Evaluating the Effects of COVID-19 and Vaccination on Employment Behaviour: A Panel Data Analysis Acrossthe World
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Pooled (Regression) Model
3.2. Choosing between Fixed and Random Effect
3.3. Fixed Effect Model Results
3.3.1. Simulation of Net effects of COVID-19 vs. Vaccination
3.3.2. Simulation of Second Effects of COVID-19 vs. Vaccination
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
AIC | Akaike’s Information Criterion |
AP | Average Productivity |
Dumm | Dummy variables |
E | Employment |
ED | Effective Demand |
Et-1 and Et-2 | Lagged variables 1 and 2 of employment |
HCPs | Healthcare Professionals |
ILO | International Labour Organisation |
ILOSTAT | International Labour Organisation Statistics |
L | Labour |
LC | Labour-Cost |
LF | Labour-Force |
MPL | Marginal Productivity of Labour MPL |
OECD | Organisation for Economic Cooperation and Development |
Prob | Probability |
Real GDP | Real Gross Domestic Product |
TCasest | Total Cases |
TVacct | Total Vaccination |
W/P | Real Wage |
WHO | World Health Organisation |
WTP | Willingness to Pay |
References
- ILOSTAT. Working Hours Lost Due to the COVID-19 Crisis- ILO Modelled Estimates; International Labour Organization Statistics: Geneva, Suitzerland, 2021; Available online: https://ilostat.ilo.org/topics/working-time (accessed on 15 May 2021).
- WHO. COVID-19-Global Table Data; World Health Organization: Geneva, Switzerland, 2021; Available online: https://COVID19.who.int/WHO-COVID-19-global-table-data.csv (accessed on 15 May 2021).
- Hannah, R.; Mathieu, E.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Ortiz-Ospina, E.; Hasell, J.; Macdonald, B.; Beltekian, D.; Roser, M. Coronavirus Pandemic (COVID-19). OurWorldInData.org. 2021. Available online: https://ourworldindata.org/coronavirus (accessed on 13 April 2021).
- Palazzo, M.; Gigauri, I.; Panait, M.C.; Apostu, S.A.; Siano, A. Sustainable Tourism Issues in European Countries during the Global Pandemic Crisis. Sustainability 2022, 14, 3844. [Google Scholar] [CrossRef]
- Engle, S.; Stromme, J.; Zhou, A. Staying at Home: Mobility Effects of COVID-19 (15 April 2020); Working paper; SSRN Support Centre: New York, NY, USA, 2020; Available online: https://ssrn.com/abstract=3565703 (accessed on 3 April 2020). [CrossRef]
- Kaygin, E.; Topcuoglu, E. The Effects of COVID-19 pandemic upon tourism: A sample from the city of Kars. J. Econ. Adm. Sci. 2020, 7, 782–805. [Google Scholar] [CrossRef]
- Orset, C. People’s perception and cost Netness of home confinement during an influenza pandemic: Evidence from the French case. Eur. J. Health Econ. 2018, 19, 1335–1350. [Google Scholar] [CrossRef] [PubMed]
- Brzezinski, A.; Deiana, G.; Kecht, V.; Van Dijcke, D. The COVID-19 Pandemic: Government vs. Community Action Across the United States (18 April 2020); Working Paper No. 2020-06; Institute for New Economic Thinking (INET): Oxford, UK, 2021; Available online: https://ideas.repec.org/p/amz/wpaper/2020-06.html (accessed on 16 May 2021).
