The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Coast-RiskBySea Model
- very low (damages between 2000–5000 €),
- low (damages between 5000–30,000 €),
- medium (damages between 30,000–100,000 €),
- high (damages between 100,000–200,000 €),
- very high (damages between 200,000–500,000 €).
2.2. Study Areas: The Euro-Mediterranean Port-Cities
3. Application of the Coast-RiskBySea Model
3.1. Data Collection
3.2. Naples, Italy
3.3. Barcelona, Spain
3.4. Marseille, France
3.5. Model Realiability
4. Results and Discussion
4.1. The Potential Effects of Extreme Sea Level in Euro-Mediterannean Port-Cities
4.2. The Coast-RiskBySea Model to Support Decision Makers
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
% | Climate percentile |
EU | European Union |
JRC | Joint Research Centre |
DTM | Digital Terrain Model |
ESL | Extreme Sea Leve |
IPCC | Intergovernmental Panel on Climate Change |
yr | years |
m | meters |
M | Million |
RCP | Representative Concentration Pathways |
RP | Return Period |
References
- Crutzen, P.J. Geology of mankind. Nature 2002, 415, 23. [Google Scholar] [CrossRef]
- Oppenheimer, M.; Campos, M.; Warren, R.; Birkmann, J.; Luber, G.; O’Neill, B.; Takahashi, K. Emergent risks and key vulnerabilities. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1039–1099. [Google Scholar]
- IPCC. Summary for Policy makers. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Change (2021); Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 23–32. [Google Scholar]
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Turner, R.K.; Subak, S.; Adger, W.N. Pressures, trends, and impacts in coastal zones: Interactions between socioeconomic and natural systems. Environ. Manag. 1996, 20, 159–173. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.R.; Codignotto, J.O.; Hay, J.E.; McLean, R.F.; Ragoonaden, S.; Woodroffe, C.D. Coastal Systems and Low-Lying Areas Climate Change 2007: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 315–335. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg2-chapter6-1.pdf (accessed on 12 October 2021).
- Kron, W. Coasts: The high-risk areas of the world. Nat. Hazards 2012, 66, 1363–1382. [Google Scholar] [CrossRef]
- Giorgi, F. Climate Change Hot-Spots. Geophys. Res. Lett. 2006, 33, 101029. [Google Scholar] [CrossRef]
- Ruti, P.M.; Somot, S.; Giorgi, F.; Dubois, C.; Flaounas, E.; Obermann, A.; Dell’Aquila, A.; Pisacane, G.; Harzallah, A.; Lombardi, E.; et al. Med-CORDEX Initiative for Mediterranean Climate Studies. Bull. Am. Meteorol. Soc. 2016, 97, 1187–1208. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- Satta, A.; Puddu, M.; Venturini, S.; Giupponi, C. Assessment of coastal risks to climate change related impacts at the regional scale: The case of the Mediterranean region. Int. J. Disaster Risk Reduct. 2017, 24, 284–296. [Google Scholar] [CrossRef]
- Small, C.; Nicholls, R. A Global Analysis of Human Settlement in Coastal Zones. J. Coast. Res. 2003, 19, 584–599. Available online: http://www.jstor.org/stable/4299200 (accessed on 11 November 2021).
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef]
- Wolff, C.; Nikoletopoulos, T.; Hinkel, J.; Vafeidis, A.T. Future urban development exacerbates coastal exposure in the Mediterranean. Sci. Rep. 2020, 10, 14420. [Google Scholar] [CrossRef] [PubMed]
- Zacharias, I.; Zamparas, M. Mediterranean temporary ponds. A disappearing ecosystem. Biodivers. Conserv. 2010, 19, 3827–3834. [Google Scholar] [CrossRef]
- Toubes, D.R.; Gössling, S.; Hall, C.M.; Scott, D. Vulnerability of Coastal Beach Tourism to Flooding: A Case Study of Galicia, Spain. Environments 2017, 4, 83. [Google Scholar] [CrossRef]
- Garcia-Ayllon, S. Long-Term GIS Analysis of Seaside Impacts Associated to Infrastructures and Urbanization and Spatial Correlation with Coastal Vulnerability in a Mediterranean Area. Water 2018, 10, 1642. [Google Scholar] [CrossRef]
- Reimann, L.; Vafeidis, A.T.; Brown, S.; Hinkel, J.; Tol, R.S.J. Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise. Nat. Commun. 2018, 9, 4161. [Google Scholar] [CrossRef]
- European Comission. Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the Assessment and Management of Flood Risks. Official Journal of the European Union. 2007. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32007L0060 (accessed on 10 November 2021).
