A Patch-Based CNN Built on the VGG-16 Architecture for Real-Time Facial Liveness Detection
Abstract
:1. Introduction
- The introduction of a facial recognition-based approach for biometric authentication systems to detect liveness and improve authentication system efficiency;
- A demonstration of a patch-based CNN–LSTM model that can overcome the overfitting and lower accuracy issues of facial anti-spoofing methods using two major datasets.
2. Literature Review
2.1. Feature-Based Facial Anti-Spoofing Approaches
2.2. Deep Learning-Based Facial Anti-Spoofing Approaches
3. Architecture of the Proposed System
3.1. Liveness Detection
3.2. Patch-Based CNN
3.3. Modified VGG-16 Architecture
3.4. LSTM Layer
4. Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dronky, M.R.; Khalifa, W.; Roushdy, M. A review on iris liveness detection techniques. In Proceedings of the 2019 IEEE 9th International Conference on Intelligent Computing and Information Systems (ICICIS 2019), Cairo, Egypt, 8–10 December 2019; pp. 48–59. [Google Scholar] [CrossRef]
- Nsaif, A.K.; Ali, S.H.M.; Jassim, K.N.; Nseaf, A.K.; Sulaiman, R.; Al-Qaraghuli, A.; Wahdan, O.; Nayan, N.A. FRCNN-GNB: Cascade faster R-CNN with Gabor filters and naïve bayes for enhanced eye detection. IEEE Access 2021, 9, 15708–15719. [Google Scholar] [CrossRef]
- Chan, M.; Delmas, P.; Gimel’farb, G.; Leclercq, P. Comparative study of 3D face acquisition techniques. In International Conference on Computer Analysis of Images and Patterns; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3691, pp. 740–747. [Google Scholar]
- Raheem, E.A.; Ahmad, S.M.S.; Adnan, W.A.W. Insight on face liveness detection: A systematic literature review. Int. J. Electr. Comput. Eng. 2019, 9, 5165–5175. [Google Scholar] [CrossRef]
- Chen, F.M.; Wen, C.; Xie, K.; Wen, F.Q.; Sheng, G.Q.; Tang, X.G. Face liveness detection: Fusing colour texture feature and deep feature. IET Biom. 2019, 8, 369–377. [Google Scholar] [CrossRef]
- Khade, S.; Gite, S.; Thepade, S.D.; Pradhan, B.; Alamri, A. Detection of iris presentation attacks using hybridization of discrete cosine transform and haar transform with machine learning classifiers and ensembles. IEEE Access 2021, 9, 169231–169249. [Google Scholar] [CrossRef]
- Khade, S.; Gite, S.; Thepade, S.D.; Pradhan, B.; Alamri, A. Detection of iris presentation attacks using feature fusion of thepade’s sorted block truncation coding with gray-level co-occurrence matrix features. Sensors 2021, 21, 7408. [Google Scholar] [CrossRef]
- Muley, A.; Bendre, A.; Maheshwari, P.; Kumbhar, S.; Dhakulkar, B. Survey on biometric based ATMs. Int. J. Sci. Res. Sci. Technol. 2021, 8, 292–297. [Google Scholar] [CrossRef]
- Kowshika, A.; Sumathi, P.; Sandra, K.S. Facepin: Face biometric authentication system for ATM using deep learning. NVEO-Nat. Volatiles Essent. OILS J. 2022, 9, 1859–1872. [Google Scholar]
- Waymond, R. Artificial Intelligence in a Throughput Model: Some Major Algorithms; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Hadid, A.; Evans, N.; Marcel, S.; Fierrez, J. Biometrics systems under spoofing attack. IEEE Signal Process. Mag. 2015, 32, 20–30. [Google Scholar] [CrossRef]
- Menotti, D.; Chiachia, G.; Pinto, A.; Schwartz, W.R.; Pedrini, H.; Falcão, A.X.; Rocha, A. Deep representations for iris, face, and fingerprint spoofing detection. IEEE Trans. Inf. Forensics Secur. 2015, 10, 864–879. [Google Scholar] [CrossRef]