- Fang, H.; Wang, L.; Yang, Y. Human mobility restrictions and the spread of the novel coronavirus (2019-nCoV) in China. J. Public Econ. 2020, 191, 104272. [Google Scholar] [CrossRef]
- Farboodi, M.; Jarosch, G.; Shimer, S. Internal and external effects of social distancing in a pandemic. J. Econ. Theory 2021, 196, 105293. [Google Scholar] [CrossRef]
- Litvinova, M.; Liu, Q.H.; Kulikove, E.S.; Ajellia, M. Reactive school closure weakens the network of social interactions and reduces the spread of influenza. Proc. Natl. Acad. Sci. USA 2019, 116, 13174–13181. [Google Scholar] [CrossRef] [Green Version]
- Mendolia, S.; Stavrunova, O.; Yerokhinc, O. Determinants of the community mobility during the COVID-19 epidemic: The role of government regulations and information. J. Econ. Behav. Organ. 2021, 184, 199–231. [Google Scholar] [CrossRef]
- Prem, K.; Liu, Y.; Russell, T.W.; Kucharski, A.J.; Eggo, R.M.; Davies, N.; Jit, M.; Klepac, P. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study. Lancet Public Health 2020, 5, e261–e270. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; Chen, G.; Fu, X. Effects of active links on epidemic transmission over social networks. Phys. A Stat. Mech. Its Appl. 2017, 468, 614–621. [Google Scholar] [CrossRef]
- Chen, S.; Small, M.; Fu, X. Global stability of epidemic models with imperfect vaccination and quarantine on scale-free networks. IEEE Trans. Netw. Sci. Eng. 2020, 7, 1583–1596. [Google Scholar] [CrossRef] [Green Version]
- ILO. COVID-19 Tackling the Jobs Crisis in the Least Developed Countries; International Labour Organization: Geneva, Switzerland, 2020; Available online: https://www.ilo.org/wcmsp5/groups/public/ed_emp/documents/publication/wcms766463.pdf (accessed on 16 May 2021).
- Tizzoni, B.P.; Decuyper, A.; King, G.K.; Schneider, C.M.; Blondel, V.; Smoreda, Z.; Gonzalez, M.C.; Colizza, V. On the Use of Human Mobility Proxies for Modeling Epidemics. PLoSComput. Biol. 2021, 10, e1003716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sleszynski, P. Stages of spatial dispersion. of the CCOVID-19 epidemic in Poland in the first six months (4 March–20 September 2020). Geogr. Pol. 2021, 94, 305–324. [Google Scholar] [CrossRef]
- Lahrouz, A.; Settati, A.; El-Mahjour, H.; El-Jarroudi, M.; El-Fatini, M. Global dynamics of an epidemic model with incomplete recovery in a complex network. J. Frankl. Inst. 2020, 357, 4414–4436. [Google Scholar] [CrossRef]
- Rasul, I. The economics of viral outbreaks. AEA Pap. Proc. 2020, 110, 265–268. [Google Scholar] [CrossRef]
- Sheehan, B. Joan Robinson’s short period theory of employment—A development of the contributions of Keynes, Kalecki and Marx. In Proceedings of the Association for Heterodox Economists Conference, London, UK, 6–8 July 2022. [Google Scholar]
- Rogers, C. The Principle of Net Demand: The Key to Understanding the General Theory. In Keynes’s General Theory after Seventy Years; Robert, W.D., Mundell, R.A., Vercelli, A., Eds.; Palgrave Macmillan: London, UK, 2010; pp. 136–156. [Google Scholar]
- Krugman, P.R. The Return of Depression Economics. Foreign Aff. 1999, 78, 56–74. [Google Scholar] [CrossRef]
- OECD. Main Economic Indicator (MEI): Comparative Methodological Analysis, Volume 2002, Supplement 3; Organization for Economic Co-Operation and Development: Paris, France, 2003; Available online: https://www.oecd.org/sdd/labour-stats/16455130.pdf (accessed on 15 May 2021).
- Mosbah, E.; Mastorakis, N. Simulating Labour Market Policies Effects in Tunisia. In Proceedings of the 9th NAUN International Conference on Applied Mathematics, Simulation, Modelling (ASM’ 15), Konya, Turkey, 20–22 May 2015; pp. 83–97. [Google Scholar]
- Eurofound. Employment Effects of Reduced Non-Wage Labour Costs; European Foundation for the Improvement of Living and Working Conditions: Luxembourg, 2017; Available online: https://www.eurofound.europa.eu/sites/default/files/ef_publication/field_ef_document/ef1648en.pdf (accessed on 10 April 2021).
- Meager, N.; Speckesser, S. Wages, Productivity, and Employment a Review of Theory and International Data (May 2011, p.11). Expert Ad-hoc Paper; Institute for Employment Studies: Brighton, UK, 2021; Available online: https://www.researchgate.net/profile/Nigel_Meager/publication/263414861 (accessed on 24 May 2021).
