Atmospheric Storm Anomalies Prior to Major Earthquakes in the Japan Region
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data Preparation
3.2. Data Analysis
4. Result and Discussion
4.1. Cross-Correlation Function
4.2. Spatial Survey
4.3. Seismo-Climatic Index
4.4. Upper-Air Vertical Profile
4.5. Volcanic Activity
4.6. Cross-Correlation Function Test
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pulinets, S.A.; Ouzounov, D.; Karelin, A.; Davidenko, D.V. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system. Geomagn. Aeron. 2015, 55, 521–538. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Freund, F.T. Remote Sensing of Atmospheric and Ionospheric Signals Prior to the Mw 8.3 Illapel Earthquake, Chile 2015. Pure Appl. Geophys. 2017, 174, 11–45. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Khosravi, M.; Tavousi, T. Seismic triggering of atmospheric variables prior to the major earthquakes in the Middle East within a 12-year time-period of 2002–2013. Nat. Hazards 2014, 74, 1539–1553. [Google Scholar] [CrossRef]
- Pundhir, D.; Singh, B.; Singh, O.P. Anomalous TEC variations associated with the strong Pakistan-Iran border region earthquake of 16 April 2013 at a low latitude station Agra, India. Adv. Space Res. 2014, 53, 226–232. [Google Scholar] [CrossRef]
- Ondoh, T. Investigation of precursory phenomena in the ionosphere, atmosphere and groundwater before large earthquakes of M > 6.5. Adv. Space Res. 2009, 43, 214–223. [Google Scholar] [CrossRef]
- Fan, W.; McGuire, J.J.; de Groot-Hedlin, C.D.; Hedlin, M.A.H.; Coats, S.; Fiedler, J.W. Stormquakes. Geophys. Res. Lett. 2019, 46, 12909–12918. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D.; Karelin, A.; Davidenko, D.V. Lithosphere-atmosphere-ionosphere-magnetosphere coupling—A concept for pre-earthquake signals generation. In Pre-Earthquake Processes: A Multi-Disciplinary Approach to Earthquake Prediction Studies; American Geophysical Union: Washington, DC, USA; John Wiley& Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 79–98. [Google Scholar]
- Ouzounov, D.; Pulinets, S.; Liu, J.Y.; Hattori, K.; Han, P. Multiparameter Assessment of Pre-Earthquake Atmospheric Signals. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, D., Hattori, K., Taylor, P., Eds.; American Geophysical Union: Washington, DC, USA; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 339–359. [Google Scholar]
- Shah, M.; Jin, S. Pre-seismic ionospheric anomalies of the 2013 Mw = 7.7 Pakistan earthquake from GPS and COSMIC observations. Geod. Geodyn. 2018, 9, 378–387. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Freund, F.T. Examination of a relationship between atmospheric blocking and seismic events in the Middle East using a new seismo-climatic index. Swiss J. Geosci. 2019, 112, 435–451. [Google Scholar] [CrossRef]
- Tariq, M.A.; Shah, M.; Pajares, M.H.; Iqbal, T. Pre-earthquake ionospheric anomalies before three major earthquakes by GPS-TEC and GIM-TEC data during 2015–2017. Adv. Space Res. 2019, 63, 2088–2099. [Google Scholar] [CrossRef]
- Shah, M.; Aibar, A.C.; Tariq, M.A.; Ahmed, J.; Ahmed, A. Possible ionosphere and atmosphere precursory analysis related to Mw > 6.0 earthquakes in Japan. Remote Sens. Environ. 2020, 239, 111620. [Google Scholar] [CrossRef]
- Şentürk, E.; Inyurt, S.; Sertçelik, İ. Ionospheric anomalies associated with Mw 7.3 Iran-Iraq border earthquake and a moderate magnetic storm. Ann. Geophys. Discuss. 2020, 38, 1031–1043. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Freund, F.T. Survey of a relationship between precipitation and major earthquakes along the Peru-Chilean trench (2000–2015). Eur. Phys. J. Spec. Top. 2021, 230, 335–351. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Tavousi, T.; Khosravi, M. Atmospheric blocking anomalies as the synoptic precursors prior to the induced earthquakes; A new climatic conceptual model. Int. J. Environ. Sci. Technol. 2015, 12, 1705–1718. [Google Scholar] [CrossRef]
- Hainzl, S.; Kraft, T.; Wassermann, J.; Igel, H.; Schmedes, E. Evidence for rainfall-triggered earthquake activity. Geophys. Res. Lett. 2006, 33, 1–5. [Google Scholar] [CrossRef]
- Kraft, T.; Wassermann, J.; Schmedes, E.; Igel, H. Meteorological triggering of earthquake swarms at Mt. Hochstaufen, SE-Germany. Tectonophysics 2006, 424, 245–258. [Google Scholar] [CrossRef]
- Husen, S.; Bachmann, C.; Diardini, D. Locally triggered seismicity in the central Swiss Alps following the large rainfall event of August 2005. Geophys. J. Int. 2007, 171, 1126–1134. [Google Scholar] [CrossRef]
