie, S.; Mol, A.P.; Oosterveer, P. Sustainable and responsible supply chain governance: Challenges and opportunities. J. Clean. Prod. 2015, 107, 1–7. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Guo, P.T. Supply Chain Decision Model Based on Blockchain: A Case Study of Fresh Food E-Commerce Supply Chain Performance Improvement. Discret. Dyn. Nat. Soc. 2021, 2021, 5795547. [Google Scholar] [CrossRef]
- Patel, N.; Shukla, A.; Tanwar, S.; Singh, D. KRanTi: Blockchain-based farmer’s credit scheme for agriculture-food supply chain. Trans. Emerg. Telecommun. Technol. 2021, e4286. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Jiong, Z.; Zhang, X.; Li, B.; Chen, E. Development and assessment of blockchain-IoT-based traceability system for frozen aquatic product. J. Food. Process Eng. 2021, 44, e13669. [Google Scholar] [CrossRef]
- Kaur, R.; Kalra, S.; Attri, V.K. An Approach for Secure Product Traceability in Food Supply Chain Based on Blockchain. Turk. J. Comput. Math Educ. 2021, 12, 3286–3298. [Google Scholar]
- Guo, F.; Ma, D.; Hu, J.; Zhang, L. Optimized Combination of e-commerce Platform Sales Model and Blockchain Anti-Counterfeit Traceability Service Strategy. IEEE Access 2021, 9, 138082–138105. [Google Scholar] [CrossRef]
- Srivastava, A.; Dashora, K. A Fuzzy ISM approach for modeling electronic traceability in agri-food supply chain in India. Ann. Oper. Res. 2021. [Google Scholar] [CrossRef]
- Haleem, A.; Khan, S.; Khan, M.I. Traceability implementation in food supply chain: A grey-DEMATEL approach. Inf. Processing in Agric. 2019, 6, 335–348. [Google Scholar] [CrossRef]
- Latif, R.M.A.; Farhan, M.; Rizwan, O.; Hussain, M.; Jabbar, S.; Khalid, S. Retail level Blockchain transformation for product supply chain using truffle development platform. Clust. Comput. 2020, 24, 1–16. [Google Scholar] [CrossRef]
- Shahid, A.; Almogren, A.; Javaid, N.; Al-Zahrani, F.A.; Zuair, M.; Alam, M. Blockchain-Based Agri-Food Supply Chain: A Complete Solution. IEEE Access 2020, 8, 69230–69243. [Google Scholar] [CrossRef]
- Sunny, J.; Undralla, N.; Madhusudanan Pillai, V. Supply chain transparency through blockchain-based traceability: An overview with demonstration. Comput. Ind. Eng. 2020, 150, 106895. [Google Scholar] [CrossRef]
- Jose, A.; Shanmugam, P.V. Supply chain issues in SME food sector: A systematic review. J. Adv. Manag. Res. 2020, 17, 19–65. [Google Scholar] [CrossRef]
- Wang, S.; Li, D.; Zhang, Y.; Chen, J. Smart contract-based product traceability system in the supply chain scenario. IEEE Access 2019, 7, 115122–115133. [Google Scholar] [CrossRef]
Source | Content Analysis? Y/N | Article Time Span (Year) | Traceability (Y/N) | Supply Chain? (Y/N) | Product | Sustainability | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Food (Y/N) | Soy (Y/N) | Eco (Y/N) | Soc (Y/N) | Env (Y/N) | Tech (Y/N) | Inst (Y/N) | Infra (Y/N) | |||||
[16] | Y | 2002–2020 | Y | Y | Y | N | N | N | N | N | N | N |
[17] | Y | 1967–2020 | Y | Y | Y | N | Y | Y | Y | Y | N | N |
[18] | Y | 2006–2022 | Y | Y | Y | N | N | N | N | Y | N | N |
[19] | Y | 1998–2021 | Y | Y | Y | N | Y | N | N | Y | N | N |
[20] | Y | 1992–2022 | Y | Y | Y | N | Y | Y | Y | Y | N | N |
This Article | Y | 1998–2022 | Y | Y | N | Y | Y | Y | Y | Y | Y | Y |
Code | Keywords | Scopus | Science Direct | EBSCO Host (Academic Search Ultimate) | ProQuest (ABI/INFORM) | Total |
---|---|---|---|---|---|---|
A | Traceability or “information traceability” or “information model” | 46.113 | 79.736 | 2.596 | 5.592 | 134.037 |
B | Sustainability and “supply chain” or “supply chains” | 105.963 | 6.912 | 4.867 | 26.099 | 143.841 |