- Shapiro, C.; Stiglitz, J.E. Equilibrium unemployment as a worker discipline device. Am. Econ. Rev. 1984, 74, 433–444. [Google Scholar]
- Mosbah, E.; Zouari, Z.; Mastorakis, N. Analysis of Tunisian Labour Market Rigidity. In Proceedings of the 6th International Conference on Finance, Accounting and Law (ICFA’ 15), Sliema, Malta, 17–19 August 2015; pp. 72–81. [Google Scholar]
- Duryea, S.; Lam, D.; Levison, D. Effects of economic shocks on children’s employment and schooling in Brazil. J. Dev. Econ. 2007, 84, 188–214. [Google Scholar] [CrossRef] [Green Version]
- Sofi, I.A.; Kunroo, M.H. Demand Shocks and employment adjustments: Does employment protection legislation create rigidity? Int. Labour Rev. 2018, 157, 461–480. [Google Scholar] [CrossRef]
- Stijepic, D. Employment effects of skills around the world: Evidence from the PIAAC. Int. Labour Rev. 2020, 159, 307–338. [Google Scholar] [CrossRef]
- Pappa, P. The effects of fiscal shocks on employment and the real wage. Int. Econ. Rev. 2009, 50, 217–244. [Google Scholar] [CrossRef]
- Collard, F.; Dellas, H. Technology shocks and employment. Econ. J. 2007, 117, 1436–1459. [Google Scholar] [CrossRef] [Green Version]
- Adhvaryu, A.; Chari, A.V.; Sharma, S. Firing costs and flexibility: Evidence from firms’ employment responses to shocks in India. Rev. Econ. Stat. 2013, 95, 725–740. [Google Scholar] [CrossRef] [PubMed]
- Dube, A.; Lester, T.W.; Reich, M. Minimum wage shocks, employment flows and labour market frictions. J. Labour Econ. 2016, 34, 663–704. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Wang, Y. Macroeconomic Effects of COVID-19 Pandemic: Fresh Evidence from Korea. Sustainability 2022, 14, 5100. [Google Scholar] [CrossRef]
- Autran-Gomez, A.M.; Favorito, L.A. The Social, economic and sanitary impact of COVID-19 pandemic. Int. Braz. J. Urol. 2020, 46, 3–5. [Google Scholar] [CrossRef]
- Miller, T.R.; Radcliff, T.A. Economic shocks from the novel coronavirus disease 2019 pandemic for anesthesiologists and their practices. Anesth. Analg. 2020, 131, 112–116. [Google Scholar] [CrossRef]
- Mueller, J.T.; McConnell, K.; Burow, P.B.; Farrell, J. Impacts of the COVID-19 pandemic on rural America. Proc. Natl. Acad. Sci. USA 2021, 118, e2019378118. [Google Scholar] [CrossRef]
- Fingleton, B.; Garretsen, H.; Marti, R. Recessionary shocks and regional employment: Evidence on the resilience of UK regions. J. Reg. Sci. 2016, 52, 109–133. [Google Scholar] [CrossRef]
- Bieszk-Stolorz, B.; Dmytrów, K. Assessment of the Similarity of the Situation in the EU Labour Markets and Their Changes in the Face of the COVID-19 Pandemic. Sustainability 2022, 14, 3646. [Google Scholar] [CrossRef]
- Spurk, D.; Straub, C. Flexible employment relationships and careers in times of the COVID-19 pandemic. J. Vocat. Behav. 2020, 119, 103435. [Google Scholar] [CrossRef]
- Gunn, V.; Vives, A.; Zaupa, A.; Hernando-Rodriguez, J.C.; Julià, M.; Kvart, S.; Lewchuk, W.; Padrosa, E.; Vos, M.P.; Ahonen, E.Q.; et al. Non-Standard Employment and Unemployment during the COVID-19 Crisis: Economic and Health Findings from a Six-Country Survey Study. Int. J. Environ. Res. Public Health 2022, 19, 5865. [Google Scholar] [CrossRef] [PubMed]
- Sobieralski, J.B. COVID-19 and airline employment: Insights from historical uncertainty shocks to the industry. Transp. Res. Interdisc. Persp. 2020, 5, 100123. [Google Scholar] [CrossRef] [PubMed]
