How to Evaluate College Students’ Green Innovation Ability—A Method Combining BWM and Modified Fuzzy TOPSIS
Abstract
:1. Introduction
- A set of criteria (including four main criteria and thirteen sub criteria) to evaluate college students’ green innovation ability is proposed.
- A novel three-phase framework to evaluate college students’ green innovation ability is formulated from the perspective of open innovation. The weights of the criteria are calculated using the best worst method (BWM), which requires less comparison data and leads to more consistent comparisons, compared with other multiple-criteria decision-making (MCDM) methods. Modified fuzzy technique for order of preference by similarity to ideal solution technique (TOPSIS) is adopted to rank the alternatives considering the relative importance of the two separations.
- Implications are summarized from three aspects, including the academic, industry, and policymakers.
2. Literature Review
2.1. Green Innovation and Open Innovation
2.2. Related MCDM Methods
- (1)
- MCDM methods based on multi-attribute utility and value theories. First, this type of approach requires building a decision matrix of alternatives. Then, a score for each alternative over each criterion is given by experts. Finally, combined with weights of criteria, the rating of each alternative can be obtained using some aggregation functions. Several methods belongs to this approach, such as TOPSIS [48], VIKOR (VIse Kriterijumska Optimizacija kompromisno Resenje in Serbian, multiple criteria optimization compromise solution) [49,50], MULTIMOORA (multiplicative multi-objective optimization by ratio analysis) [51], MACBETH (measuring attractiveness by a categorical based evaluation technique) [52], and UTA (utilities additives) [53].
- (2)
- MCDM methods based on outranking methods. This method is pairwise-based, which compares two alternatives regarding each criterion to obtain dominance degrees. Then, the out ranking is calculated using an aggregate function of dominance degrees. There are several common outranking methods, for instance, BWM [67], AHP (analytic hierarchy process) [68,69], PROMETHEE (preference ranking organization method for enrichment evaluations) [70], ELECTRE (ELimination Et Choix Traduisant la REalité in French, elimination and choice expressing the reality) [71], and GLDS (gained and lost dominance score) [72].
2.3. Green Innovation Ability Evaluation Methods
3. Methodology
3.1. Identification of Criteria
3.2. Calculation of Criteria Weights Using BWM
3.3. Ranking the Students’ Green Innovation Ability Using Modified Fuzzy TOPSIS
4. Case Study
4.1. Case Background
4.2. Identification of Criteria
4.3. Determination of Criteria Weights
4.4. Ranking the Students’ Green Innovation Ability
5. Results and Discussion
5.1. Results
5.2. Discussions
- (1)
- Academic implication
- (2)
- Industry implication
- (3)
- Policymakers implication
6. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernando, Y.; Wah, W.X. The impact of eco-innovation drivers on environmental performance: Empirical results from the green technology sector in Malaysia. Sustain. Prod. Consump. 2017, 12, 27–43. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Rong, Z.; Ji, Q. Green innovation and firm performance: Evidence from listed companies in China. Resour. Conserv. Recycl. 2019, 144, 48–55. [Google Scholar] [CrossRef]
- Wu, H.; Qu, Y.Y. How Do Firms Promote Green Innovation through International Mergers and Acquisitions: The Moderating Role of Green Image and Green Subsidy. Int. J. Environ. Res. Public Health 2021, 18, 7333. [Google Scholar] [CrossRef] [PubMed]
- Khan, P.A.; Johl, S.K.; Johl, S.K. Does adoption of ISO 56002-2019 and green innovation reporting enhance the firm sustainable development goal performance? An emerging paradigm. Bus. Strateg. Environ. 2021, 30, 2922–2936. [Google Scholar] [CrossRef]