- Feng, L.; Po, L.M.; Li, Y.; Xu, X.; Yuan, F.; Cheung, T.C.H.; Cheung, K.W. Integration of image quality and motion cues for face anti-spoofing: A neural network approach. J. Vis. Commun. Image Represent. 2016, 38, 451–460. [Google Scholar] [CrossRef]
- Abdullah, A.; En Ting, W. Orientation and scale based weights initialization scheme for deep convolutional neural networks. Asia-Pac. J. Inf. Technol. Multimed. 2020, 9, 103–112. [Google Scholar] [CrossRef]
- Zavvar, M.; Garavand, S.; Nehi, M.R.; Yanpi, A.; Rezaei, M.; Zavvar, M.H. Measuring reliability of aspect-oriented software using a combination of artificial neural network and imperialist competitive algorithm. Asia-Pac. J. Inf. Technol. Multimed. 2016, 5, 75–85. [Google Scholar] [CrossRef]
- Liu, X.; Lu, R.; Liu, W. Face liveness detection based on enhanced local binary patterns. In Proceedings of the 2017 Chinese Automation Congress (CAC 2017), Jinan, China, 20–22 October 2017; pp. 6301–6305. [Google Scholar] [CrossRef]
- Tan, X.; Li, Y.; Liu, J.; Jiang, L. Face liveness detection from a single image with sparse low rank bilinear discriminative model. In European Conference on Computer Vision; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6316, pp. 504–517. [Google Scholar] [CrossRef]
- Määttä, J.; Hadid, A.; Pietikäinen, M. Face spoofing detection from single images using micro-texture analysis. In Proceedings of the International Joint Conference on Biometrics (IJCB), Washington, DC, USA, 11–13 October 2011; pp. 1–7. [Google Scholar]
- Parveen, S.; Ahmad, S.M.S.; Abbas, N.H.; Adnan, W.A.W.; Hanafi, M.; Naeem, N. Face liveness detection using dynamic local ternary pattern (DLTP). Computers 2016, 5, 10. [Google Scholar] [CrossRef]
- Das, D.; Chakraborty, S. Face liveness detection based on frequency and micro-texture analysis. In Proceedings of the 2014 International Conference on Advances in Engineering & Technology Research (ICAETR 2014), Unnao, India, 1–2 August 2014; pp. 3–6. [Google Scholar] [CrossRef]
- Luan, X.; Wang, H.; Ou, W.; Liu, L. Face liveness detection with recaptured feature extraction. In Proceedings of the 2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), Shenzhen, China, 15–17 December 2017; pp. 429–432. [Google Scholar] [CrossRef]
- Chan, P.P.K.; Liu, W.; Chen, D.; Yeung, D.S.; Zhang, F.; Wang, X.; Hsu, C.C. Face liveness detection using a flash against 2D spoofing attack. IEEE Trans. Inf. Forensics Secur. 2018, 13, 521–534. [Google Scholar] [CrossRef]
- Kim, W.; Suh, S.; Han, J.J. Face liveness detection from a single image via diffusion speed model. IEEE Trans. Image Process. 2015, 24, 2456–2465. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.H.; Chang, H.H. Face liveness detection with feature discrimination between sharpness and blurriness. In Proceedings of the 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), Nagoya, Japan, 8–12 May 2017; pp. 398–401. [Google Scholar] [CrossRef]
- Atoum, Y.; Liu, Y.; Jourabloo, A.; Liu, X. Face anti-spoofing using patch and depth-based CNNs. In Proceedings of the International Joint Conference on Biometrics (IJCB), Denver, CO, USA, 1–4 October 2017; pp. 319–328. [Google Scholar]
- Rehman, Y.A.U.; Po, L.M.; Liu, M. LiveNet: Improving features generalization for face liveness detection using convolution neural networks. Expert Syst. Appl. 2018, 108, 159–169. [Google Scholar] [CrossRef]