- Miller, S.A. Note on rain-triggered earthquakes and their dependence on karst geology. Geophys. J. Int. 2008, 173, 334–338. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Romanov, A.; Romanov, A.; Tsybulya, K.; Davidenko, D.; Kafatos, M.; Taylor, P. Atmosphere-ionosphere response to the M9 Tohoku earthquake revealed by joined satellite and ground observations: Preliminary results. Earthq. Sci. 2011, 24, 557–564. [Google Scholar] [CrossRef]
- Wakita, K. Geology and tectonics of Japanese islands: A review—The key to understanding the geology of Asia. J. Asian Earth Sci. 2013, 72, 75–87. [Google Scholar] [CrossRef]
- Arai, N.; Iwakuni, M.; Watada, S.; Imanishi, Y.; Murayama, T.; Nogami, M. Atmospheric boundary waves excited by the tsunami generation related to the 2011 great Tohoku-Oki earthquake. Geophys. Res. Lett. 2011, 38, L00G18. [Google Scholar] [CrossRef]
- Heki, K. Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 2011, 38, L17312. [Google Scholar] [CrossRef]
- Kakinami, Y.; Kamogawa, M.; Tanioka, Y.; Watanabe, S.; Gusman, A.R.; Liu, J.Y.; Watanabe, Y.; Mogi, T. Tsunamigenic ionospheric hole. Geophys. Res. Lett. 2012, 39, L00G27. [Google Scholar] [CrossRef]
- Ohta, K.; Izutsu, J.; Schekotov, A.; Hayakawa, M. The ULF/ELF electromagnetic radiation before the 11 March 2011 Japanese earthquake. Radio Sci. 2013, 48, 589–596. [Google Scholar] [CrossRef]
- Hayakawa, M. Seismo-ionospheric perturbations, and the precursors to the 2011 Japan earthquake. In Proceedings of the 2014 International Symposium on Electromagnetic Compatibility, Tokyo (EMC’14/Tokyo), Tokyo, Japan, 13–16 May 2014; pp. 155–158. [Google Scholar]
- Hayakawa, M. Earthquake Precursor Studies in Japan. In Pre-Earthquake Processes: A Multi-Disciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Ouzounov, D.; Liu, D.; Chunli, K.; Cervone, G.; Kafatos, M.; Taylor, P. Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophys 2007, 431, 211–220. [Google Scholar] [CrossRef]
- Jiao, Z.H.; Zhao, J.; Shan, X. Pre-seismic anomalies from optical satellite observations: A review. Nat. Hazards Earth Syst. Sci. 2018, 18, 1013–1036. [Google Scholar] [CrossRef]
- Freund, F.T.; Kulahci, I.G.; Cyr, G.; Ling, J.; Winnick, M.; Tregloan-Reed, J.; Freund, M.M. Air ionization at rock surfaces and pre-earthquake signals. J. Atmos. Sol. Terr. Phys. 2009, 71, 1824–1834. [Google Scholar] [CrossRef]
- Freund, F.T. Earthquake Forewarning—A Multidisciplinary Challenge from the Ground up to Space. Acta Geophys. 2013, 61, 775–807. [Google Scholar] [CrossRef]
- Qin, K.; Zheng, S.; Wu, L.; Wang, Y. Quasi-synchronous multi-parameter anomalies before Wenchuan and Yushu earthquakes in China. Eur. Phys. J. Spec. Top. 2021, 230, 263–274. [Google Scholar] [CrossRef]
- Costain, J.K.; Bollinger, G.A.; Speer, J.A. Hydroseismicity—A hypothesis for the role of water in the generation of intraplate seismicity. Geology 1987, 15, 618–621. [Google Scholar] [CrossRef]
- Costain, J.K. Groundwater recharge as the trigger of naturally occurring intraplate earthquakes. Geol. Soc. Spec. Publ. 2017, 432, 91–118. [Google Scholar] [CrossRef]
- Kodaira, S.; Iidaka, T.; Kato, A.; Park, J.O.; Iwasaki, T.; Kaneda, Y. High pore fluid pressure may cause silent slip in the Nankai Trough. Science 2004, 304, 1295–1298. [Google Scholar] [CrossRef] [PubMed]
- Prejean, S.G.; Hill, D.P.; Brodsky, E.E.; Hough, S.E.; Johnston, M.J.S.; Malone, S.D.; Oppenheimer, D.H.; Pitt, A.M.; Richards-Dinger, K.B. Remotely triggered seismicity on the United States west coast following the Mw 7.9 Denali Fault earthquake. Bull. Seismol. Soc. Am. 2014, 94, S348–S359. [Google Scholar] [CrossRef]
- Farquharson, J.I.; Amelung, F. Extreme rainfall triggered the 2018 rift eruption at Kīlauea Volcano. Nature 2020, 580, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Parrot, M.; Tramutoli, V.; Liu, T.J.Y.; Pulinets, S.; Ouzounov, D.; Genzano, N.; Lisi, M.; Hattori, K.; Namgaladze, A. Atmospheric and ionospheric coupling phenomena associated with large earthquakes. Eur. Phys. J. Spec. Top. 2021, 230, 197–225. [Google Scholar] [CrossRef]
- Freund, F.T.; Freund, M.M. Paradox of Peroxy Defects and Positive Holes in Rocks Part I: Effect of Temperature. J. Asian Earth Sci. 2015, 114, 373–383. [Google Scholar] [CrossRef]
- Dobrovolsky, I.P.; Zubkov, S.I.; Myachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- USGS. Earthquake Archive Data. Online Catalog of United States Geological Survey. Available online: https://www.usgs.gov/natural-hazards/earthquake-hazards/earthquakes (accessed on 15 December 2019).