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea Level Change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1137–1216. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 8 March 2022).
- Vermeer, M.; Rahmstorf, S. Global Sea Level Linked to Global Temperature. Proc. Natl. Acad. Sci. USA 2009, 106, 21527–21532. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, S.; Barnard, P.L.; Fletcher, C.H.; Frazer, N.; Erikson, L.; Storlazzi, C.D. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 2017, 7, 1399. [Google Scholar] [CrossRef] [PubMed]
- Taherkhani, M.; Vitousek, S.; Barnard, P.L.; Frazer, N.; Anderson, T.R.; Fletcher, C.H. Sea-level rise exponentially increases coastal flood frequency. Sci. Rep. 2020, 10, 6466. [Google Scholar] [CrossRef] [PubMed]
- Wahl, T.; Haigh, I.D.; Nicholls, R.J.; Arns, A.; Dangendorf, S.; Hinkel, J.; Slangen, A.B.A. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis. Nat. Commun. 2017, 8, 16075. [Google Scholar] [CrossRef] [PubMed]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.P.; Feyen, L. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 2018, 9, 2360. [Google Scholar] [CrossRef] [PubMed]
- Weisse, R.; Bellafiore, D.; Menéndez, M.; Méndez, F.; Nicholls, R.J.; Umgiesser, G.; Willems, P. Changing extreme sea levels along European coasts. Coast. Eng. 2013, 87, 4–14. [Google Scholar] [CrossRef]
- Muis, S.; Verlaan, M.; Winsemius, H.; Aerts, J.C.J.H.; Ward, P.J. A global reanalysis of storm surges and extreme sea levels. Nat. Commun. 2016, 7, 11969. [Google Scholar] [CrossRef] [PubMed]
- Hinkel, J.; Nicholls, R.J.; Vafeidis, A.T.; Tol, R.S.; Avagianou, T. Assessing risk of and adaptation to sea-level rise in the European Union: An application of DIVA. Mitig. Adapt. Strateg. Glob. Change 2010, 15, 703–719. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Solecki, W.; Romero-Lankao, P.; Mehrotra, S.; Dhakal, S.; Bowman, T.; Ibrahim, S.A. ARC3.2 Summary for City Leaders Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Spano, D.; Mereu, V.; Bacciu, V.; Giuliana, B.; Casartelli, V.; Ellena, M.; Lamesso, E.; Ledda, A.; Marras, S.; Mercogliano, P.; et al. Analisi del Rischio. I Cambiamenti Climatici in sei Città Italiane; Fondazione CMCC—Centro Euro-Mediterraneo sui Cambiamenti Climatici: Lecce, Italy, 2020. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. An EU Strategy on Adaptation to Climate Change. COM/2013/0216 Final. 2013. Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=CELEX%3A52013DC0216 (accessed on 18 October 2021).
- EEA. Climate Change Adaptation and Disaster Risk Reduction in Europe. EEA–European Environment Agency Reports. 2017. Available online: https://www.eea.europa.eu/publications/climate-change-adaptation-and-disaster (accessed on 18 October 2021).
- European Environment Agency. Europe’s Seas and Coasts. 2019. Available online: https://www.eea.europa.eu/themes/water/europes-seas-and-coasts (accessed on 18 October 2021).
- European Commission. Impact Assessment Report The new EU Strategy on Adaptation to Climate Change, 2021, SWD/2021/25 final. Available online: https://ec.europa.eu/clima/eu-action/adaptation-climate-change/eu-adaptation-strategy_it (accessed on 10 January 2022).