- Alotaibi, A.; Mahmood, A. Enhancing computer vision to detect face spoofing attack utilizing a single frame from a replay video attack using deep learning. In Proceedings of the 2016 International Conference on Optoelectronics and Image Processing (ICOIP), Warsaw, Poland, 10–12 June 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Alotaibi, A.; Mahmood, A. Deep face liveness detection based on nonlinear diffusion using convolution neural network. Signal Image Video Process. 2017, 11, 713–720. [Google Scholar] [CrossRef]
- Koshy, R.; Mahmood, A. Optimizing deep CNN architectures for face liveness detection. Entropy 2019, 21, 423. [Google Scholar] [CrossRef]
- Jourabloo, A.; Liu, Y.; Liu, X. Face de-spoofing: Anti-spoofing via noise modeling. In Lecture Notes in Computer; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11217, pp. 297–315. [Google Scholar] [CrossRef]
- Souza, G.B.D.; Member, S.; Felipe, D.; Pires, R.G.; Marana, A.N.; Papa, J.P. Deep texture for roboutface spoofing detection. IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 1397–1401. [Google Scholar] [CrossRef]
- Xu, Z.; Li, S.; Deng, W. Learning temporal features using LSTM-CNN architecture for face. In Proceedings of the 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia, 3–6 November 2015; pp. 141–145. [Google Scholar]
- Tu, X.; Zhang, H.; Xie, M.; Luo, Y.; Zhang, Y.; Ma, Z. Enhance the Motion Cues for Face Ani-Spoofing using CNN-LSTM Architecture. arXiv 2019, arXiv:1901.05635. [Google Scholar]
- Khade, S.; Gite, S.; Pradhan, B. Iris Liveness Detection Using Multiple Deep Convolution Networks. Big Data Cogn. Comput. 2022, 6, 67. [Google Scholar] [CrossRef]
- Pereira, T.D.F. Lbp-top based countermeasure against face spoofing attacks. In Asian Conference on Computer Vision; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; pp. 121–132. [Google Scholar]
- Pavel, M.I.; Chowdhury, I.; Akther, A. Raspberry Pi and image processing based person recognition system for visually impaired people. Int. Res. J. Eng. Technol. 2018, 5, 809–813. [Google Scholar]
- Yu, Z.; Li, X.; Shi, J.; Xia, Z.; Zhao, G. Revisiting pixel-wise supervision for face anti-spoofing. IEEE Trans. Biom. Behav. Identity Sci. 2021, 3, 285–295. [Google Scholar] [CrossRef]
- Cai, R.; Li, Z.; Wan, R.; Li, H.; Hu, Y.; Kot, A.C. Learning meta pattern for face anti-spoofing. IEEE Trans. Inf. Forensics Secur. 2022, 17, 1201–1213. [Google Scholar] [CrossRef]
- Khan, H.A.; Jue, W.; Mushtaq, M.; Mushtaq, M.U. Brain tumor classification in MRI image using convolutional neural network. Math. Biosci. Eng. 2020, 17, 6203–6216. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Chan, C.L.; Adams Li, A.H.; Phan, D. Van Deep Stacked Generalization Ensemble Learning models in early diagnosis of Depression illness from wearable devices data. In Proceedings of the 5th International Conference on Medical and Health Informatics; Association for Computing Machinery, Kyoto, Japan, 14–16 May 2021; pp. 7–12. [Google Scholar]
- Biswas, S.; Chatterjee, S.; Majee, A.; Sen, S.; Schwenker, F.; Sarkar, R. Prediction of COVID-19 from chest CT images using an ensemble of deep learning models. Appl. Sci. 2021, 11, 7004. [Google Scholar] [CrossRef]
- Tabrizchi, H.; Parvizpour, S.; Razmara, J. An improved VGG model for skin cancer detection. Neural Process. Lett. 2022, 1–18. [Google Scholar] [CrossRef]