- Alon, T.; Doepke, M.; Olmestead-Rumsey, J.; Tertilt, M. The Impact of COVID-19 on Gender Quality (April, 2020); Working Paper No. 26947; National Bureau of Economic Research (NBER): Cambridge, MA, USA, 2022. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, M.; Shin, Y. Hit Harder, Recover Slower? Unequal Employment Effects of the COVID-19 Shock (January, 2021); Working Paper 28354; National Bureau of Economic Research (NBER): Cambridge, MA, USA, 2022. [Google Scholar] [CrossRef]
- Sánchez-Guarnido, A.J.; Hidalgo, N.; Arenas de la Cruz, J.; Esteban, I.; Mondón, S.; Herruzo, C. Analysis of the Consequences of the COVID-19 Pandemic on People with Severe Mental Disorders. Int. J. Environ. Res. Public Health 2021, 18, 8549. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.T.; Kim, C.H.; Tuttle, S.E.; Zhang, Y. COVID-19 and the decline in Asian American employment. Res. Soc. Stratif. Mobil. 2021, 71, 100563. [Google Scholar] [CrossRef]
- Gans, J. Economics in Age of COVID-19; Mit Press: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Jamieson, K.H.; Romer, D.; Jamieson, P.E.; Pasek, J. The role of non–COVID-specific and COVID-specific factors in predicting a shift in willingness to vaccinate: A panel study. Proc. Natl. Acad. Sci. USA 2021, 118, e2112266118. [Google Scholar] [CrossRef]
- Ta-Park, V.; Dougan, M.; Meyer, O.; Nam, B.; Tzuang, M.; Park, L.; Vuong, Q.; Tsoh, J. Differences in COVID-19 Vaccine Concerns Among Asian Americans and Pacific Islanders: The COMPASS Survey. J. Racial Ethn. Health Disparities 2022, 9, 979–991. [Google Scholar] [CrossRef]
- Cooper, S.; Van-Rooyen, H.; Wiysonge, C.S. COVID-19 vaccine hesitancy in South Africa: How can we maximize uptake of COVID-19 vaccines? Expert Rev. Vaccines 2021, 20, 921–933. [Google Scholar] [CrossRef]
- Wang, J.; Jing, R.; Lai, X.; Zhang, H.; Lyu, Y.; Knoll, M.D.; Fang, H. Acceptance of COVID-19 Vaccination during the COVID-19 Pandemic in China. Vaccines 2020, 8, 482. [Google Scholar] [CrossRef]
- Coates, B.; Cowgill, M.; Chen, T.; Mackey, W. Shutdown: Estimating the COVID-19 Employment Shock; Working Paper No. 2020-03; Victoria Grattan Institute: Melbourne, Australia, 2020; Available online: https://grattan.edu.au/wp-content/uploads/2020/04/Shutdown-estimating-the-COVID-19-employment-shock-Grattan-Institute.pdf (accessed on 23 May 2021).
- Garcia, L.Y.; Cerda, A.A. Contingent assessment of the COVID-19 vaccine. Vaccine 2020, 38, 5424–5429. [Google Scholar] [CrossRef]
- Sarasty, O.; Carpio, C.E.; Hudson, D.; Guerrero-Ochoa, P.A.; Borja, I. The demand for a COVID-19 vaccine in Ecuador. Vaccines 2020, 38, 8090–8098. [Google Scholar] [CrossRef]
- Moghadas, S.M.; Vilches, T.N.; Zhang, K.; Wells, C.R.; Shaukat, A.; Singer, B.H.; Meyers, L.A.; Neuzil, K.M.; Langley, J.M.; Fitzpatrick, M.C.; et al. The Impact of vaccination on coronavirus disease 2019 (COVID-19) outbreaks in the United States. Clin. Infect. Dis. 2021, 73, 2257–2264. [Google Scholar] [CrossRef] [PubMed]
- Albani, V.L.; Loria, J.; Massad, E.; Zubelli, G.P. The impact of COVID-19 vaccination delay: A data-driven modelling analysis for Chicago and New York City. Vaccine 2021, 39, 6088–6094. [Google Scholar] [CrossRef]
- Surendranath, M.; Wankhedkar, R.; Lele, J.; Cintra, O.; Kolhapure, S.; Agrawal, A.; Dewda, P. A Modern Perspective on Vaccinating Healthcare Service Providers in India: A Narrative Review. Infect. Dis. Ther. 2022, 11, 81–99. [Google Scholar] [CrossRef] [PubMed]
- Ayenigbara, I.O.; Adegboro, J.S.; Ayenigbara, G.O.; Adeleke, O.R.; Olofintuyi, O.O. The challenges to a successful COVID-19 vaccination programme in Africa. Germs 2021, 11, 427–440. [Google Scholar] [CrossRef]
