Research on the Spatial Agglomeration of Commodity Trading Markets and Its Influencing Factors in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Variables
2.2. Research Framework and Methodology
2.2.1. Location Quotient
2.2.2. Global Spatial Autocorrelation
2.2.3. Local Spatial Autocorrelation
2.2.4. Spatial Econometric Model
3. Research Results
3.1. Spatial Agglomeration Analysis of the Commodity Trading Markets in China
3.2. Spatial Autocorrelation Analysis of Commodity Trading Markets in China
3.2.1. Global Spatial Autocorrelation Analysis
3.2.2. Local Spatial Autocorrelation Analysis
3.3. Analysis of the Factors Influencing the Spatial Agglomeration of Commodity Trading Markets in China
3.3.1. Model Selection
3.3.2. Result Analysis
4. Conclusions and Recommendations
5. Future Directions and Research Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeager, J. Depreciation, multipliers, and commodity market equilibrium: A pedagogical approach. Atl. Econ. J. 1997, 5, 90–91. [Google Scholar] [CrossRef]
- Berndt, C.; Boeckler, M. Geographies of circulation and exchange: Constructions of markets. Prog. Hum. Geogr. 2009, 33, 535–551. [Google Scholar] [CrossRef] [Green Version]
- Maksim, T.; Kathleen, M.C. Emergent Specializations in a Commodity Market a Multi-Agent Model. Comput. Math. Organ. Theory 2002, 8, 221–234. [Google Scholar]
- Wrigley, N.; Currah, A. Globalizing retail and the ‘new economy’: The organizational challenge of e-commerce for the retail TNCs. Geoforum 2006, 37, 340–351. [Google Scholar] [CrossRef]
- Clarke, I.; Hallsworth, A.; Jackson, P.; De Kervenoael, R.; Del Aguila, R.P.; Kirkup, M. Retail Restructuring and Consumer Choice 1. Long-Term Local Changes in Consumer Behaviour: Portsmouth, 1980–2002. Environ. Plan. 2016, 38, 25–46. [Google Scholar] [CrossRef]
- Athreye, S.S.; Keeble, D. Specialized Markets and the Behavior of Firms: Evidence from the United Kingdom’s Regional Economies. Int. Reg. Sci. Rev. 2002, 25, 38–62. [Google Scholar] [CrossRef]
- Wen, F.; Liu, Z.; Dai, Z.; He, S.; Liu, W. Multi-scale risk contagion among international oil market, Chinese commodity market and Chinese stock market: A MODWT-Vine quantile regression approach. Energy Econ. 2022, 105957. [Google Scholar] [CrossRef]
- Yang, C.; Niu, Z.; Gao, W. The time-varying effects of trade policy uncertainty and geopolitical risks shocks on the commodity market prices: Evidence from the TVP-VAR-SV approach. Resour. Policy 2022, 76, 10261. [Google Scholar] [CrossRef]
- Radhan, R.P.; Hall, J.H.; Du Toit, E. The lead–lag relationship between spot and futures prices: Empirical evidence from the Indian commodity market. Resour. Policy 2020, 70, 101934. [Google Scholar] [CrossRef]
- Suresha, H.P.; Mutturaj, U.; Krishna, K.T. Indian Commodity Market Price Comparative Study of Forecasting Methods—A Case Study on Onion, Potato and Tomato. Asian J. Res. Comput. Sci. 2021, 12, 147–159. [Google Scholar] [CrossRef]
- Trinh, T.T.T.; Nguyen, T.B.; Trinh, T.T.H.; Nguyen, T.T.; Dang, T.P.; Tran, T.B.K.; Nguyen, T.Y. An Empirical Study of Commodity Market Patterns in Ethnic Minorities and Mountainous Areas: Evidence from Vietnam. J. Asian Financ. Econ. Bus. JAFEB 2021, 8, 107–120. [Google Scholar]