- Khan, P.A.; Johl, S.K. Nexus of Comprehensive Green Innovation, Environmental Management System-14001-2015 and Firm Performance. Cogent Bus. Manag. 2019, 6, 1691833. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, J. Evaluation Model and Empirical Research on the Green Innovation Capability of Manufacturing Enterprises from the Perspective of Ecological Niche. Sustainability 2021, 13, 11710. [Google Scholar] [CrossRef]
- Xu, J.; Zhai, J. Research on the Evaluation of Green Innovation Capability of Manufacturing Enterprises in Innovation Network. Sustainability 2020, 12, 807. [Google Scholar] [CrossRef]
- Pan, X.; Han, C.; Lu, X.; Jiao, Z.; Ming, Y. Green innovation ability evaluation of manufacturing enterprises based on AHP-OVP model. Ann. Oper. Res. 2020, 290, 409–419. [Google Scholar] [CrossRef]
- Musaad, A.S.; Zhuo, Z.; Siyal, Z.A.; Shaikh, G.M.; Shah, S.A.A.; Solangi, Y.A.; Musaad, A.O. An Integrated Multi-Criteria Decision Support Framework for the Selection of Suppliers in Small and Medium Enterprises based on Green Innovation Ability. Processes 2020, 8, 418. [Google Scholar] [CrossRef]
- Gupta, H.; Barua, M.K. Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS. J. Clean. Prod. 2017, 152, 242–258. [Google Scholar] [CrossRef]
- Wang, H.; An, L.; Zhang, X. Evaluation of regional innovation ability based on green and low-carbon perspective. Bulg. Chem. Commun. 2017, 49, 55–58. [Google Scholar]
- Dong, Y.; Cao, Q. Research on the Cultivation of College Students’ Innovation Ability and the Development of Self-Survival Innovation Team from the Perspective of Green Ecology. Discrete Dyn. Nat. Soc. 2021, 2021, 9659164. [Google Scholar] [CrossRef]
- Schiederig, T.; Tietze, F.; Herstatt, C. Green innovation in technology and innovation management—An exploratory literature review. RD Manag. Res. Dev. Manag. 2012, 42, 180–192. [Google Scholar] [CrossRef]
- Chen, Y.S.; Lai, S.B.; Wen, C.T. The Influence of Green Innovation Performance on Corporate Advantage in Taiwan. J. Bus. Ethics 2006, 67, 331–339. [Google Scholar] [CrossRef]
- Oduro, S.; Maccario, G.; De Nisco, A. Green innovation: A multidomain systematic review. Eur. J. Innov. Manag. 2022, 25, 567–591. [Google Scholar] [CrossRef]
- Yang, H.; Liu, F.; Zhang, L. Integration of Green Innovation Capabilities of Enterprises Based on Ant Colony Optimization Algorithm. Comput. Intell. Neurosci. 2022, 2022, 8428641. [Google Scholar] [CrossRef] [PubMed]
- Qu, K.; Liu, Z. Green innovations, supply chain integration and green information system: A model of moderation. J. Clean. Prod. 2022, 339, 130557. [Google Scholar] [CrossRef]
- Xu, N.; Fan, X.; Hu, R. Adoption of Green Industrial Internet of Things to Improve Organizational Performance: The Role of Institutional Isomorphism and Green Innovation Practices. Front. Psychol. 2022, 13, 917533. [Google Scholar] [CrossRef]
- Fahad, S.; Alnori, F.; Su, F.; Deng, J. Adoption of green innovation practices in SMEs sector: Evidence from an emerging economy. Econ. Res.-Ekon. Istraz. 2022, 1–16. [Google Scholar] [CrossRef]
- Jun, W.; Ali, W.; Bhutto, M.Y.; Hussain, H.; Khan, N.A. Examining the determinants of green innovation adoption in SMEs: A PLS-SEM approach. Eur. J. Innov. Manag. 2021, 24, 67–87. [Google Scholar] [CrossRef]
- Fontoura, P.; Coelho, A. How to boost green innovation and performance through collaboration in the supply chain: Insights into a more sustainable economy. J. Clean. Prod. 2022, 359, 132005. [Google Scholar] [CrossRef]
- Yang, Z.; Lin, Y. The effects of supply chain collaboration on green innovation performance: An interpretive structural modeling analysis. Sustain. Prod. Consump. 2020, 23, 1–10. [Google Scholar] [CrossRef]
- Melander, L.; Pazirandeh, A. Collaboration beyond the supply network for green innovation: Insight from 11 cases. Supply Chain Manag. Int. J. 2019, 24, 509–523. [Google Scholar] [CrossRef]