- Lucena, O.; Junior, A.; Moia, V.; Souza, R.; Valle, E.; Lotufo, R. Transfer learning using convolutional neural networks for face anti-spoofing. In International Conference Image Analysis and Recognition; Springer: Cham, Switzerland, 2017; pp. 27–34. [Google Scholar] [CrossRef]
- Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep face recognition. In Proceedings of the British Machine Vision Conference 2015, Swansea, UK, 7–10 September 2015; pp. 41.1–41.12. [Google Scholar] [CrossRef]
- Li, L.; Feng, X.; Boulkenafet, Z.; Xia, Z.; Li, M.; Hadid, A. An original face anti-spoofing approach using partial convolutional neural network. In Proceedings of the 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA), Oulu, Finland, 12–15 December 2016. [Google Scholar] [CrossRef]
- Koshy, R.; Mahmood, A. Enhanced Anisotropic Diffusion-based CNN-LSTM Architecture for Video Face Liveness Detection. In Proceedings of the 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 14–17 December 2020; pp. 422–425. [Google Scholar] [CrossRef]
- Kim, S.H.; Jeon, S.M.; Lee, E.C. Face biometric spoof detection method using a remote photoplethysmography signal. Sensors 2022, 22, 3070. [Google Scholar] [CrossRef]
- Chingovska, I.; Anjos, A.; Marcel, S. On the effectiveness of local binary patterns in face anti-spoofing. In Proceedings of the 2012 BIOSIG-Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 6–7 September 2012; pp. 1–7. [Google Scholar]
- Zhang, Z.; Yan, J.; Liu, S.; Lei, Z.; Yi, D.; Li, S.Z. A face antispoofing database with diverse attacks zhiwei. In Proceedings of the 2012 5th IAPR International Conference on Biometrics (ICB), New Delhi, India, 29 March–1 April 2012; pp. 2–7. [Google Scholar]
- Ay, D.; Va, F.; Optics, C. Detection of presentation attacks on facial authentica-tion systems using special devices. Comput. Opt. 2022, 46, 612–620. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Liu, A.; Zhao, C.; Wan, J.; Escalera, S.; Shi, H.; Wang, Z.; Li, S.Z. A dataset and benchmark for large-scale multi-modal face anti-spoofing. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 919–928. [Google Scholar] [CrossRef]
- Costa-pazo, A.; Bhattacharjee, S.; Vazquez-fernandez, E.; Marcel, S. The REPLAY-MOBILE face presentation-attack database. In Proceedings of the 2016 International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 21–23 September 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Baweja, Y.; Oza, P.; Perera, P.; Patel, V.M. Anomaly detection-based unknown face presentation attack detection. In Proceedings of the 2020 IEEE International Joint Conference on Biometrics (IJCB), Houston, TX, USA, 28 September–1 October 2020. [Google Scholar] [CrossRef]
- Lin, H.Y.S.; Su, Y.W. Convolutional neural networks for face anti-spoofing and liveness detection. In Proceedings of the 2019 6th International Conference on Systems and Informatics ICSAI 2019, Shanghai, China, 2–4 November 2019; pp. 1233–1237. [Google Scholar]
- Boulkenafet, Z.; Komulainen, J.; Hadid, A. Face antispoofing using speeded-up robust features and fisher vector encoding. IEEE Signal Process. Lett. 2017, 24, 141–145. [Google Scholar] [CrossRef]
- Pan, G.; Sun, L.; Wu, Z.; Lao, S. Eyeblink-based anti-spoofing in face recognition from a generic webcamera. In Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007. [Google Scholar] [CrossRef]