- Lu, L.J.; Zheng, X.B. Study on Mechanism of the Interaction between Specialized Market and Industrial Clusters Based on Coevolution: Theory and Evidence. China Soft Sci. 2011, 246, 117–129. [Google Scholar]
- Wu, X. The Form Evolvement and Mechanism Analysis of Mixed-Use Settlements Based on the Specialized Market: Empirical Study on Commercial-Residential Community Under the ‘Yiwu Pattern’ of Zhejiang Province. Econ. Geogr. 2015, 35, 111–117. [Google Scholar]
- Yu, B.; Lu, L. Micro-mechanism and Empirical Analysis on Double Channel Integration Between Specialized Market and E-commerce. RD Manag. 2017, 29, 141–150. [Google Scholar]
- Jin, X.; Ke, R. An economic explanation of transaction costs for specialized markets. Econ. Res. J. 1997, 4, 74–79. [Google Scholar]
- Xie, S.; Wang, P.; Chang, M. Research on the Interactive Relationship between the Specialized Market and the Development of Urbanization in Yiwu City. Econ. Res. J. 2017, 37, 142–147. [Google Scholar]
- Peng, J. Research on the Path of Transformation and Upgrading of Professional Market from the Perspective of Customer Orientation. J. Central Univ. Financ. Econ. 2016, 36, 123–128. [Google Scholar]
- Chi, R. An Analysis of Trend of Specialty Market Based on Changed Survival Foundation. Commer. Res. 2003, 9, 167–169. [Google Scholar]
- Lu, L.; Yang, H. Market Expanding, Financial Externalities, and Regional Division. Econ. Res. J. 2007, 4, 67–78. [Google Scholar]
- Cao, R. On the Internationalization Model of specialized Market and its Innovation-Taking China Yiwu International Trade City as an Example. Econ. Theory Bus. Manag. 2008, 2, 11–15. [Google Scholar]
- Wu, Y.; Zhu, X. Accessibility, Market Segmentation and the Development of Commodity Exchange Centers. China Econmic. Q. 2011, 1, 63–82. [Google Scholar]
- Lu, L.; Yu, H.; Lu, Y. Specialized Market and Industrial Cluster: Linkage and Influential Factors. China Ind. Econ. 2011, 1, 151–160. [Google Scholar]
- Liu, N.; Ren, G. A Study on specialized Market-oriented Industry Cluster and Regional Division of Labor. Econ. Manag. 2011, 33, 24–31. [Google Scholar]
- Ma, H.; Luo, J.; Luo, R. The impact of specialized markets on regional economic development. Commer. Res. 2012, 8, 20–24. [Google Scholar]
- Shi, Y.; Zhang, X. Spatial Situation of Concentration and Specialization of Large-scale Commodity Exchange Marketscommodity trading markets in China. Acta Geogr. Sin. 2008, 4, 386–394. [Google Scholar]
- Shi, Y. Spatial Distribution and Countermeasures of Development of Commodity Exchange Marketscommodity trading markets in China. World Reg. Stud. 2005, 1, 34–40. [Google Scholar]
- Zhang, X.; Ning, Y. The Spatial and Temporal Difference and Formation Mechanism of the Chinese Commodity Trading Markets Development. Sci. Geogr. Sin. 2010, 30, 481–488. [Google Scholar]
- Xiang, Q.; Wai, N. Study on Characteristics of Spatial Concentration of Commodity Market Based on New Industrial District Theory. Commer. Res. 2010, 4, 144–148. [Google Scholar]
- Jiang, T.; Ma, L. The Spatial Distribution Characteristics of Bulk Commodities Markets in Zhejiang Province and Their Location Choice. Econ. Geogr. 2016, 7, 107–113. [Google Scholar]