- Zhang, R.; Tai, H.; Cheng, K.-T.; Cao, Z.; Dong, H.; Hou, J. Analysis on Evolution Characteristics and Dynamic Mechanism of Urban Green Innovation Network: A Case Study of Yangtze River Economic Belt. Sustainability 2022, 14, 297. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, X.; Tang, M.; Lan, H. Spatio-temporal evolution of green innovation network and its multidimensional proximity analysis: Empirical evidence from China. J. Clean. Prod. 2021, 283, 124649. [Google Scholar] [CrossRef]
- Li, D.; Tang, F.; Jiang, J. Does environmental management system foster corporate green innovation? The moderating effect of environmental regulation. Technol. Analy. Strateg. Manag. 2019, 31, 1242–1256. [Google Scholar] [CrossRef]
- Bag, S.; Dhamija, P.; Bryde, D.J.; Singh, R.K. Effect of eco-innovation on green supply chain management, circular economy capability, and performance of small and medium enterprises. J. Bus. Res. 2022, 141, 60–72. [Google Scholar] [CrossRef]
- Abu Seman, N.A.; Govindan, K.; Mardani, A.; Zakuan, N.; Saman, M.Z.M.; Hooker, R.E.; Ozkul, S. The mediating effect of green innovation on the relationship between green supply chain management and environmental performance. J. Clean. Prod. 2019, 229, 115–127. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Ngo, Q.-T.; Chien, F.; Li, L.; Mohsin, M. Evaluating green innovation and performance of financial development: Mediating concerns of environmental regulation. Environ. Sci. Pollut. Res. 2021, 28, 57386–57397. [Google Scholar] [CrossRef]
- Vasileiou, E.; Georgantzis, N.; Attanasi, G.; Llerena, P. Green innovation and financial performance: A study on Italian firms. Res. Policy 2022, 51, 104530. [Google Scholar] [CrossRef]
- Xie, X.; Huo, J.; Zou, H. Green process innovation, green product innovation, and corporate financial performance: A content analysis method. J. Bus. Res. 2019, 101, 697–706. [Google Scholar] [CrossRef]
- Yang, H.; Li, L.; Liu, Y. The effect of manufacturing intelligence on green innovation performance in China. Technol. Forecast. Soc. Change 2022, 178, 121569. [Google Scholar] [CrossRef]
- Zhao, N.; Liu, X.; Pan, C.; Wang, C. The performance of green innovation: From an efficiency perspective. Socio-Econ. Plan. Sci. 2021, 78, 101062. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, J.; Zhang, X.; Wang, W. How to Improve Green Innovation Performance: A Conditional Process Analysis. Sustainability 2022, 14, 2938. [Google Scholar] [CrossRef]
- Roh, T.; Lee, K.; Yang, J.Y. How do intellectual property rights and government support drive a firm’s green innovation? The mediating role of open innovation. J. Clean. Prod. 2021, 317, 128422. [Google Scholar] [CrossRef]
- Osorno, R.; Medrano, N. Open Innovation Platforms: A Conceptual Design Framework. IEEE Trans. Eng. Manag. 2022, 69, 438–450. [Google Scholar] [CrossRef]
- Gerdsri, N.; Manotungvorapun, N. Systemizing the Management of University-Industry Collaboration: Assessment and Roadmapping. IEEE Trans. Eng. Manag. 2022, 69, 245–261. [Google Scholar] [CrossRef]
- El-Ferik, S.; Al-Naser, M. University Industry Collaboration: A Promising Trilateral Co-Innovation Approach. IEEE Access 2021, 9, 112761–112769. [Google Scholar] [CrossRef]
- Acebo, E.; Miguel-Davila, J.-A.; Nieto, M. The Impact of University-Industry Relationships on Firms’ Performance: A Meta-Regression Analysis. Sci. Public Policy 2021, 48, 276–293. [Google Scholar] [CrossRef]
- Tian, M.; Su, Y.; Yang, Z. University-industry collaboration and firm innovation: An empirical study of the biopharmaceutical industry. J. Technol. Transfer 2021, 1–18. [Google Scholar] [CrossRef]
- Biedenbach, T.; Marell, A.; Vanyushyn, V. Industry-university collaboration and absorptive capacity: An empirical study in a Swedish context. Int. J. Technol. Manag. 2018, 76, 81–103. [Google Scholar] [CrossRef]
