Multiobjective Optimization of Carbon Emission Reduction Responsibility Allocation in the Open-Pit Mine Production Process against the Background of Peak Carbon Dioxide Emissions
Abstract
:1. Introduction
2. Literature Review
2.1. Carbon Tax versus Carbon Quota
2.2. Current Status of Research on Carbon Quota Allocation
3. Models and Methods
3.1. Objectives
3.1.1. Maximum Stability
3.1.2. Maximum Efficiency
3.1.3. Maximum Fairness
3.2. Constraints
3.2.1. Total Carbon Emission Quota Constraint
3.2.2. Quota Interval Constraint
3.2.3. Ore Output Constraints
3.2.4. Non-Negative Constraint
3.3. Multiobjective Gray Wolf Algorithm
4. Case Study
4.1. Carbon Emission Accounting
4.1.1. Carbon Source Identification and Carbon Emission Coefficient Setting
4.1.2. Accounting Model of Carbon Emissions in Production Links
- 1.
- Rock drilling and blasting
- 2.
- Mining
- 3.
- Transport
- 4.
- Crushing
- 5.
- Mineral Beneficiation Processing
4.2. Data and Parameters
4.3. Results and Discussion
4.3.1. Scheme Selection
4.3.2. Analysis of the Optimized Target Values
4.3.3. Carbon Allowances under the Four Options
4.3.4. Carbon Emission Reduction Responsibility of the Production Process
4.3.5. Analysis of the Carbon Emission Intensity Decline
5. Discussion
5.1. Universality of the Model
5.2. Suggestions for Emission Reduction of Mine Production Process
- (1)
- Mining process emission reduction measures
- (2)
- Emission reduction measures for transportation
- (3)
- Emission reduction measures for the beneficiation process
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruggerio, C.A. Sustainability and sustainable development: A review of principles and definitions. Sci. Total Environ. 2021, 786, 147481. [Google Scholar] [CrossRef] [PubMed]
- Arastoopour, H. The critical contribution of chemical engineering to a pathway to sustainability. Chem. Eng. Sci. 2019, 203, 247–258. [Google Scholar] [CrossRef]
- Dincer, H.; Yüksel, S.; Karakuş, H.; Kalkavan, H. The Importance of Carbon Emission of Manufacturing Companies on Sustainable Economic Development. In Globalization, Income Distribution and Sustainable Development; Emerald Publishing Limited: Bingley, UK, 2022; pp. 81–93. [Google Scholar]
- Shi, X.; Zheng, Y.; Lei, Y.; Xue, W.; Yan, G.; Liu, X.; Cai, B.; Tong, D.; Wang, J. Air quality benefits of achieving carbon neutrality in China. Sci. Total Environ. 2021, 795, 148784. [Google Scholar] [CrossRef] [PubMed]
- Azadi, M.; Northey, S.A.; Ali, S.H.; Edraki, M. Transparency on greenhouse gas emissions from mining to enable climate change mitigation. Nat. Geosci. 2020, 13, 100–104. [Google Scholar] [CrossRef]
- Xu, C.; Chen, Q. The driving factors and future changes of CO2 emission in China’s nonferrous metal industry. Environ. Sci. Pollut. Res. 2022, 29, 45730–45750. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-H.; Lo, S.-F. Impact Analysis of a National and Corporate Carbon Emission Reduction Target on Renewable Electricity Use: A Review. Energies 2022, 15, 1794. [Google Scholar] [CrossRef]
- Rakhmangulov, A.; Burmistrov, K.; Osintsev, N. Selection of Open-Pit Mining and Technical System’s Sustainable Development Strategies Based on MCDM. Sustainability 2022, 14, 8003. [Google Scholar] [CrossRef]
- Purhamadani, E.; Bagherpour, R.; Tudeshki, H. Energy consumption in open-pit mining operations relying on reduced energy consumption for haulage using in-pit crusher systems. J. Clean. Prod. 2021, 291, 125228. [Google Scholar] [CrossRef]
- Pandey, B.; Gautam, M.; Agrawal, M. Greenhouse Gas Emissions from Coal Mining Activities and Their Possible Mitigation Strategies. In Environmental Carbon Footprints; Elsevier: Amsterdam, The Netherlands, 2018; pp. 259–294. [Google Scholar]