- Si, R.; Yao, Y.; Zhang, X.; Lu, Q.; Aziz, N. Investigating the links between Vaccination Against COVID-19 and Public Attitudes Toward Protective Countermeasures: Implications for Public Health. Front. Public Health 2021, 9, 702699. [Google Scholar] [CrossRef] [PubMed]
- Bartik, A.W.; Bertrand, M.; Lin, F.; Rothstein, J.; Unrath, M. Measuring the Labour Market at the Onset of the COVID-19 Crisis (July, 2020); Working Paper No. 27613; National Bureau of Economic Research (NBER): Cambridge, MA, USA, 2022. [Google Scholar] [CrossRef]
- Fana, M.; Pérez, S.T.; FernándezMacías, E. Employment impact of COVID 19 crisis: From short term effects to long terms prospects. J. Ind. Bus. Econ. 2020, 47, 391–410. [Google Scholar] [CrossRef]
- Gil, D.; Dominguez, P.; Valenzuela, E.A. Employment loss in informal settlements during the COVID-19 pandemic: Evidence from Chile. J. Urban Health 2020, 98, 622–634. [Google Scholar] [CrossRef]
- Keynes, J.M. General Theory of Employment, Interest and Money; Harmatan: Montreal, QC, Canada, 1936; p. 48. [Google Scholar]
- Hamermesh, D.S. A General Model of Dynamic Labour Demand. Rev. Econ. Stat. 1992, 74, 733–736. [Google Scholar] [CrossRef]
- Cassidy, H.J. Using Econometrics: A Beginner’s Guide; Macmillan: London, UK, 1981. [Google Scholar]
Variables | Parameters | Definition |
---|---|---|
Eit | − | Employment at date t for country i. |
−( . )GDPit | Short-term multiplier | The variation of GDPi(t−1) with consideration of depreciation GDPi(t−2) has a positive effect equal to αn0 ν. |
LabFit | Effect of labour force changes | Labour force at date t has an effect: n2. |
TCasesit | Net effect of infected people | The total number of people infected (stock) by COVID-19 at date t has an effect: n3. |
Dumm1 | Second effect of COVID-19 | The effect of the government’s anti-COVID-19 measures on employment is defined as the net effect increased by the effect of social distancing, lockdowns, worker alternance measures, etc. A dummy variable called Dumm1 has a value of 1 if measures are present, and 0 otherwise. |
TVaccit: | Net effect of vaccinated people | The total number of people vaccinated (stock) at date t has an effect: n4 |
Dumm2 | Second effect of vaccination | The effect of restriction of all measures connected to vaccination on employment: it includes people regaining their mobility, breaking out of quarantine and lockdown, overlooking social distancing, restricting work alternation, etc. Dumm2 expresses the second effect, where a value of 1 denotes complete disregard for laws, lack of fear, etc. A result of 0 denotes the continuation of COVID-19 prevention measures |
Ei(t-1) | Autoregressive adjustment coefficient of lagged−1 variable | Employment at date t-1 for country i has an effect : |
Long-term multiplier represents the short-term multiplier adjusted by sum of autoregressive coefficient of lagged variables 1 and 2. |
Model 1 | Model 2 | ||||
---|---|---|---|---|---|
Likelihood Ratio Chi-Square | df | Sig. | Likelihood Ratio Chi-Square | df | Sig. |
2718.635 | 7 | 0.000 | 2710.231 | 7 | 0.000 |
Parameters | Model Form1: T-Cases and T-Vacc | Model Form2: Dumm1 and Dumm2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Coeff. | Std. Error | Sig. | 95% Wald CI | Coeff. | Std. Error | Sig. | 95% Wald CI | |||
Lower | Upper | Lower | Upper | |||||||
(Intercept) | 39.950 | 108.732 | 0.713 | −173.161 | 253.061 | 163.523 | 118.0876 | 0.166 | −67.925 | 394.970 |
