Uncovering the Structural Effect Mechanisms of Natural and Social Factors on Land Subsidence: A Case Study in Beijing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.2. Methods
2.2.1. Identifying Local Effect Mechanisms Using the GTWR Model
2.2.2. Detecting Structural Effect Mechanisms Using the SCMC Algorithm
3. Results
3.1. Identification of Local Effect Mechanisms of Associated Factors on Land Subsidence
3.2. Identification of Structural Effect Mechanisms of Associated Factors on Land Subsidence
3.2.1. Estimating Number of Clusters
3.2.2. Regression Coefficients and Structural Characteristics
3.2.3. Cluster Membership Likelihood
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Herrera-García, G.; Ezquerro, P.; Tomás, R.; Béjar-Pizarro, M.; López-Vinielles, J.; Rossi, M.; Mateors, R.M.; Carreón-Freyre, D.; Lambert, J.; Teatini, P.; et al. Mapping the global threat of land subsidence. Science 2021, 371, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Land Subsidence International Symposium Held in VENICE; Eos Transactions American Geophysical Union: Hoboken, NJ, USA, 1984; Volume 65, p. 1180. [Google Scholar]
- Si, Y.; Chen, B.B.; Gong, H.L.; Gao, M.L. Temporal and spatial evolution of land subsidence induced by groundwater exploitation and construction in the eastern Chaoyang district, Beijing, China. J. Indian Soc. Remote Sens. 2018, 46, 1657–1665. [Google Scholar] [CrossRef]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Conway, B.D. Land subsidence and earth fissures in south-central and southern Arizona, USA. Hydrogeol. J. 2016, 24, 649–655. [Google Scholar] [CrossRef]
- Bhattarai, R.; Kondoh, A. Risk assessment of land subsidence in Kathmandu valley, Nepal, using remote sensing and GIS. Adv. Remote Sens. 2017, 6, 132–146. [Google Scholar] [CrossRef]
- Rahmati, O.; Golkarian, A.; Biggs, T.; Mohammadi, F.; Daliakopoulos, I.N. Land subsidence hazard modeling: Machine learning to identify predictors and the role of human activities. J. Environ. Manag. 2019, 236, 466–480. [Google Scholar] [CrossRef]
- Luo, Z.J.; Zeng, F. Finite element numerical simulation of land subsidence and groundwater exploitation based on visco-elasticplastic biot’s consolidation theory. J. Hydrodyn. 2011, 23, 615–624. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Li, W.P. A review of regional groundwater flow modeling. Geosci. Front. 2011, 2, 205–214. [Google Scholar] [CrossRef]
- Tsangaratos, P.; Ilia, I.; Loupasakis, C. Land subsidence modelling using data mining techniques. The case study of western Thessaly, Greece. In Advances in Natural and Technological Hazards Research; Pourghasemi, H.R., Rossi, M., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 79–103. [Google Scholar]
- Pourghasemi, H.R.; Mohseni Saravi, M. Land-subsidence spatial modeling using the random forest data-mining technique. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Pourghasemi, H.R., Gokceoglu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 147–159. [Google Scholar]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Hu, K.; Wei, L.; Liu, S.; Li, X.Z. Spatial pattern of debris-flow catchments and the rainfall amount of triggering debris flows in the Hengduan Mountains region. Acta Geogr. Sin. 2019, 74, 2303–2313. [Google Scholar]
- Yang, H.O.; Chen, W.B.; Liang, Z.F. Impact of land use on PM2.5 pollution in a representative city of middle China. Int. J. Environ. Res. Public Health. 2017, 14, 462. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.F.; Yang, W.T.; Li, C.K.; Tian, H.B.; Zheng, D.Y.; Bo, P. Detection of influence factors and their interaction of land subsidence in Beijing based on PS-InSAR. Geomat. World 2020, 27, 7–13. [Google Scholar]
- Jiang, D.C.; Zhang, J.X.; Zhang, Y.H.; Wu, H.A.; Kang, Y.H. Ground deformation over century-long coal mining city monitored through incorporating both PS and SBAS InSAR: A case study of Xuzhou. Bull. Surv. Mapp. 2017, 1, 58–64. [Google Scholar]
- Minderhoud, P.S.J.; Coumou, L.; Erban, L.E.; Middelkoop, H.; Stouthamer, E.; Addink, E.A. The relation between land use and subsidence in the Vietnamese Mekong delta. Sci Total Environ. 2018, 634, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.Y. Land subsidence monitoring and analysis of influencing factors in Su-Xi-Chang area based on multi-source SAR data. Acta Geod. Cartogr. Sin. 2019, 48, 938. [Google Scholar]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Liu, Y.S.; Yang, Y.Y.; Li, Y.R.; Li, J.T. Conversion from rural settlements and arable land under rapid urbanization in Beijing during 1985–2010. J. Rural Stud. 2017, 51, 141–150. [Google Scholar] [CrossRef]
- Gong, H.L.; Pan, Y.; Zheng, L.Q.; Li, X.J.; Zhu, L.; Zhang, C.; Huang, Z.Y.; Li, Z.P.; Wang, H.G.; Zhou, C.F. Long-term groundwater storage changes and land subsidence development in the North China Plain (1971–2015). Hydrogeol. J. 2018, 26, 1417–1427. [Google Scholar] [CrossRef]