- Castellari, S.; Venturini, S.; Ballarin Denti, A.; Bigano, A.; Bindi, M.; Bosello, F.; Carrera, L.; Chiriaco, M.V.; Danovaro, R.; Desiato, F.; et al. Rapporto Sullo Stato Delle Conoscenze Scientifiche Su Impatti, Vulnerabilità Ed Adattamento Ai Cambiamenti Climatici in Italia; Ministero dell’Ambiente e della Tutela del Territorio e del Mare: Rome, Italy, 2014. [Google Scholar]
- Reckien, D.; Salvia, M.; Pietrapertosa, F.; Simoes, S.G.; Olazabal, M.; De Gregorio Hurtado, S.; Geneletti, D.; Lorencová, E.K.; D’Alonzo, V.; Krook-Riekkola, A.; et al. Dedicated versus mainstreaming approaches in local climate plans in Europe. Renew. Sustain. Energy Rev. 2019, 112, 948–959. [Google Scholar] [CrossRef]
- EEA. Report No 6/2020. Monitoring and Evaluation of National Adaptation Policies Throughout the Policy Cycle. Available online: https://www.eea.europa.eu/publications/national-adaptation-policies. (accessed on 20 September 2021).
- Feyen, L.; Ciscar Martinez, J.; Gosling, S.; Ibarreta Ruiz, D.; Soria Ramirez, A.; Dosio, A.; Naumann, G.; Russo, S.; Formetta, G.; Forzieri, G.; et al. Climate Change Impacts and Adaptation in Europe; EUR 30180 EN; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament; the Council, the European Economic and Social Committee and the Committee of the Regions. A European Strategy for Key Enabling Technologies—A Bridge to Growth and Jobs. COM(2012)341. 2012. Available online: https://ec.europa.eu/transparency/documents-register/detail?ref=COM(2012)341&lang=en (accessed on 10 September 2021).
- Kaźmierczak, A.; Cavan, G. Surface water flooding risk to urban communities: Analysis of vulnerability, hazard and exposure. Landsc. Urban Plan. 2011, 103, 185–197. [Google Scholar] [CrossRef]
- Clemente, M.F.; D’Ambrosio, V.; Focareta, M. The proposal of the Coast-RiskBySea: COASTal zones RISK assessment for Built environment bY extreme SEA level, based on the new Copernicus Coastal Zones data. Int. J. Disaster Risk Reduct. 2022, 75, 102947. [Google Scholar] [CrossRef]
- Clemente, M.F.; D’Ambrosio, V.; Focareta, M. Processi GIS-based finalizzati alla classificazione della vulnerabilità dell’ambiente urbano-costiero in regime di cambiamento climatico. In GIS Day 2020, il GIS per il Governo e la Gestione del Territorio; Cardone, B., Di Martino, F., Eds.; Aracne Editore: Rome, Italy, 2021; pp. 103–122. [Google Scholar]
- Birch, C.; Sander, O.; Beecham, J. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol. Model. 2007, 206, 347–359. [Google Scholar] [CrossRef]
- Dong, N.; Yang, X.; Cai, H.; Xu, F. Research on Grid Size Suitability of Gridded Population Distribution in Urban Area: A Case Study in Urban Area of Xuanzhou District, China. PLoS ONE 2017, 12, e0170830. [Google Scholar] [CrossRef] [PubMed]
- Shoman, W.; Alganci, U.; Demirel, H. A comparative analysis of gridding systems for point-based land cover/use analysis. Geocarto Int. 2019, 34, 867–886. [Google Scholar] [CrossRef]
- Bousquin, J. Discrete Global Grid Systems as scalable geospatial frameworks for characterizing coastal environments. Environ. Model. Softw. 2021, 105210. [Google Scholar] [CrossRef] [PubMed]
- Copernicus Coastal Zones Land Cover/Land Use. 2018. Available online: https://land.copernicus.eu/local/coastal-zones/coastal-zones-2018 (accessed on 20 September 2021).