- Wang, B.; Cui, C.-Q.; Zhao, Y.-X.; Yang, B.; Yang, Q.-Z. Carbon emissions accounting for China’s coal mining sector: Invisible sources of climate change. Nat. Hazards 2019, 99, 1345–1364. [Google Scholar] [CrossRef]
- Lin, B.; Jia, Z. Can carbon tax complement emission trading scheme? The impact of carbon tax on economy, energy and environment in China. Clim. Chang. Econ. 2020, 11, 2041002. [Google Scholar] [CrossRef]
- Stavins, R.N. Policy, The Relative Merits of Carbon Pricing Instruments: Taxes versus Trading. Rev. Environ. Econ. Policy 2022, 16, 62–82. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, L.; Lin, X.; Pan, H.; Sharp, B. Synergistic effect of carbon ETS and carbon tax under China’s peak emission target: A dynamic CGE analysis. Sci. Total Environ. 2022, 825, 154076. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R. Polluter-Pays-principle: The cardinal instrument for addressing climate change. Laws 2015, 4, 638–653. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Liu, L.; Gao, S.; Yuan, S.; Haipeng, C.; Qianling, S. Impact of carbon trading on agricultural green total factor productivity in China. J. Clean. Prod. 2022, 367, 132789. [Google Scholar] [CrossRef]
- Jia, Z.; Lin, B. Rethinking the choice of carbon tax and carbon trading in China. Technol. Forecast. Soc. Chang. 2020, 159, 120187. [Google Scholar] [CrossRef]
- Metcalf, G.E. Designing a carbon tax to reduce US greenhouse gas emissions. J Rev. Environ. Econ. Policy. 2009, 3, 63–83. [Google Scholar] [CrossRef] [Green Version]
- Pearce, D. The role of carbon taxes in adjusting to global warming. Econ. J. 1991, 101, 938–948. [Google Scholar] [CrossRef]
- Yang, H.; Gan, T.; Liang, W.; Liao, X. Development; Sustainability, can policies aimed at reducing carbon dioxide emissions help mitigate haze pollution? An empirical analysis of the emissions trading system. Environ. Dev. Sustain. 2022, 24, 1959–1980. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Q.; Li, H.; Fan, H.; Qian, Y.; Klemeš, J.J. Review of recent progress of emission trading policy in China. J. Clean. Prod. 2022, 349, 131480. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Wei, Y.-M.; Yu, S. Regional allocation of CO2 emissions allowance over provinces in China by 2020. Energy Policy 2013, 54, 214–229. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y. Empirical estimation and analysis of total carbon emission quota based on carbon transfer–embedded import and export trade. Environ. Sci. Pollut. Res. 2022, 29, 42692–42708. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Shi, Y.; Wu, J.; Wu, L.; Xiong, W. Exploring the characteristics of CO2 emissions embodied in international trade and the fair share of responsibility. Ecol. Econ. 2018, 146, 574–587. [Google Scholar] [CrossRef]
- Zhao, R.; Min, N.; Geng, Y.; He, Y. Allocation of carbon emissions among industries/sectors: An emissions intensity reduction constrained approach. J. Clean. Prod. 2017, 142, 3083–3094. [Google Scholar] [CrossRef]
- Yi, W.-J.; Zou, L.-L.; Guo, J.; Wang, K.; Wei, Y.-M. How can China reach its CO2 intensity reduction targets by 2020? A regional allocation based on equity and development. Energy Policy 2011, 39, 2407–2415. [Google Scholar] [CrossRef]
- Grubb, M. The greenhouse effect: Negotiating targets. Int. Aff. 1990, 66, 67–89. [Google Scholar] [CrossRef]
- Phylipsen, G.; Bode, J.W.; Blok, K.; Merkus, H.; Metz, B. A Triptych sectoral approach to burden differentiation; GHG emissions in the European bubble. Energy Policy 1998, 26, 929–943. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, M. Carbon dioxide emissions allocation: A review. Ecol. Econ. 2016, 125, 47–59. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, L.; Dong, H.; Cai, B.; Geng, Y.; Pang, L.; Tang, Y. Allocating China’s 2025 CO2 emission burden shares to 340 prefecture cities: Methods and findings. Environ. Sci. Pollut. Res. 2022, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Zhang, L.; Zhou, D.Q.; Xia, W.J. Modeling economic performance of interprovincial CO2 emission reduction quota trading in China. Appl. Energy 2013, 112, 1518–1528. [Google Scholar] [CrossRef]