- Kobarg, S.; Stumpf-Wollersheim, J.; Welpe, I.M. University-industry collaborations and product innovation performance: The moderating effects of absorptive capacity and innovation competencies. J. Technol. Transfer 2018, 43, 1696–1724. [Google Scholar] [CrossRef]
- Locatelli, G.; Greco, M.; Invernizzi, D.C.; Grimaldi, M.; Malizia, S. What about the people? Micro-foundations of open innovation in megaprojects. Int. J. Proj. Manag. 2021, 39, 115–127. [Google Scholar] [CrossRef]
- Allal-Cherif, O.; Bidan, M. Collaborative open training with serious games: Relations, culture, knowledge, innovation, and desire. J. Innov. Knowl. 2017, 2, 31–38. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Govindan, K.; Antucheviciene, J.; Turskis, Z. Hybrid multiple criteria decision-making methods: A review of applications for sustainability issues. Econ. Res.-Ekon. Istraz. 2016, 29, 857–887. [Google Scholar] [CrossRef]
- Sousa, M.; Almeida, M.F.; Calili, R. Multiple Criteria Decision Making for the Achievement of the UN Sustainable Development Goals: A Systematic Literature Review and a Research Agenda. Sustainability 2021, 13, 4129. [Google Scholar] [CrossRef]
- Dyckhoff, H.; Souren, R. Integrating multiple criteria decision analysis and production theory for performance evaluation: Framework and review. Eur. J. Oper. Res. 2022, 297, 795–816. [Google Scholar] [CrossRef]
- Behzadian, M.; Khanmohammadi Otaghsara, S.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Liao, H.C.; Xu, Z.S.; Zeng, X.J. Hesitant Fuzzy Linguistic VIKOR Method and Its Application in Qualitative Multiple Criteria Decision Making. IEEE Trans. Fuzzy Syst. 2015, 23, 1343–1355. [Google Scholar] [CrossRef]
- Mardani, A.; Zavadskas, E.K.; Govindan, K.; Senin, A.A.; Jusoh, A. VIKOR Technique: A Systematic Review of the State of the Art Literature on Methodologies and Applications. Sustainability 2016, 8, 37. [Google Scholar] [CrossRef]
- Hafezalkotob, A.; Hafezalkotob, A.; Liao, H.C.; Herrera, F. An overview of MULTIMOORA for multi-criteria decision-making: Theory, developments, applications, and challenges. Inf. Fusion 2019, 51, 145–177. [Google Scholar] [CrossRef]
- Ferreira, F.A.F.; Santos, S.P. Two decades on the MACBETH approach: A bibliometric analysis. Ann. Oper. Res. 2021, 296, 901–925. [Google Scholar] [CrossRef]
- Beuthe, M.; Scannella, G. Comparative analysis of UTA multicriteria methods. Eur. J. Oper. Res. 2001, 130, 246–262. [Google Scholar] [CrossRef]
- Kuo, T. A modified TOPSIS with a different ranking index. Eur. J. Oper. Res. 2017, 260, 152–160. [Google Scholar] [CrossRef]
- Yazdi, M. Risk assessment based on novel intuitionistic fuzzy-hybrid-modified TOPSIS approach. Saf. Sci. 2018, 110, 438–448. [Google Scholar] [CrossRef]
- Selvachandran, G.; Peng, X.D. A modified TOPSIS method based on vague parameterized vague soft sets and its application to supplier selection problems. Neural Comput. Appl. 2019, 31, 5901–5916. [Google Scholar] [CrossRef]
- Chen, C.T. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Shih, H.S.; Shyur, H.J.; Lee, E.S. An extension of TOPSIS for group decision making. Math. Comput. Model. 2007, 45, 801–813. [Google Scholar] [CrossRef]
- Zhang, X.L.; Xu, Z.S. Extension of TOPSIS to Multiple Criteria Decision Making with Pythagorean Fuzzy Sets. Int. J. Intell. Syst. 2014, 29, 1061–1078. [Google Scholar] [CrossRef]
- Han, Q.; Li, W.M.; Xu, Q.L.; Song, Y.F.; Fan, C.L.; Zhao, M.R. Novel measures for linguistic hesitant Pythagorean fuzzy sets and improved TOPSIS method with application to contributions of system-of-systems. Expert Syst. Appl. 2022, 199, 117088. [Google Scholar] [CrossRef]
- Jiang, J.R.; Ren, M.; Wang, J.Q. Interval number multi-attribute decision-making method based on TOPSIS. Alex. Eng. J. 2022, 61, 5059–5064. [Google Scholar] [CrossRef]