T_Casest | 0 | 0.0001 | 0.000 | −1 | 0 | |||||
T_Vacct | 4 | 0.0010 | 0.000 | 2 | 0 | |||||
Dumm1 | −331.552 | 124.2950 | 0.008 | −575.166 | −87.938 | |||||
Dumm2 | 406.646 | 250.8786 | 0.105 | −85.067 | 898.359 | |||||
VGDPt−1 | 0.005 | 0.0017 | 0.004 | 0.002 | 0.008 | 0.005 | 0.0015 | 0.001 | 0.002 | 0.008 |
LF15+t | 0.444 | 0.0321 | 0.000 | 0.382 | 0.507 | 0.399 | 0.0294 | 0.000 | 0.342 | 0.457 |
APt | −0.002 | 0.0046 | 0.718 | −0.011 | 0.007 | −0.003 | 0.0046 | 0.571 | −0.012 | 0.006 |
Et−1 | 0.343 | 0.0621 | 0.000 | 0.221 | 0.465 | 0.463 | 0.519 | 0.000 | 0.361 | 0.565 |
Et−2 | 0.170 | 0.0525 | 0.001 | 0.067 | 0.273 | 0.095 | 0.0476 | 0.045 | 0.002 | 0.189 |
Regression Effect | Fixed Effect Model | Random Effect | |
---|---|---|---|
2 Restricted Log Likelihood | −3581.316 | 5481.580 | 9504.084 |
Akaike’s Information Criterion (AIC) | 7180.632 | 5591.580 | 9630.084 |
Hurvich and Tsai’s Criterion (AICC) | 7181.067 | 5608.691 | 9652.993 |
Bozdogan’s Criterion (CAIC) | 7226.080 | 5868.268 | 9947.017 |
Schwarz’s Bayesian Criterion (BIC) | 7217.080 | 5813.268 | 9884.017 |
Parameters | Estimate | Std. Error | df | t | Sig. | 95% CI | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
Intercept | 314.3142 | 84.7513 | 4.274 | 3.709 | 0.018 | 84.8300 | 543.7985 |
VGDPt−1 | 0.0006 | 0.0001 | 48.327 | 4.639 | 0.000 | 0.0004 | 0.0009 |
LFt | 0.9395 | 0.0036 | 21.918 | 261.490 | 0.000 | 0.9321 | 0.9470 |
APt | −0.01300 | 0.0037 | 6.966 | −3.514 | 0.010 | −0.0218 | −0.0042 |
Tcasest (100 thousands) | −70.493 | 5.6552 × 10−6 | 37.391 | −12.465 | 0.000 | −81.947 | −59.038 |
TVacct (100 thousands) | 109 | 2.1472 × 10−5 | 39.621 | 5.071 | 0.000 | 65.484 × 10−5 | 21.52 |
Et−1 | 0.0454 | 0.003902 | 65.616 | 11.628 | 0.000 | 0.0376 | 0.0532 |
Et−2 | 0.0026 | 0.0016 | 9.483 | 1.699 | 0.122 | −0.0008 | 0.0061 |
Parameters | Value | Std. Error | Df | t | Sig. | 95% CI | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
Intercept | −16.4788 | 93.3925 | 50.350 | −0.176 | 0.861 | −204.0308 | 171.0732 |
Dumm1 | −15.7684 | 7.6780 | 42.945 | −2.054 | 0.046 | −31.2532 | −0.2836 |
Dumm2 | −29.8170 | 7.6645 | 14.513 | −3.890 | 0.002 | −46.2014 | −13.4325 |
VGDPt−1 | 0.0006 | 9.6659 × 10−5 | 20.742 | 6.591 | 0.000 | 0.0004 | 0.0008 |
LF15+t | 0.9472 | 0.0035 | 62.514 | 267.201 | 0.000 | 0.9401 | 0.9543 |
APt | −0.0099 | 0.0027 | 15.999 | −3.718 | 0.002 | −0.0155 | −0.0042 |
Et−1 | 0.0552 | 0.0029 | 69.336 | 18.967 | 0.000 | 0.0494 | 0.0610 |
Et−2 | −0.0073 | 0.0018 | 20.448 | −4.114 | 0.001 | −0.0110 | −0.0036 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosbah, E.B.; Dharmapala, P.S. Evaluating the Effects of COVID-19 and Vaccination on Employment Behaviour: A Panel Data Analysis Acrossthe World. Sustainability 2022, 14, 9675. https://doi.org/10.3390/su14159675
Mosbah EB, Dharmapala PS. Evaluating the Effects of COVID-19 and Vaccination on Employment Behaviour: A Panel Data Analysis Acrossthe World. Sustainability. 2022; 14(15):9675. https://doi.org/10.3390/su14159675
Chicago/Turabian StyleMosbah, Ezzeddine Belgacem, and Parakramaweera Sunil Dharmapala. 2022. "Evaluating the Effects of COVID-19 and Vaccination on Employment Behaviour: A Panel Data Analysis Acrossthe World" Sustainability 14, no. 15: 9675. https://doi.org/10.3390/su14159675
APA StyleMosbah, E. B., & Dharmapala, P. S. (2022). Evaluating the Effects of COVID-19 and Vaccination on Employment Behaviour: A Panel Data Analysis Acrossthe World. Sustainability, 14(15), 9675. https://doi.org/10.3390/su14159675