- Marklund, P.-O.; Samakovlis, E. What is driving the EU burden-sharing agreement: Efficiency or equity? J. Environ. Manag. 2007, 85, 317–329. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.; Long, R.; Yu, B.; Wang, Y.; Li, J.; Wang, Y.; Dai, Y.; Yang, Q.; Chen, H. How can China allocate CO2 reduction targets at the provincial level considering both equity and efficiency? Evidence from its Copenhagen Accord pledge. Resour. Conserv. Recycl. 2018, 130, 31–43. [Google Scholar] [CrossRef]
- Wang, S.F.; Yang, S.L. Carbon Permits Allocation Based on Two-Stage Optimization for Equity and Efficiency: A Case Study within China. Adv. Mater. Res. 2012, 518, 1117–1122. [Google Scholar] [CrossRef]
- Lins, M.P.E.; Gomes, E.G.; de Mello, J.C.C.S.; de Mello, A.J.R.S. Olympic ranking based on a zero sum gains DEA model. Eur. J. Oper. Res. 2003, 148, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Wei, Y.-M.; Wang, K. Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition. Energy Policy 2014, 66, 630–644. [Google Scholar] [CrossRef]
- Liu, H.; Lin, B. Cost-based modelling of optimal emission quota allocation. J. Clean. Prod. 2017, 149, 472–484. [Google Scholar] [CrossRef]
- Xu, J.; Yang, X.; Tao, Z. A tripartite equilibrium for carbon emission allowance allocation in the power-supply industry. Energy Policy 2015, 82, 62–80. [Google Scholar] [CrossRef]
- Yang, B.; Li, X.; Su, Y.; Liu, C.; Xue, F. Carbon quota allocation at the provincial level in China under principles of equity and efficiency. Carbon Manag. 2019, 11, 11–23. [Google Scholar] [CrossRef]
- Zhao, B.; Yang, W. Allocation of carbon emission allowance based on DLA-GA model: A case study in China. Environ. Sci. Pollut. Res. 2022, 29, 15743–15762. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Feng, Q.; Tian, Y.; Lu, L. Equilibrium Strategy-Based Optimization Method for Carbon Emission Quota Allocation in Conventional Power Plants. Sustainability 2018, 10, 3195. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Ye, F.; Li, Y.; Tan, K.H. A bi-objective programming model for carbon emission quota allocation: Evidence from the Pearl River Delta region. J. Clean. Prod. 2018, 205, 163–178. [Google Scholar] [CrossRef]
- Rose, A.; Stevens, B.; Edmonds, J.; Wise, M. International equity and differentiation in global warming policy. Environ. Resour. Econ. 1998, 12, 25–51. [Google Scholar] [CrossRef]
- Fang, K.; Zhang, Q.; Long, Y.; Yoshida, Y.; Sun, L.; Zhang, H.; Dou, Y.; Li, S. How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance. Appl. Energy 2019, 241, 380–389. [Google Scholar] [CrossRef]
- Cui, X.; Zhao, T.; Wang, J. Allocation of carbon emission quotas in China’s provincial power sector based on entropy method and ZSG-DEA. J. Clean. Prod. 2021, 284, 124683. [Google Scholar] [CrossRef]
- Wang, B.J.; Zhao, J.L.; Wei, Y.X. Carbon emission quota allocating on coal and electric power enterprises under carbon trading pilot in China: Mathematical formulation and solution technique. J. Clean. Prod. 2019, 239, 118104. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, C. Allocation model of carbon quota from the perspective of multi-objective optimization. Contemp. Econ. 2021, 3, 82–85. [Google Scholar]
- Sm, A.; Smm, B.; Al, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar]