- Huizinga, J.; De Moel, H.; Szewczyk, W. Global Depth-Damage Functions Database with Guidelines. EUR 28552 EN, Publications Office of the European Union: Luxembourg. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC105688 (accessed on 20 September 2021).
- Bates, P.D.; De Roo, A.P.J. A simple raster-based model for flood inundation simulation. J. Hydrol. 2000, 236, 54–77. [Google Scholar] [CrossRef]
- Boettle, M.; Kropp, J.P.; Reiber, L.; Roithmeier, O.; Rybski, D.; Walther, C. About the influence of elevation model quality and small-scale damage functions on flood damage estimation. Nat. Hazards Earth Syst. Sci. 2011, 11, 3327–3334. [Google Scholar] [CrossRef]
- Breilh, J.F.; Chaumillon, E.; Bertin, X.; Gravelle, M. Assessment of static flood modeling techniques: Application to contrasting marshes flooded during Xynthia (western France). Nat. Hazards Earth Syst. Sci. 2013, 13, 1595–1612. [Google Scholar] [CrossRef]
- Ali, A.M.; Solomatine, D.P.; Di Baldassarre, G. Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods. Hydrol. Earth Syst. Sci. 2015, 19, 631–643. [Google Scholar] [CrossRef]
- Prahl, B.F.; Boettle, M.; Costa, L.; Kropp, J.P.; Rybski, D. Damage and protection cost curves for coastal floods within the 600 largest European cities. Sci. Data 2018, 5, 180034. [Google Scholar] [CrossRef] [PubMed]
- Vousdoukas, M.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.; Feyen, L. Global Extreme Sea Level Projections; European Commission, Joint Research Centre (JRC): Ispra, Italy, 2018. [Google Scholar] [CrossRef]
- Abadie, L.M. Sea level damage risk with probabilistic weighting of IPCC scenarios: An application to major coastal cities. J. Clean. Prod. 2018, 175, 582–598. [Google Scholar] [CrossRef]
- Meyer, V.; Becker, N.; Markantonis, V.; Schwarze, R.; van den Bergh, J.C.J.M.; Bouwer, L.M.; Bubeck, P.; Ciavola, P.; Genovese, E.; Green, C.; et al. Review article: Assessing the costs of natural hazards—State of the art and knowledge gaps. Nat. Hazards Earth Syst. Sci. 2013, 13, 1351–1373. [Google Scholar] [CrossRef]
- Armaroli, C.; Duo, E.; Viavattene, C. From Hazard to Consequences: Evaluation of Direct and Indirect Impacts of Flooding Along the Emilia-Romagna Coastline, Italy. Front. Earth Sci. 2013, 7, 103. [Google Scholar] [CrossRef]
- Rogers, A.A.; Dempster, F.L.; Hawkins, J.I.; Johnston, R.J.; Boxall, P.C.; Rolfe, J.; Kragt, M.E.; Burton, M.P.; Pannell, D.J. Valuing non-market economic impacts from natural hazards. Nat. Hazards 2019, 99, 1131–1161. [Google Scholar] [CrossRef]
- Gallien, T.W.; Sanders, B.F.; Flick, R.E. Urban coastal flood prediction: Integrating wave overtopping, flood defenses and drainage. Coast. Eng. 2014, 91, 18–28. [Google Scholar] [CrossRef]
- Seenath, A.; Wilson, M.; Miller, K. Hydrodynamic versus GIS modelling for coastal flood vulnerability assessment: Which is better for guiding coastal management? Ocean Coast. Manag. 2016, 120, 99–109. [Google Scholar] [CrossRef]
- European Commision. ESDP European Spatial Development Perspective. Towards Balanced and Sustainable Developent of the Territory of the European; European Commision: Luxembourg, 1999. [Google Scholar]
- Jauhiainen, J.S. Waterfront redevelopment and urban policy: The case of Barcelona, Cardiff and Genoa. Eur. Plan. Stud. 1995, 3, 3–23. [Google Scholar] [CrossRef]
- Monclús, F.-J. The Barcelona model: And an original formula? From ‘reconstruction’ to strategic urban projects (1979–2004). Plan. Perspect. 2003, 18, 399–421. [Google Scholar] [CrossRef]
- Degen, M.; Garcia, M. The Transformation of the ‘Barcelona Model’: An Analysis of Culture, Urban Regeneration and Governance. Int. J. Urban Reg. Res. 2012, 36, 1022–10338. [Google Scholar] [CrossRef]
- Alemany Llovera, J. Marseille, the Port and the European Capital of Culture 2013. Portus: The Online Magazine of Rete 2013. RETE Publisher, Venice, Italy. Available online: https://portusonline.org/marseille-the-port-and-the-european-capital-of-culture-2013-2/ (accessed on 23 March 2022).