- Lima, F.R.; Osiro, L.; Carpinetti, L.C.R. A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Appl. Soft. Comput. 2014, 21, 194–209. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Bakioglu, G.; Atahan, A.O. AHP integrated TOPSIS and VIKOR methods with Pythagorean fuzzy sets to prioritize risks in self-driving vehicles. Appl. Soft. Comput. 2021, 99, 106948. [Google Scholar] [CrossRef]
- Solangi, Y.A.; Cheng, L.S.; Shah, S.A.A. Assessing and overcoming the renewable energy barriers for sustainable development in Pakistan: An integrated AHP and fuzzy TOPSIS approach. Renew. Energy 2021, 173, 209–222. [Google Scholar] [CrossRef]
- Suresh, K.; Dillibabu, R. An integrated approach using IF-TOPSIS, fuzzy DEMATEL, and enhanced CSA optimized ANFIS for software risk prediction. Knowl. Inf. Syst. 2021, 63, 1909–1934. [Google Scholar] [CrossRef]
- Mi, X.M.; Tang, M.; Liao, H.C.; Shen, W.J.; Lev, B. The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what’s next? Omega-Int. J. Manag. Sci. 2019, 87, 205–225. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Marra, M. The state of the art development of AHP (1979–2017): A literature review with a social network analysis. Int. J. Prod. Res. 2017, 55, 6653–6675. [Google Scholar] [CrossRef]
- Liu, Y.; Eckert, C.M.; Earl, C. A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Syst. Appl. 2020, 161, 113738. [Google Scholar] [CrossRef]
- Behzadian, M.; Kazemadeh, R.B.; Albadvi, A.; Aghdasi, M. PROMETHEE: A comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 2010, 200, 198–215. [Google Scholar] [CrossRef]
- Govindan, K.; Jepsen, M.B. ELECTRE: A comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 2016, 250, 1–29. [Google Scholar] [CrossRef]
- Fan, J.P.; Yan, F.; Wu, M.Q. GLDS method for multiple attribute group decision making under 2-Tuple linguistic neutrosophic environment. J. Intell. Fuzzy Syst. 2021, 40, 11523–11538. [Google Scholar] [CrossRef]
- Ecer, F.; Pamucar, D. Sustainable supplier selection: A novel integrated fuzzy best worst method (F-BWM) and fuzzy CoCoSo with Bonferroni (CoCoSo’B) multi-criteria model. J. Clean. Prod. 2020, 266, 121981. [Google Scholar] [CrossRef]
- Rezaei, J.; Kothadiya, O.; Tavasszy, L.; Kroesen, M. Quality assessment of airline baggage handling systems using SERVQUAL and BWM. Tour. Manag. 2018, 66, 85–93. [Google Scholar] [CrossRef]
- Kumar, A.; Aswin, A.; Gupta, H. Evaluating green performance of the airports using hybrid BWM and VIKOR methodology. Tour. Manag. 2020, 76, 103941. [Google Scholar] [CrossRef]
- Chen, W.; Wang, X.F.; Peng, N.; Wei, X.; Lin, C.R. Evaluation of the Green Innovation Efficiency of Chinese Industrial Enterprises: Research Based on the Three-Stage Chain Network SBM Model. Math. Probl. Eng. 2020, 2020, 3143651. [Google Scholar] [CrossRef]
- Fang, Z.; Bai, H.; Bilan, Y. Evaluation Research of Green Innovation Efficiency in China’s Heavy Polluting Industries. Sustainability 2020, 12, 146. [Google Scholar] [CrossRef]
- Luo, Q.L.; Miao, C.L.; Sun, L.Y.; Meng, X.N.; Duan, M.M. Efficiency evaluation of green technology innovation of China’s strategic emerging industries: An empirical analysis based on Malmquist-data envelopment analysis index. J. Clean. Prod. 2019, 238, 117782. [Google Scholar] [CrossRef]
- Wang, T.-C.; Chang, T.-H. Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Syst. Appl. 2007, 33, 870–880. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Lee, H.-S. Generalizing TOPSIS for fuzzy multiple-criteria group decision-making. Comput. Math. Appl. 2007, 53, 1762–1772. [Google Scholar] [CrossRef]
- Li, D.Y.; Zhao, Y.N.; Zhang, L.; Chen, X.H.; Cao, C.C. Impact of quality management on green innovation. J. Clean. Prod. 2018, 170, 462–470. [Google Scholar] [CrossRef]
- Montobbio, F.; Solito, I. Does the eco-management and audit scheme foster innovation in European firms? Bus. Strat. Environ. 2018, 27, 82–99. [Google Scholar] [CrossRef]