C | Soybean or “tropical soybean” or “local soybean” or “black soybean” | 480.860 | 15.471 | 26.928 | 8.406 | 531.665 |
D | B and C | 2.477 | 5.530 | 647 | 447 | 9.101 |
E | A and D | 169 | 1.137 | 1.535 | 179 | 3.020 |
Journal | SJR 2020 | Best Quartile | H-Index | Articles |
---|---|---|---|---|
ISPRS Journal of Photogrammetry and Remote Sensing | 2.96 | Q1 | 138 | 1 |
Trends in Food Science & Technology | 2.68 | Q1 | 188 | 1 |
World Development | 2.39 | Q1 | 175 | 1 |
Journal of Cleaner Production | 1.94 | Q1 | 200 | 1 |
Ecological Economics | 1.92 | Q1 | 202 | 1 |
International Journal of Production Research | 1.91 | Q1 | 142 | 2 |
Plant Science | 1.51 | Q1 | 150 | 1 |
Food Control | 1.37 | Q1 | 125 | 2 |
Computers and Industrial Engineering | 1.32 | Q1 | 128 | 1 |
Journal of Food Engineering | 1.29 | Q1 | 179 | 3 |
Information Society | 1.13 | Q1 | 75 | 1 |
Annals of Operations Research | 1.07 | Q1 | 105 | 1 |
GM Crops & Food | 1.06 | Q1 | 27 | 1 |
PeerJ Computer Science | 0.81 | Q1 | 24 | 1 |
Information Processing in Agriculture | 0.77 | Q1 | 27 | 2 |
Sustainability Accounting, Management and Policy Journal | 0.62 | Q1 | 29 | 1 |
Sustainability | 0.61 | Q1 | 85 | 3 |
IEEE Access | 0.59 | Q1 | 127 | 5 |
Journal of Agricultural and Resource Economics | 0.55 | Q2 | 48 | 1 |
British Food Journal | 0.51 | Q2 | 80 | 1 |
Journal of Food Process Engineering | 0.51 | Q2 | 45 | 1 |
Journal of Chemometrics | 0.47 | Q2 | 92 | 1 |
International Food and Agribusiness Management Review | 0.47 | Q2 | 35 | 1 |
Journal of Advances in Management Research | 0.46 | Q2 | 20 | 1 |
Journal of Agribusiness in Developing and Emerging Economies | 0.46 | Q2 | 15 | 1 |
Security and Communication Networks | 0.45 | Q2 | 43 | 1 |
Applied Sciences | 0.44 | Q2 | 52 | 2 |
Logistics | 0.4 | Q2 | 21 | 1 |
Transactions on Emerging Telecommunications Technologies | 0.37 | Q2 | 47 | 1 |
Cluster Computing | 0.34 | Q3 | 50 | 1 |
International Journal on Food System Dynamics | 0.34 | Q2 | 8 | 1 |
Scientific Programming | 0.27 | Q3 | 36 | 1 |
Mathematical Problems in Engineering | 0.26 | Q3 | 62 | 1 |
Discrete Dynamics in Nature and Society | 0.26 | Q3 | 39 | 1 |
Turkish Journal of Computer and Mathematics Education | 0.22 | Q3 | 3 | 1 |
International Journal of Advanced Computer Science and Applications | 0.19 | Q3 | 18 | 1 |
International Journal of Services Operations and Informatics | 0.15 | Q4 | 13 | 1 |
International Federation for Information Processing | - | - | 37 | 1 |
IOP Conference Series. Earth and Environmental Science | - | - | 26 | 1 |
International Conference on Information Systems, Logistics and Supply Chain | - | - | 5 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, S.; Perdana, T.; Rachmadi, M.; Noor, T.I. Traceability Information Model for Sustainability of Black Soybean Supply Chain: A Systematic Literature Review. Sustainability 2022, 14, 9498. https://doi.org/10.3390/su14159498
Anwar S, Perdana T, Rachmadi M, Noor TI. Traceability Information Model for Sustainability of Black Soybean Supply Chain: A Systematic Literature Review. Sustainability. 2022; 14(15):9498. https://doi.org/10.3390/su14159498
Chicago/Turabian StyleAnwar, Syaiful, Tomy Perdana, Meddy Rachmadi, and Trisna Insan Noor. 2022. "Traceability Information Model for Sustainability of Black Soybean Supply Chain: A Systematic Literature Review" Sustainability 14, no. 15: 9498. https://doi.org/10.3390/su14159498
APA StyleAnwar, S., Perdana, T., Rachmadi, M., & Noor, T. I. (2022). Traceability Information Model for Sustainability of Black Soybean Supply Chain: A Systematic Literature Review. Sustainability, 14(15), 9498. https://doi.org/10.3390/su14159498