- Jiang, Z.; Wang, W.; Zhu, H.; Wu, W. Comprehensive Strength and Temporal-spatial Discrepancies of Chinese Commodity Exchange Market Based on The Empirical Analysis of The Provinces. China Ind. Econ. 2016, 3, 380–386. [Google Scholar]
- Yin, G. Analysis of Regional Differences and Influencing Factors of China’s Commodity Trading Market. Master’s Thesis, Chongqing Technology and Business University, Chongqing, China, 2014. [Google Scholar]
- Liu, D.J.; Hu, J.; Chen, J.Z. The Spatial Structure and Disparities of Leisure Tourism Destination in Wuhan. Econ. Geogr. 2014, 3, 176–181. [Google Scholar]
- Deng, Y.; Li, Y.; Duan, Y.; Yu, L.; Xu, Y. Spatial Distribution Pattern and Influencing Factors of Yunnan Temple Gardens Based on GIS. J. China For. Sci. 2021, 5, 142–148. [Google Scholar]
- Ye, X.; Teng, Y.; Liu, R. Impacts of Bonded Zones and Export Processing Zones on Regional Industrial Hollowing: An Empirical Study Based on Spatial Dubin Model and Intermediation Effect Model. J. Cent. Univ. Financ. Econ. 2022, 3, 117–128. [Google Scholar]
- Yu, B.; Su, Y. How does land finance affect land-use efficiency? Dynamic space Dubin model test based on the perspective of scale and technology. Geogr. Res. 2022, 41, 527–545. [Google Scholar]
- Wang, R. Research on Effects of Transportation on Regional Economic Development in the View of Provincial Perspective in China. Ph.D. Thesis, Beijing Jiaotong University, Beijing, China, 2013. [Google Scholar]
- Pan, L.; Lin, Z. Study on Spatial Spillover Effects of Transportation Infrastructure on Regional Economic Development-Empirical Analysis Based on Spatial-temporal Data of Chengdu-Chongqing Economic Circle. Resour. Dev. Mark. 2022, 1, 53–60. [Google Scholar]
- Boarnet, M.G. Spillovers and the Locational Effects of Public Infrastructure. J. Od Reginal Sci. 1998, 3, 381–400. [Google Scholar] [CrossRef]
- Li, D.; Zhang, H.; Gao, A. Spatial Layout of Port Bulk Commodity Markets in China. Sci. Geogr. Sin. 2019, 39, 541–549. [Google Scholar]
- Wang, X.; Pan, K. Current Situation, Problems and Countermeasures of China’s Commodity Trading Market. China Bus. Mark. 2015, 29, 30–36. [Google Scholar]
- Wang, X.; Xiang, J.; Jing, L. Research on the Problems of China’s Commodity Exchange Market under the New Normality. Acad. J. Zhongzhou 2016, 229, 19–25. [Google Scholar]
Indicator System | Indicators | Abbreviation | Indicator Interpretation |
---|---|---|---|
Location quotient | Xi | Xi | The total amount of commodity markets transactions in i province |
GDPi | GDPi | Regional GDP of i province | |
Factors Influencing Spatial Agglomeration of China’s Commodity Trading Market | GDP | GDP | Economic development |
Export | Export | Degree of openness | |
Expressway network mileage | Tran | Degree of transportation convenience | |
Total profit of industrial enterprises above designated size | Enter | The development level of small and medium-sized private enterprises | |
Retail sales of social consumer goods | Social | Level of social consumption |
Province | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.948 | 0.887 | 0.933 | 0.963 | 0.954 | 0.972 | 1.086 | 1.007 | 0.992 | 1.015 |
Tianjin | 2.228 | 1.893 | 1.468 | 1.678 | 1.086 | 1.016 | 0.915 | 0.811 | 0.736 | 0.668 |
Hebei | 1.305 | 1.24 | 1.206 | 1.22 | 1.329 | 1.406 | 1.429 | 1.483 | 1.502 | 1.498 |