- Buslacchi, M.E. A View From The Sea The Regeneration of Marseille Waterfront: Iconic Buildings And Mediterranean Sea. Territ. Ric. Insediamenti Ambiente 2013, 11, 3–14. [Google Scholar] [CrossRef]
- Pirlone, F.; Erriu, D. Waterfront and urban regeneration. J. Land Use Mobi l. Environ. 2016, 9, 305–322. [Google Scholar] [CrossRef]
- DTM Naples. Available online: http://www.pcn.minambiente.it/viewer/index.php?services=LiDAR_Campania (accessed on 10 October 2020).
- DTM Barcelona. Available online: https://geoportalcartografia.amb.cat/AppGeoportalCartografia2/index.html?locale=en (accessed on 17 October 2021).
- DTM Marseille. Available online: https://geoservices.ign.fr/ (accessed on 5 October 2021).
- Kenward, T.; Lettenmaier, D.P.; Wood, E.F.; Fielding, E. Effects of Digital Elevation Model Accuracy on Hydrologic Predictions. Remote Sens. Environ. 2000, 74, 432–444. [Google Scholar] [CrossRef]
- Casas, A.; Benito, G.; Thorndycraft, V.R.; Rico, M. The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surf. Process. Landf. 2006, 31, 444–456. [Google Scholar] [CrossRef]
- Arrighi, C.; Campo, L. Effects of digital terrain model uncertainties on high-resolution urban flood damage assessment. J. Flood Risk Manag. 2019, 12, e12530. [Google Scholar] [CrossRef]
- Muthusamy, M.; Casado, M.R.; Butler, D.; Leinster, P. Understanding the effects of Digital Elevation Model resolution in urban fluvial flood modelling. J. Hydrol. 2021, 596, 126088. [Google Scholar] [CrossRef]
- Valente, R.; Stamatopoulos, L.; Donadio, C. Environmental Design Criteria through Geoindicators for two Mediterranean Coastlands. City Saf. Energy 2014, 63–76. [Google Scholar] [CrossRef]
- Saurí, D.; Palau-Rof, L. Urban drainage in Barcelona: From hazard to resource? Water Altern. 2017, 10, 475–492. [Google Scholar]
- Losasso, M. Progettazione ambientale, rischi climatici, resilienza del costruito. In Progettazione Ambientale per L’adattamento al Climate Change–2. Strumenti e Indirizzi per la Riduzione dei Rischi Climatici; D’Ambrosio, V., Leone, M.F., Eds.; Clean Edizioni: Naples, Italy, 2017; pp. 152–174. [Google Scholar]
- Barcelona Climate Plan 2018–2030. Available online: https://www.c40knowledgehub.org/s/article/Barcelona-s-Climate-Action-Plan-2018-2030?language=en_US (accessed on 5 February 2022).
- Robert, S.; Fox, D.; Boulay, G.; Grandclément, A.; Garrido, M.; Pasqualini, V.; Prévost, A.; Schleyer-Lindenmann, A.; Trémélo, M.-L. A framework to analyse urban sprawl in the French Mediterranean coastal zone. Reg. Environ. Chang. 2019, 19, 559–572. [Google Scholar] [CrossRef]
- Chalvet, M.; Claeys, C. Marseille, une ville méditerranéenne entre pénurie et inondation. VertigO Rev. Électronique Sci. Environ. 2011, 10. [Google Scholar] [CrossRef]
- DREAL PACA. Territoire à Risque Important d’inondation (TRI) de Marseille—Aubagne. Cartographie des Surfaces Inondables et des Risques—Service Prévention des Risques. 2014. Available online: https://www.rhone-mediterranee.eaufrance.fr/cartographie-des-risques-dinondations-du-tri-de-marseilleaubagne (accessed on 20 March 2022).