- Xu, H. A new index for delineating built-up land features in satellite imagery. Int. J. Remote Sens. 2008, 29, 4269–4276. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Calinski, T.; Harabasz, J. A dendrite method for cluster analysis. In Communications in Statistics-Theory and Methods; Taylor & Francis: Abingdon, UK, 1974; Volume 3, pp. 1–27. [Google Scholar]
- Deng, M.; Yang, W.T.; Liu, Q.L. Geographically weighted extreme learning machine: A method for space-time prediction. Geogr. Anal. 2017, 49, 433–450. [Google Scholar] [CrossRef]
- Wheeler, D.C. Geographically weighted regression. In Handbook of Regional Science; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1435–1459. [Google Scholar]
- Chalkias, C.; Kalogirou, S.; Ferentinou, M. Landslide susceptibility, Peloponnese Peninsula in South Greece. J. Maps 2014, 10, 211–222. [Google Scholar] [CrossRef]
- Yang, W.T.; He, Z.J.; Huang, H.K.; Huang, J.C. A clustering framework to reveal the structural effect mechanisms of natural and social factors on PM2.5 concentrations in China. Sustainability 2021, 13, 1428. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- AssunÇão, R.M.; Neves, M.C.; Câmara, G.; Da Costa Freitas, C. Efficient regionalization techniques for socio-economic geographical units using minimum spanning trees. Int. J. Geogr. Inf. Sci. 2006, 20, 797–811. [Google Scholar] [CrossRef]
- Duque, J.C.; Ramos, R.; Suriñach, J. Supervised regionalization methods: A survey. Int. Reg. Sci. Rev. 2007, 30, 195–220. [Google Scholar] [CrossRef]
- Requia, W.J.; Coull, B.A.; Koutrakis, P. Multivariate spatial patterns of ambient PM2.5 elemental concentrations in eastern Massachusetts. Environ. Pollut. 2019, 252, 1942–1952. [Google Scholar] [CrossRef]
- Lage, J.P.; Assunção, R.M.; Reis, E.A. A minimal spanning tree algorithm applied to spatial cluster analysis. Electron. Notes Discret. Math. 2001, 7, 162–165. [Google Scholar] [CrossRef]
- Van der Horst, T.; Rutten, M.M.; van de Giesen, N.C.; Hanssen, R.F. Monitoring land subsidence in Yangon, Myanmar using Sentinel-1 persistent scatterer interferometry and assessment of driving mechanisms. Remote Sens. Environ. 2018, 217, 101–110. [Google Scholar] [CrossRef]
Category | Year | Spatial Scale | Source |
---|---|---|---|
Annual average subsidence rate | 2003–2010 | 30 m | https://earth.esa.int/ (accessed on 8 December 2021) |
Nighttime satellite images | 2003–2010 | 1 km | http://earthdata.nasa.gov/ (accessed on 8 December 2021) |
Land static load | 2003–2010 | 30 m | http://www.gscloud.cn/ (accessed on 8 December 2021) |
Annual average rainfall | 2003–2010 | 204 blocks (Beijing) | http://www.cma.gov.cn/ (accessed on 8 December 2021) |
Block population | 2003–2010 | 204 blocks (Beijing) | https://www.worldpop.org/ (accessed on 8 December 2021) |
Underground water | 2003–2010 | 204 blocks (Beijing) | http://www.cigem.cgs.gov.cn/ (accessedon 8 December 2021) |
Index | GTWR | GWR | OLS |
---|---|---|---|
AICC | 12,730 | 12,924 | 13,952 |
R2 | 0.672 | 0.524 | 0.062 |
Adjusted R2 | 0.671 | 0.523 | - |
RMSE | 6.681 | 12.355 | 17.344 |
Variable | Descriptive Statistics of Regression Coefficients | ||||
---|---|---|---|---|---|
Min | Max | Mean | Std. | CV | |
Underground water level (m) | −1.682 | 1.188 | 0.106 | 0.486 | 4.585 |
Static load (IBI) | −1.800 | 0.604 | 0.126 | 0.309 | 2.452 |
Annual average rainfall (mm) | −9.720 | 14.401 | −1.361 | 3.089 | −2.270 |
Population (10 thousand) | −0.917 | 1.734 | 0.027 | 0.322 | 11.926 |
Variable | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 |
---|---|---|---|---|---|---|---|---|
Underground water | 0.754 | 0.847 | 0.714 | 0.626 | 0.762 | 0.750 | 0.610 | 0.563 |
IBI | 0.440 | 0.670 | 0.335 | 0.292 | 0.481 | 0.325 | 0.301 | 0.364 |
Rainfall | 0.635 | 0.843 | 0.599 | 0.550 | 0.561 | 0.674 | 0.601 | 0.539 |
Population | 0.274 | 0.727 | 0.255 | 0.248 | 0.261 | 0.302 | 0.330 | 0.360 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Yang, X.; Wu, Q.; Xiao, W.; Yang, W.; Deng, M. Uncovering the Structural Effect Mechanisms of Natural and Social Factors on Land Subsidence: A Case Study in Beijing. Sustainability 2022, 14, 10139. https://doi.org/10.3390/su141610139
Zhao B, Yang X, Wu Q, Xiao W, Yang W, Deng M. Uncovering the Structural Effect Mechanisms of Natural and Social Factors on Land Subsidence: A Case Study in Beijing. Sustainability. 2022; 14(16):10139. https://doi.org/10.3390/su141610139
Chicago/Turabian StyleZhao, Bin, Xuexi Yang, Qianhong Wu, Weifeng Xiao, Wentao Yang, and Min Deng. 2022. "Uncovering the Structural Effect Mechanisms of Natural and Social Factors on Land Subsidence: A Case Study in Beijing" Sustainability 14, no. 16: 10139. https://doi.org/10.3390/su141610139
APA StyleZhao, B., Yang, X., Wu, Q., Xiao, W., Yang, W., & Deng, M. (2022). Uncovering the Structural Effect Mechanisms of Natural and Social Factors on Land Subsidence: A Case Study in Beijing. Sustainability, 14(16), 10139. https://doi.org/10.3390/su141610139