Shanxi | 0.312 | 0.274 | 0.258 | 0.299 | 0.349 | 0.368 | 0.39 | 0.339 | 0.324 | 0.356 |
Inner Mongolia | 0.44 | 0.453 | 0.389 | 0.369 | 0.308 | 0.324 | 0.304 | 0.357 | 0.354 | 0.334 |
Liaoning | 1.421 | 1.389 | 1.414 | 1.404 | 1.272 | 1.287 | 1.309 | 2.084 | 1.404 | 1.409 |
Jilin | 0.475 | 0.498 | 0.475 | 0.425 | 0.459 | 0.462 | 0.462 | 0.387 | 0.296 | 0.327 |
Heilongjian | 0.585 | 0.565 | 0.57 | 0.567 | 0.585 | 0.63 | 0.67 | 0.662 | 0.649 | 0.518 |
Shanghai | 2.06 | 2.031 | 2.95 | 2.478 | 2.277 | 2.345 | 2.112 | 2.086 | 2.198 | 2.332 |
Jiangsu | 1.618 | 1.716 | 1.7 | 1.698 | 1.701 | 1.55 | 1.604 | 1.77 | 1.856 | 1.887 |
Zhejiang | 2.41 | 2.461 | 2.335 | 2.413 | 2.503 | 2.565 | 2.57 | 2.531 | 2.579 | 2.564 |
Anhui | 0.747 | 0.805 | 0.787 | 0.856 | 0.773 | 0.745 | 0.756 | 0.786 | 0.742 | 0.695 |
Fujian | 0.507 | 0.514 | 0.458 | 0.462 | 0.449 | 0.408 | 0.4 | 0.34 | 0.337 | 0.308 |
Jiangxi | 0.752 | 0.68 | 0.656 | 0.715 | 0.456 | 0.746 | 0.825 | 0.752 | 0.765 | 0.785 |
Shandong | 1.121 | 1.137 | 1.089 | 1.159 | 1.228 | 1.234 | 1.218 | 1.141 | 1.069 | 1.061 |
Henan | 0.387 | 0.462 | 0.498 | 0.523 | 0.586 | 0.625 | 0.652 | 0.621 | 0.548 | 0.527 |
Hubei | 0.445 | 0.438 | 0.479 | 0.445 | 0.479 | 0.463 | 0.487 | 0.464 | 0.413 | 0.445 |
Hunan | 0.759 | 0.787 | 0.816 | 0.817 | 0.795 | 0.789 | 0.796 | 0.894 | 0.926 | 0.952 |
Guangdong | 0.599 | 0.576 | 0.563 | 0.526 | 0.536 | 0.516 | 0.493 | 0.458 | 0.443 | 0.446 |
Guangxi | 0.64 | 0.622 | 0.576 | 0.585 | 0.546 | 0.427 | 0.435 | 0.454 | 0.509 | 0.526 |
Hainan | 0.046 | 0.044 | 0.039 | 0.038 | 0.095 | 0.097 | 0.077 | 0.072 | 0.063 | 0.25 |
Chongqin | 1.736 | 1.759 | 1.574 | 1.541 | 1.503 | 1.472 | 1.461 | 1.351 | 1.39 | 1.403 |
Sichuan | 0.381 | 0.431 | 0.418 | 0.492 | 0.604 | 0.627 | 0.538 | 0.572 | 0.58 | 0.578 |
Guizhou | 0.365 | 0.395 | 0.361 | 0.357 | 0.487 | 0.45 | 0.639 | 0.619 | 0.74 | 0.811 |
Yunnan | 0.444 | 0.461 | 0.363 | 0.355 | 0.334 | 0.284 | 0.259 | 0.239 | 0.169 | 0.176 |
Shanxi | 0.115 | 0.133 | 0.148 | 0.147 | 0.166 | 0.267 | 0.251 | 0.314 | 0.41 | 0.303 |
Gansu | 0.542 | 0.521 | 0.499 | 0.497 | 0.458 | 0.433 | 0.386 | 0.291 | 0.342 | 0.357 |
Qinghai | 0.154 | 0.167 | 0.225 | 0.087 | 0.095 | 0.218 | 0.214 | 0.198 | 0.178 | 0.323 |
Ningxia | 0.738 | 0.701 | 0.633 | 0.74 | 0.82 | 0.843 | 0.827 | 0.833 | 0.805 | 0.64 |
Xinjiang | 0.673 | 0.713 | 0.716 | 1.007 | 1.073 | 1.333 | 1.326 | 1.517 | 1.398 | 1.358 |
Type | 2010 | 2019 |
---|---|---|
Highest agglomeration areas | Shanghai, Liaoning, Hebei, Tianjin, Chongqing, Zhejiang, Jiangsu, Shandong | Beijing, Hebei, Shandong, Liaoning, Jiangsu, Zhejiang, Shanghai, Chongqing, Xinjiang |
High agglomeration areas | Beijing, Heilongjiang, Anhui, Jiangxi, Hunan, Guangdong, Ningxia, Xinjiang, Fujian, Guangxi, Gansu | Heilongjiang, Guizhou, Henan, Ningxia, Anhui, Jiangxi, Hunan, Tianjin, Guangxi, Sichuan |
Low agglomeration areas | Henan, InnerMongolia, Jilin, Guizhou, Hubei, Yunnan, Sichuan | Hubei, Gansu, Shanxi, Guangdong |
Lowest agglomeration areas | Qinghai, Shanxi, Shaanxi, and Hainan | InnerMongolia, Fujian, Yunnan, Shaanxi, Qinghai, Hainan, Jilin |
Quadrant | Spatial Correlation Model | 2010 | 2019 |
---|---|---|---|