- Zhang, Z. Study on Carbon Emissions Accounting and Carbon Emission Reduction Approach of Surface Coal Mine. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2013. [Google Scholar]
- Eggleston, H.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006. [Google Scholar]
- Li, Z.; Zhang, H.; Meng, J.; Long, Y.; Yan, Y.; Li, M.; Huang, Z.; Liang, Y. Reducing carbon footprint of deep-sea oil and gas field exploitation by optimization for Floating Production Storage and Offloading. Appl. Energy 2020, 261, 114398. [Google Scholar] [CrossRef]
- Ping, L.; Beibei, W.; Xiuge, Z.; Xiaoli, D.; Nan, H.; Yiting, C.; Limin, W. Study on adult respiratory volume in China. J. Environ. Health 2014, 31, 953–956. [Google Scholar]
- Zhang, X.; Wang, L.; Chen, Y. Carbon Emission Reduction of Apparel Material Distribution Based on Multi-Objective Genetic Algorithm (NSGA-II). Sustainability 2019, 11, 2571. [Google Scholar] [CrossRef] [Green Version]
- Jing-jing, L.; Chuan-sheng, W. Carbon Emission Calculation and Evaluation of Coal Enterprise. Coal Min. Technol. 2013, 18, 99–102+98. [Google Scholar]
- Yu, S.; Zheng, S.; Li, X. The achievement of the carbon emissions peak in China: The role of energy consumption structure optimization. Energy Econ. 2018, 74, 693–707. [Google Scholar] [CrossRef]
- Grujić, M.M. Technology improvements of crushing process in Majdanpek Copper Mine. Int. J. Miner. Processing 1996, 44, 471–483. [Google Scholar] [CrossRef]
- Jeswiet, J.; Archibald, J.; Thorley, U.; Souza, E.D. Energy Use in Premanufacture (Mining). Procedia CIRP 2015, 29, 816–821. [Google Scholar] [CrossRef]
- Liu, F.; Cai, Q.; Chen, S.; Zhou, W. A comparison of the energy consumption and carbon emissions for different modes of transportation in open-cut coal mines. Min. Sci. Technol. 2015, 000, 255–260. [Google Scholar] [CrossRef]
- Chunmei, L. Research on Mechanism and Application of New Ways of Energy Saving and Consumption Reduction of Ball Mill. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2009. [Google Scholar]
- Cuixue, X. Research on Energy Saving of Iron Ore Grinding Based on Neural Network Algorithm. Master’s Thesis, Hebei Union University, Tangshan, China, 2013. [Google Scholar]
Preference | Criteria | Weight | F1 | F2 | F3 |
---|---|---|---|---|---|
Stationarity preference (A) | f1 f2 f3 | (0.60, 0.20, 0.20) | 0.1804 | 0.0088 | 2.2518 |
Efficiency preference (B) | f1 f2 f3 | (0.20, 0.60, 0.20) | 0.1878 | 0.0041 | 2.0160 |
Fairness preference (C) | f1 f2 f3 | (0.20, 0.20, 0.60) | 0.1925 | 0.0080 | 0.6367 |
Equal preference (D) | f1 f2 f3 | (0.33, 0.33, 0.33) | 0.1844 | 0.0042 | 2.4835 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Zhou, J. Multiobjective Optimization of Carbon Emission Reduction Responsibility Allocation in the Open-Pit Mine Production Process against the Background of Peak Carbon Dioxide Emissions. Sustainability 2022, 14, 9514. https://doi.org/10.3390/su14159514
Wang G, Zhou J. Multiobjective Optimization of Carbon Emission Reduction Responsibility Allocation in the Open-Pit Mine Production Process against the Background of Peak Carbon Dioxide Emissions. Sustainability. 2022; 14(15):9514. https://doi.org/10.3390/su14159514
Chicago/Turabian StyleWang, Guoyu, and Jinsheng Zhou. 2022. "Multiobjective Optimization of Carbon Emission Reduction Responsibility Allocation in the Open-Pit Mine Production Process against the Background of Peak Carbon Dioxide Emissions" Sustainability 14, no. 15: 9514. https://doi.org/10.3390/su14159514
APA StyleWang, G., & Zhou, J. (2022). Multiobjective Optimization of Carbon Emission Reduction Responsibility Allocation in the Open-Pit Mine Production Process against the Background of Peak Carbon Dioxide Emissions. Sustainability, 14(15), 9514. https://doi.org/10.3390/su14159514