- Ma, Y.; Hou, G.; Yin, Q.; Xin, B.; Pan, Y. The sources of green management innovation: Does internal efficiency demand pull or external knowledge supply push? J. Clean. Prod. 2018, 202, 582–590. [Google Scholar] [CrossRef]
- Awan, U.; Arnold, M.G.; Golgeci, I. Enhancing green product and process innovation: Towards an integrative framework of knowledge acquisition and environmental investment. Bus. Strategy Environ. 2021, 30, 1283–1295. [Google Scholar] [CrossRef]
- Martinez-Ros, E.; Kunapatarawong, R. Green innovation and knowledge: The role of size. Bus. Strateg. Environ. 2019, 28, 1045–1059. [Google Scholar] [CrossRef]
- Begum, S.; Ashfaq, M.; Xia, E.J.; Awan, U. Does green transformational leadership lead to green innovation? The role of green thinking and creative process engagement. Bus. Strateg. Environ. 2022, 31, 580–597. [Google Scholar] [CrossRef]
- Moore, S.B.; Ausley, L.W. Systems thinking and green chemistry in the textile industry: Concepts, technologies and benefits. J. Clean. Prod. 2004, 12, 585–601. [Google Scholar] [CrossRef]
- Miller, J.L.; Wentzel, M.T.; Clark, J.H.; Hurst, G.A. Green Machine: A Card Game Introducing Students to Systems Thinking in Green Chemistry by Strategizing the Creation of a Recycling Plant. J. Chem. Educ. 2019, 96, 3006–3013. [Google Scholar] [CrossRef]
Linguistic Variables | Corresponding Fuzzy Numbers |
---|---|
Very Low (VL) | (0, 0.1, 0.3) |
Low (L) | (0.1, 0.3, 0.5) |
Medium (M) | (0.3, 0.5, 0.7) |
High (H) | (0.5, 0.7, 0.9) |
Very High (VH) | (0.7, 0.9, 1.0) |
Main Criteria | Sub Criteria | Description | References |
---|---|---|---|
Green innovation knowledge accumulation (C1) | Basic knowledge accumulation related to green development (C11) | Knowledge about environmental issues and the concept and evolution of green development | [84,85] |
Professional frontier knowledge accumulation related to green innovation (C12) | Such as green logistics and green supply chain, etc. | [12] | |
Interdisciplinary knowledge accumulation related to green innovation (C13) | Such as green product design, green materials, green equipment, green recycling, green packaging, digital technology, etc. | [12] | |
Green technology innovation ability (C2) | Green thinking (C21) | Integrate environment concerns and frontier technologies in port development | [86] |
Green product innovation ability (C22) | Skills in improving ecological maintenance, environmental protection, and green initiatives | [4,5] | |
Green process innovation ability (C23) | Skills in improving energy saving and emission reduction, cleaner production, and process upgrading | [4,5,6,7,8] | |
Green management innovation ability (C3) | Systems thinking (C31) | Develop an effective strategy and a broad collection of analytical skills | [87,88] |
Green management mechanism innovation ability (C32) | Mechanism design for improving environment management, energy management, quality management, etc. | [4,5,6,7,8] | |
Green management practice innovation ability (C33) | Practices in improving environment management, energy management, quality management, etc. | [4,5,6,7,8] | |
Green Innovation Achievements (C4) | Papers related to green innovation (C41) | The number and quality of published papers related to green innovation | [12] |
Patents related to green innovation (C42) | The number of patents related to green innovation | [12] | |
Scientific and technological works related to green innovation (C43) | The number of award-winning works related to green innovation | [12] | |
Promotion and application of green innovation-related achievements (C44) | Promotion and application of the above achievements | [12] |
BO | C1 | C2 | C3 | C4 |
---|---|---|---|---|
Best criteria: C3 | 9 | 2 | 1 | 2 |
OW | Worst criteria: C1 | |||
C1 | 1 | |||
C2 | 5 | |||