- Tu, X.; Fang, Y. Ultra-deep neural network for face anti-spoofing. In International Conference on Neural Information Processing; Springer: Cham, Switzerland, 2017; Volume 10635, pp. 686–695. [Google Scholar] [CrossRef]
- Zhang, L.B.; Peng, F.; Qin, L.; Long, M. Face spoofing detection based on color texture Markov feature and support vector machine recursive feature elimination. J. Vis. Commun. Image Represent. 2018, 51, 56–69. [Google Scholar] [CrossRef]
- Khammari, M. Robust face anti-spoofing using CNN with LBP and WLD. IET Image Process. 2019, 13, 1880–1884. [Google Scholar] [CrossRef]
- Tirunagari, S.; Poh, N.; Windridge, D.; Iorliam, A.; Suki, N.; Ho, A.T.S. Detection of face spoofing using visual dynamics. IEEE Trans. Inf. Forensics Secur. 2015, 10, 762–777. [Google Scholar] [CrossRef]
- Boulkenafet, Z.; Komulainen, J.; Feng, X.; Hadid, A. Scale space texture analysis for face anti-spoofing. In Proceedings of the 2016 International Conference on Biometrics (ICB), Halmstad, Sweden, 13–16 June 2016. [Google Scholar] [CrossRef]
Dataset | Domain | Images (Real/Fake) | Resolution | Print Attack | VideoReply Attack |
---|---|---|---|---|---|
REPLAY ATTACK [48] | 50 | 300/1000 | 320 × 240 | Available | Available |
CASIA-FASD [49] | 50 | 150/400 | 640 × 480 × 1280 × 7201920 × 1050 | Available | Available |
Reference | Method | REPLAY-ATTACK | CASIA-FASD | ||
---|---|---|---|---|---|
HTERT | EER | HTERT | EER | ||
[43] | FASNet | 1.20% | …. | …. | …. |
[56] | CNN with Deep Representation | …. | 0.75% | …. | |
[13] | Neural Network with Facial OFM Maps | 3.83% | 2.50% | …. | 19.81% |
Neural Network with Scene OFM | 3.50% | 6.16% | …. | 18.33% | |
Neural Network with Multi-Cue Integration | * 0% | 0.83% | …. | 5.83% | |
[57] | LSTM and Rest | 1.18% | 1.03% | 1.22% | 1.00% |
[45] | DPCNN | …. | 4.50% | 6.10% | 2.90% |
[30] | Patch- and Depth-Based CNN | 0.72% | 0.79% | 2.27% | 2.67% |
[58] | Markov Features and SVM | 4.40% | 4.00% | …. | 8% |
[5] | CNN with RI-LBP | 2.60% | 2.30% | .... | 4.40% |
[59] | CNN and SWLD | 0.69% | 0.53% | 2.14% | 2.62% |
[60] | Dynamic Mode Decomposition with LBP and SVM | 3.70% | 5.30% | …. | 21.70% |
[61] | Scale Space with LBP | 3.10% | 0.70% | …. | 4.20% |
[55] | SURF and Fisher Vector Encoding | 2.20% | *0.10% | …. | 2.80% |
Proposed Method * | Patch-Based Modified CNN with LSTM | 1.52% | 0.30% | *0.71% | * 0.67% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhtasim, D.A.; Pavel, M.I.; Tan, S.Y. A Patch-Based CNN Built on the VGG-16 Architecture for Real-Time Facial Liveness Detection. Sustainability 2022, 14, 10024. https://doi.org/10.3390/su141610024
Muhtasim DA, Pavel MI, Tan SY. A Patch-Based CNN Built on the VGG-16 Architecture for Real-Time Facial Liveness Detection. Sustainability. 2022; 14(16):10024. https://doi.org/10.3390/su141610024
Chicago/Turabian StyleMuhtasim, Dewan Ahmed, Monirul Islam Pavel, and Siok Yee Tan. 2022. "A Patch-Based CNN Built on the VGG-16 Architecture for Real-Time Facial Liveness Detection" Sustainability 14, no. 16: 10024. https://doi.org/10.3390/su141610024
APA StyleMuhtasim, D. A., Pavel, M. I., & Tan, S. Y. (2022). A Patch-Based CNN Built on the VGG-16 Architecture for Real-Time Facial Liveness Detection. Sustainability, 14(16), 10024. https://doi.org/10.3390/su141610024