- Adam, E.F.; Brown, S.; Nicholls, R.J.; Tsimplis, M. A systematic assessment of maritime disruptions affecting UK ports, coastal areas and surrounding seas from 1950 to 2014. Nat. Hazards 2016, 83, 691–713. [Google Scholar] [CrossRef]
- Wendler-Bosco, V.; Nicholson, C. Port disruption impact on the maritime supply chain: A literature review. Sustain. Resilient Infrastruct. 2020, 5, 378–394. [Google Scholar] [CrossRef]
- Izaguirre, C.; Losada, I.J.; Camus, P.; Vigh, J.L.; Stenek, V. Climate change risk to global port operations. Nat. Clim. Chang. 2021, 11, 14–20. [Google Scholar] [CrossRef]
- Robert, S.; Laffont-Schwob, I. Le littoral marseillais: Marseille et l’environnement. Bilan Qual. Enjeux 2021, 6, 147–170. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Becker, A.; Inoue, S.; Fischer, M.; Schwegler, B. Climate change impacts on international seaports: Knowledge, perceptions, and planning efforts among port administrators. Clim. Chang. 2012, 110, 5–29. [Google Scholar] [CrossRef]
- Schipper, C.A.; Vreugdenhil, H.; de Jong, M.P.C. A sustainability assessment of ports and port-city plans: Comparing ambitions with achievements. Transp. Res. Part D Transp. Environ. 2017, 57, 84–111. [Google Scholar] [CrossRef]
- Hanson, S.E.; Nicholls, R.J. Demand for ports to 2050: Climate policy, growing trade and the impacts of sea-level rise. Earth’s Future 2020, 8, e2020EF001543. [Google Scholar] [CrossRef]
- Toimil, A.; Losada, I.J.; Nicholls, R.J.; Dalrymple, R.A.; Stive, M.J. Addressing the challenges of climate change risks and adaptation in coastal areas: A review. Coast. Eng. 2020, 156, 103611. [Google Scholar] [CrossRef]
Parameter | Data Source | Data Characteristics |
---|---|---|
Exposure Land use translated into exposed value through damage function | Copernicus Coastal zones 2018 [47] | The database provides a land cover/land use that identifies 71 classes over a continuous 10 km strip for European coastal zones. The scale varies between 1:5000 and 1:10,000. The minimum mapping width is 10 m. |
Global depth-damage functions [48] | These functions allow the economic assessment of flood impacts on the built environment. Values are calculated by combining potential water depths with normalized damage indices, differentiated by six land use classes, and the related national €/m2 costs. | |
Vulnerability Mean coastal elevation | Digital Terrain Models (DTMs) [68,69,70] | DTMs of Naples, Barcelona, and Marseille are available online and in open-source format on the national geoportals. The raster images are characterized by pixels 1 m × 1 m. |
Hazard ESL projections | Global Extreme Sea Level projections [54] | The values of ESL are expressed in meters and vary according to RCP, RP, and %. Data are characterized by a municipal scale spatial resolution. |
City | RCP Scenario | rSLR (95%) | ESL (100 RP–95%) |
---|---|---|---|
Naples | 4.5 | 0.76 m | 2.15 m |
8.5 | 1.88 m | 3.22 m | |
Barcelona | 4.5 | 0.89 m | 1.90 m |
8.5 | 1.89 m | 2.97 m | |
Marseille | 4.5 | 0.78 m | 2.04 m |
8.5 | 1.86 m | 3.10 m |
Land Use Classes (Copernicus) | % Impacted Surface | Damages M € | % Damages on Total Damage | |