First quadrant | H-H | Shanghai, Zhejiang, Jiangsu, Tianjin, Beijing, Shandong, Hebei | Shanghai, Jiangsu, Zhejiang, Beijing, Shandong |
Beta quadrant | L-H | Anhui, Fujian, Jiangxi, Jilin | Fujian, Jiangxi, Anhui, Tianjin |
Third quadrant | L-L | Qinghai, Shanxi, Shaanxi, InnerMongolia, Hainan, Yunnan, Gansu, Guangxi, Guangdong, Henan, Hubei, Hunan, Heilongjiang, Sichuan, Xinjiang, Guizhou, Ningxia | Qinghai, Shaanxi, InnerMongolia, Shanxi, Jilin, Hainan, Yunnan, Gansu, Guangxi, Guangdong, Henan, Hubei, Guizhou, Ningxia, Heilongjiang, and Sichuan |
Delta Quadrant | H-L | Chongqing, Liaoning | Hunan, Liaoning, Xinjiang, Chongqing, Hebei |
Test | Statistic | df | p-Value |
---|---|---|---|
Spatial error: | |||
Moran’s I | 17.958 | 1 | 0.000 |
Lagrange multiplier | 301.824 | 1 | 0.000 |
Robust Lagrange multiplier | 65.188 | 1 | 0.000 |
Spatial lag: | |||
Lagrange multiplier | 245.386 | 1 | 0.000 |
Robust Lagrange multiplier | 8.751 | 1 | 0.003 |
Hausman specification test Prob > chi2 = 0.015 |
LR Test | Model Comparison | p-Value |
---|---|---|
Comparison of SDM and SAR models | Likelihood-ratio test | LR chi2(5) = 17.61 |
(Assumption:sar_a nested in sdm_a) | Prob > chi2 = 0.0035 | |
Comparison of SDM and SEM models | Likelihood-ratio test | LR chi2(5) = 20.49 |
(Assumption:sem_a nested in sdm_a) | Prob > chi2 = 0.0010 |
Type | Individual Fixed Effect | Time Fixed Effect | Two-Way Fixed-Effect |
---|---|---|---|
R2 | 0.5352 | 0.5872 | 0.5297 |
Model selection | × | √ | × |
VARIABLES | Main | Wx | Spatial | Variance | LR_Direct | LR_Indirect | LR_Total |
---|---|---|---|---|---|---|---|
lngdp | 0.522 *** | −0.158 | 0.523 *** | −0.055 | 0.468 | ||
(0.00) | (0.57) | (0.00) | (0.87) | (0.27) | |||
lnexport | 0.395 *** | −0.276 *** | 0.383 *** | −0.245 ** | 0.138 | ||
(0.00) | (0.00) | (0.00) | (0.03) | (0.28) | |||
lntran | −0.335 *** | −0.419 *** | −0.353 *** | −0.585 *** | −0.937 *** | ||
(0.00) | (0.00) | (0.00) | (0.00) | (0.00) | |||
lnenter | 0.299 *** | 0.254 *** | 0.313 *** | 0.369 *** | 0.682 *** | ||
(0.00) | (0.00) | (0.00) | (0.00) | (0.00) | |||
social | −0.000 *** | −0.000 | −0.000 *** | −0.000 * | −0.000 *** | ||
(0.01) | (0.13) | (0.00) | (0.07) | (0.01) | |||
rho | 0.191 ** | ||||||
(0.02) | |||||||
sigma2_e | 0.217 *** | ||||||
(0.00) | |||||||
Observations | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
R-squared | 0.833 | 0.833 | 0.833 | 0.833 | 0.833 | 0.833 | 0.833 |
Number of area | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, S.; Li, H. Research on the Spatial Agglomeration of Commodity Trading Markets and Its Influencing Factors in China. Sustainability 2022, 14, 9534. https://doi.org/10.3390/su14159534
Xie S, Li H. Research on the Spatial Agglomeration of Commodity Trading Markets and Its Influencing Factors in China. Sustainability. 2022; 14(15):9534. https://doi.org/10.3390/su14159534
Chicago/Turabian StyleXie, Shouhong, and Hanbing Li. 2022. "Research on the Spatial Agglomeration of Commodity Trading Markets and Its Influencing Factors in China" Sustainability 14, no. 15: 9534. https://doi.org/10.3390/su14159534
APA StyleXie, S., & Li, H. (2022). Research on the Spatial Agglomeration of Commodity Trading Markets and Its Influencing Factors in China. Sustainability, 14(15), 9534. https://doi.org/10.3390/su14159534