C3 | 9 | |||
C4 | 4 |
BO | C11 | C12 | C13 |
---|---|---|---|
Best criteria: C13 | 9 | 2 | 1 |
OW | Worst criteria: C11 | ||
C11 | 1 | ||
C12 | 4 | ||
C13 | 9 |
BO | C21 | C22 | C23 |
---|---|---|---|
Best criteria: C23 | 9 | 3 | 1 |
OW | Worst criteria: C21 | ||
C21 | 1 | ||
C22 | 4 | ||
C23 | 9 |
BO | C31 | C32 | C33 |
---|---|---|---|
Best criteria: C33 | 9 | 2 | 1 |
OW | Worst criteria: C31 | ||
C31 | 1 | ||
C32 | 3 | ||
C33 | 9 |
BO | C41 | C42 | C43 | C44 |
---|---|---|---|---|
Best criteria: C44 | 9 | 4 | 3 | 1 |
OW | Worst criteria: C41 | |||
C41 | 1 | |||
C42 | 2 | |||
C43 | 4 | |||
C44 | 9 |
Main Criteria | Sub Criteria | ||||
---|---|---|---|---|---|
Criteria | Weights | Criteria | Local Weights | Global Weights | Ranking |
C1 | 0.053 | C11 | 0.071 | 0.004 | 13 |
C12 | 0.304 | 0.016 | 11 | ||
C13 | 0.625 | 0.033 | 9 | ||
C2 | 0.245 | C21 | 0.071 | 0.017 | 10 |
C22 | 0.243 | 0.060 | 5 | ||
C23 | 0.686 | 0.168 | 2 | ||
C3 | 0.474 | C31 | 0.077 | 0.036 | 7 |
C32 | 0.288 | 0.137 | 3 | ||
C33 | 0.635 | 0.301 | 1 | ||
C4 | 0.228 | C41 | 0.060 | 0.014 | 12 |
C42 | 0.154 | 0.035 | 8 | ||
C43 | 0.206 | 0.047 | 6 | ||
C44 | 0.580 | 0.132 | 4 |
Students | C11 | C12 | C13 | C21 | C22 | C23 | C31 | C32 | C33 | C41 | C42 | C43 | C44 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | (0.3, 0.6, 0.9) | (0.5, 0.7, 0.9) | (0.1, 0.4, 0.7) | (0.3, 0.6, 0.9) | (0.3, 0.5, 0.7) | (0.5, 0.7, 0.9) | (0.1, 0.3, 0.5) | (0.3, 0.5, 0.7) | (0.1, 0.3, 0.5) | (0.3, 0.5, 0.7) | (0.1, 0.3, 0.5) | (0.3, 0.5, 0.7) | (0.5, 0.7, 0.9) |
S2 | (0.3, 0.5, 0.7) | (0.1, 0.45, 0.7) | (0.5, 0.7, 0.9) | (0.1, 0.35, 0.7) | (0.3, 0.65, 0.9) | (0.3, 0.6, 0.9) | (0.3, 0.6, 0.9) | (0.1, 0.3, 0.5) | (0.5, 0.7, 0.9) | (0.5, 0.7, 0.9) | (0.1, 0.4, 0.7) | (0.5, 0.7, 0.9) | (0.3, 0.65, 0.9) |
S3 | (0.3, 0.5, 0.7) | (0.3, 0.5, 0.7) | (0.3, 0.6, 0.9) | (0.5, 0.7, 0.9) | (0.3, 0.5, 0.7) | (0.3, 0.6, 0.9) | (0.1, 0.5, 0.9) | (0.3, 0.5, 0.7) | (0.3, 0.5, 0.7) | (0.3, 0.6, 0.9) | (0.5, 0.7, 0.9) | (0.3, 0.5, 0.7) | (0.1, 0.35, 0.7) |
S4 | (0.3, 0.65, 0.9) | (0.1, 0.3, 0.5) | (0.3, 0.6, 0.9) | (0.5, 0.7, 0.9) | (0.3, 0.6, 0.9) | (0.3, 0.55, 0.9) | (0.5, 0.7, 0.9) | (0.5, 0.7, 0.9) | (0.3, 0.65, 0.9) | (0.1, 0.5, 0.9) | (0.3, 0.5, 0.7) | (0.3, 0.6, 0.9) | (0.1, 0.3, 0.5) |
S5 | (0.5, 0.7, 0.9) | (0.1, 0.3, 0.5) | (0.3, 0.6, 0.9) | (0.1, 0.3, 0.5) | (0.5, 0.7, 0.9) | (0.3, 0.5, 0.7) | (0.3, 0.55, 0.9) | (0.3, 0.5, 0.7) | (0.1, 0.3, 0.5) | (0.3, 0.5, 0.7) | (0.3, 0.5, 0.7) | (0.1, 0.3, 0.5) | (0.3, 0.6, 0.9) |
Students | C11 | C12 | C13 | C21 | C22 | C23 | C31 | C32 | C33 | C41 | C42 | C43 | C44 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | (0.33, 0.67, 1.0) | (0.56, 0.78, 1.0) | (0.11, 0.44, 0.78) | (0.33, 0.67, 1.0) | (0.33, 0.56, 0.78) | (0.56, 0.78, 1.0) | (0.11, 0.33, 0.56) | (0.33, 0.56, 0.78) | (0.11, 0.33, 0.56) | (0.33, 0.56, 0.78) | (0.11, 0.33, 0.56) | (0.33, 0.56, 0.78) | (0.56, 0.78, 1.0) |
S2 | (0.33, 0.56, 0.78) | (0.11, 0.5, 0.78) | (0.56, 0.78, 1.0) | (0.11, 0.39, 0.78) | (0.33, 0.72, 1.0) | (0.33, 0.67, 1.0) | (0.33, 0.67, 1.0) | (0.11, 0.33, 0.56) | (0.56, 0.78, 1.0) | (0.56, 0.78, 1.0) | (0.11, 0.44, 0.78) | (0.56, 0.78, 1.0) | (0.33, 0.72, 1.0) |
S3 | (0.33, 0.56, 0.78) | (0.33, 0.56, 0.78) | (0.33, 0.67, 1.0) | (0.56, 0.78, 1.0) | (0.33, 0.56, 0.78) | (0.33, 0.67, 1.0) | (0.11, 0.56, 1.0) | (0.33, 0.56, 0.78) | (0.33, 0.56, 0.78) | (0.33, 0.67, 1.0) | (0.56, 0.78, 1.0) | (0.33, 0.56, 0.78) | (0.11, 0.39, 0.78) |
S4 | (0.33, 0.72, 1.0) | (0.11, 0.33, 0.56) | (0.33, 0.67, 1.0) | (0.56, 0.78, 1.0) | (0.33, 0.67, 1.0) | (0.33, 0.61, 1.0) | (0.56, 0.78, 1.0) | (0.56, 0.78, 1.0) | (0.33, 0.72, 1.0) | (0.11, 0.56, 1.0) | (0.33, 0.56, 0.78) | (0.33, 0.67, 1.0) | (0.11, 0.33, 0.56) |
S5 | (0.56, 0.78, 1.0) | (0.11, 0.33, 0.56) | (0.33, 0.67, 1.0) | (0.11, 0.33, 0.56) | (0.56, 0.78, 1.0) | (0.33, 0.56, 0.78) | (0.33, 0.61, 1.0) | (0.33, 0.56, 0.78) | (0.11, 0.33, 0.56) | (0.33, 0.56, 0.78) | (0.33, 0.56, 0.78) | (0.11, 0.33, 0.56) | (0.33, 0.67, 1.0) |