---|---|---|---|---|
11110 | Continuous urban fabric (IMD ≥ 80%) | 9% | 15 M€ | 7% |
11120 | Dense urban fabric (IMD ≥ 30–80%) | 3% | 5 M€ | 2% |
11130 | Low density fabric (IMD < 30%) | 1% | 0.06 M€ | 0% |
11210 | Industrial, commercial, public, and military units (other) | 29% | 80 M€ | 36% |
12100 | Road networks and associated land | 4% | 36 M€ | 16% |
12200 | Railways and associated land | 5% | 30 M€ | 13% |
12310 | Cargo port | 16% | 4 M€ | 2% |
12320 | Passenger port | 24% | 10 M€ | 5% |
12350 | Marinas | 6% | 33 M€ | 15% |
12370 | Shipyards | 1% | 3 M€ | 1% |
14000 | Green urban, sports, and leisure facilities | 2% | 7 M€ | 3% |
Land Use Classes (Copernicus) | % Impacted Surface | Damages M € | % Damages on Total Damage | |
---|---|---|---|---|
11110 | Continuous urban fabric (IMD ≥ 80%) | 1% | 3.07 | 1% |
11120 | Dense urban fabric (IMD ≥ 30–80%) | |||
11130 | Low density fabric (IMD < 30%) | |||
11210 | Industrial, commercial, public, and military units (other) | 30% | 224.46 | 47% |
12100 | Road networks and associated land | 5% | 72.78 | 15% |
12200 | Railways and associated land | 3% | 19.44 | 4% |
12310 | Cargo port | 36% | 18.57 | 4% |
12320 | Passenger port | 9% | 6.57 | 1% |
12350 | Marinas | 13% | 108.46 | 23% |
12370 | Shipyards | 0% | 0.1 | 0% |
14000 | Green urban, sports, and leisure facilities | 3% | 26.42 | 5% |
Land Use Classes (Copernicus) | % Impacted Surface | Damages M € | % Damages on Total Damage | |
---|---|---|---|---|
11110 | Continuous urban fabric (IMD ≥ 80%) | 2% | 6 | 3% |
11120 | Dense urban fabric (IMD ≥ 30–80%) | 1% | 0.08 | 0% |
11210 | Industrial, commercial, public, and military units (other) | 6% | 28 | 12% |
12100 | Road networks and associated land | 4% | 42 | 18% |
12200 | Railways and associated land | 2% | 17 | 7% |
12310 | Cargo port | 59% | 17 | 7% |
12350 | Marinas | 9% | 50 | 21% |
14000 | Green urban, sports, and leisure facilities | 17% | 75 | 32% |
Water Depth | Prahl et al. 2018 [55] | Coast-RiskBySea | Difference in % |
---|---|---|---|
1.00 m | 49 M€ | 39 M€ | 20% |
1.50 m | 75 M€ | 70 M€ | 6% |
2.00 m | 102 M€ | 97 M€ | 5% |
2.50 m | 133 M€ | 177 M€ | 33% |
3.00 m | 172 M€ | 240 M€ | 37% |
Naples | Barcelona | Marseille | ||
---|---|---|---|---|
2050 | ESL—RCP 4.5, 100 yr RP, 95% | 44 M€ | 250 M€ | 70 M€ |
ESL—RCP 8.5, 100 yr RP, 95% | 69 M€ | 250 M€ | 100 M€ | |
2100 | ESL—RCP 4.5, 100 yr RP, 95% | 69 M€ | 369 M€ | 100 M€ |
ESL—RCP 8.5, 100 yr RP, 95% | 226 M€ | 480 M€ | 240 M€ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clemente, M.F. The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona. Sustainability 2022, 14, 10096. https://doi.org/10.3390/su141610096
Clemente MF. The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona. Sustainability. 2022; 14(16):10096. https://doi.org/10.3390/su141610096
Chicago/Turabian StyleClemente, Maria Fabrizia. 2022. "The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona" Sustainability 14, no. 16: 10096. https://doi.org/10.3390/su141610096
APA StyleClemente, M. F. (2022). The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona. Sustainability, 14(16), 10096. https://doi.org/10.3390/su141610096