Students | C11 | C12 | C13 | C21 | C22 | C23 | C31 | C32 | C33 | C41 | C42 | C43 | C44 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | (0.001, 0.003, 0.004) | (0.009, 0.012, 0.016) | (0.004, 0.015, 0.026) | (0.006, 0.011, 0.017) | (0.02, 0.033, 0.047) | (0.093, 0.131, 0.168) | (0.004, 0.012, 0.02) | (0.046, 0.076, 0.107) | (0.033, 0.1, 0.167) | (0.005, 0.008, 0.011) | (0.004, 0.012, 0.019) | (0.016, 0.026, 0.037) | (0.073, 0.103, 0.132) |
S2 | (0.001, 0.002, 0.003) | (0.002, 0.008, 0.012) | (0.018, 0.026, 0.033) | (0.002, 0.007, 0.013) | (0.02, 0.043, 0.06) | (0.056, 0.112, 0.168) | (0.012, 0.024, 0.036) | (0.015, 0.046, 0.076) | (0.167, 0.234, 0.301) | (0.008, 0.011, 0.014) | (0.004, 0.016, 0.027) | (0.026, 0.037, 0.047) | (0.044, 0.095, 0.132) |
S3 | (0.001, 0.002, 0.003) | (0.005, 0.009, 0.012) | (0.011, 0.022, 0.033) | (0.009, 0.013, 0.017) | (0.02, 0.033, 0.047) | (0.056, 0.112, 0.168) | (0.004, 0.02, 0.036) | (0.046, 0.076, 0.107) | (0.1, 0.167, 0.234) | (0.005, 0.009, 0.014) | (0.019, 0.027, 0.035) | (0.016, 0.026, 0.037) | (0.015, 0.051, 0.103) |
S4 | (0.001, 0.003, 0.004) | (0.002, 0.005, 0.009) | (0.011, 0.022, 0.033) | (0.009, 0.013, 0.017) | (0.02, 0.04, 0.06) | (0.056, 0.103, 0.168) | (0.02, 0.028, 0.036) | (0.076, 0.107, 0.137) | (0.1, 0.217, 0.301) | (0.002, 0.008, 0.014) | (0.012, 0.019, 0.027) | (0.016, 0.031, 0.047) | (0.015, 0.044, 0.073) |
S5 | (0.002, 0.003, 0.004) | (0.002, 0.005, 0.009) | (0.011, 0.022, 0.033) | (0.002, 0.006, 0.009) | (0.033, 0.047, 0.06) | (0.056, 0.093, 0.131) | (0.012, 0.022, 0.036) | (0.046, 0.076, 0.107) | (0.033, 0.1, 0.167) | (0.005, 0.008, 0.011) | (0.012, 0.019, 0.027) | (0.005, 0.016, 0.026) | (0.044, 0.088, 0.132) |
Students | CCi | Ranking | ||
---|---|---|---|---|
S1 | 12.461 | 0.577 | 0.031 | 4 |
S2 | 12.352 | 0.694 | 0.054 | 1 |
S3 | 12.43 | 0.617 | 0.039 | 3 |
S4 | 12.371 | 0.682 | 0.052 | 2 |
S5 | 12.497 | 0.547 | 0.025 | 5 |
Students | w+ = 0.2, w− = 0.8 | w+ =0.4, w− = 0.6 | w+ = 0.5, w− = 0.5 | w+ = 0.6, w− = 0.4 | w+ = 0.8, w− = 0.2 |
---|---|---|---|---|---|
1 | −0.123 | −0.046 | −0.008 | 0.031 | 0.108 |
2 | −0.115 | −0.03 | 0.012 | 0.054 | 0.138 |
3 | −0.12 | −0.041 | −0.001 | 0.039 | 0.118 |
4 | −0.116 | −0.032 | 0.01 | 0.052 | 0.135 |
5 | −0.126 | −0.051 | −0.013 | 0.025 | 0.1 |
Main Criteria | w3 = 0.474 | w3 = 0.2 | w3 = 0.4 | w3 = 0.6 | w3 = 0.8 |
---|---|---|---|---|---|
C1 | 0.053 | 0.0806 | 0.060 | 0.040 | 0.020 |
C2 | 0.245 | 0.3726 | 0.279 | 0.186 | 0.093 |
C3 | 0.474 | 0.2000 | 0.4 | 0.6 | 0.8 |
C4 | 0.228 | 0.3468 | 0.260 | 0.173 | 0.087 |
Students | w3 = 0.474 | w3 = 0.2 | w3 = 0.4 | w3 = 0.6 | w3 = 0.8 |
---|---|---|---|---|---|
1 | 4 | 2 | 2 | 4 | 5 |
2 | 1 | 1 | 1 | 2 | 2 |
3 | 3 | 4 | 4 | 3 | 3 |
4 | 2 | 3 | 3 | 1 | 1 |
5 | 5 | 5 | 5 | 5 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Zhao, D.; Liu, G.; Wang, Y. How to Evaluate College Students’ Green Innovation Ability—A Method Combining BWM and Modified Fuzzy TOPSIS. Sustainability 2022, 14, 10084. https://doi.org/10.3390/su141610084
Li T, Zhao D, Liu G, Wang Y. How to Evaluate College Students’ Green Innovation Ability—A Method Combining BWM and Modified Fuzzy TOPSIS. Sustainability. 2022; 14(16):10084. https://doi.org/10.3390/su141610084
Chicago/Turabian StyleLi, Tingting, Dan Zhao, Guiyun Liu, and Yuhong Wang. 2022. "How to Evaluate College Students’ Green Innovation Ability—A Method Combining BWM and Modified Fuzzy TOPSIS" Sustainability 14, no. 16: 10084. https://doi.org/10.3390/su141610084
APA StyleLi, T., Zhao, D., Liu, G., & Wang, Y. (2022). How to Evaluate College Students’ Green Innovation Ability—A Method Combining BWM and Modified Fuzzy TOPSIS. Sustainability, 14(16), 10084. https://doi.org/10.3390/su141610084