- Marchitelli, V.; Harabaglia, P.; Troise, C.; De Natale, G. On the correlation between solar activity and large earthquakes worldwide. Sci. Rep. 2020, 10, 11495. [Google Scholar] [CrossRef]
- Rhea, S.; Tarr, A.C.; Hayes, G.; Villaseñor, A.; Benz, H. Seismicity of the Earth 1900–2007, Japan and Vicinity; Open-File Report 2010–1083-D; U.S. Geological Survey: Reston, VA, USA, 2010.
- Galway, J.G. The lifted index as a predictor of latent instability. Bull. Am. Meteorol. Soc. 1956, 37, 528–529. [Google Scholar] [CrossRef]
- Showalter, A.K. A stability index for thunderstorm forecasting. Bull. Am. Meteorol. Soc. 1953, 34, 250–252. [Google Scholar] [CrossRef]
- Bidner, A. The Air Force Global Weather Central severe weather threat (SWEAT) index—A preliminary report. Air Weather Serv. Sci. Rev. 1970, 3, 105–162. [Google Scholar]
- Miller, R.C. Notes on the Analysis of Severe Storm Forecasting Procedures of The Air Force Global Weather Center; AFGWC Technical Report 200 (Rev.); Air Weather Service, Scott AFB: St. Clair, IL, USA, 1972. [Google Scholar]
- Sioutas, M.V.; Flocas, H.A. Hailstorms in Northern Greece: Synoptic patterns and thermodynamic environment. Theor. Appl. Climatol. 2003, 75, 189–202. [Google Scholar] [CrossRef]
- University of Wyoming. Upper-Atmosphere Sounding Database. Available online: https://weather.uwyo.edu/upperair/sounding.html (accessed on 15 December 2019).
- JMA. Radiosonde Network in Japan Archived by Japan Meteorological Agency. Available online: https://www.jma.go.jp/jma/en/Activities/upper/upper.html (accessed on 15 December 2019).
- APDRC. Tropical Rainfall Measurement Mission (TRMM) Project Archived by Asia Pacific Data Research Center. Available online: https://apdrc.soest.hawaii.edu/las/getUI.do (accessed on 15 December 2019).
- GIOVANNI. Precipitation Data Archived by the 4th Version of the Geospatial Interactive Online Visualization and Analysis Infrastructure Program. Available online: https://giovanni.gsfc.nasa.gov/giovanni (accessed on 20 January 2020).
- NOAA. Daily Reanalysis Database of NOAA/Physical Science Laboratory. Available online: https://www.esrl.noaa.gov/psd/data/composites/day (accessed on 20 January 2020).
- NMNH. Volcanic Eruptions Data Archived by National Museum of Natural History in New York. Available online: https://volcano.si.edu/search_eruption.cfm (accessed on 10 April 2020).
- JMA. National Catalog of Active Volcanoes in Japan. Edited by Japan Meteorological Agency and Volcanological Society of Japan. Available online: https://www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/souran_eng/menu.htm (accessed on 10 April 2020).
- Straile, D.; Eckmann, R.; Juengling, T.; Thomas, G.; Loeffler, H. Influence of climate variability on whitefish (Coregonus lavaretus) year-class strength in a deep, warm monomictic lake. Oecologia 2007, 151, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Greenstreet, S.P.R.; Rogers, S.I.; Rice, J.C.; Piet, G.J.; Guirey, E.J.; Fraser, H.M.; Fryer, R.J. Development of the EcoQO for the North Sea fish community. ICES J. Mar. Sci. 2011, 68, 1–11. [Google Scholar] [CrossRef]
- Gröger, J.P.; Fogarty, M.J. Broad-scale climate influences on cod (Gadus morhua) recruitment on Georges Bank. ICES J. Mar. Sci. 2011, 68, 592–602. [Google Scholar] [CrossRef]
- Shephard, S.; Reid, D.G.; Greenstreet, S.P.R. Interpreting the large fish indicator for the Celtic Sea. ICES J. Mar. Sci. 2011, 68, 1963–1972. [Google Scholar] [CrossRef]
- Probst, W.N.; Stelzenmüller, V.; Ove Fock, H. Using cross-correlations to assess the relationship between time-lagged pressure and state indicators: An exemplary analysis of North Sea fish population indicators. ICES J. Mar. Sci. 2012, 69, 670–681. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, Z.; Zhou, B.; Zhou, S. Lightning potential forecast over Nanjing with denoised sounding-derived indices based on SSA and CS-BP neural network. Atmos. Res. 2014, 137, 245–256. [Google Scholar] [CrossRef]
- Bauman, W.H.; Wheeler, M.M.; Short, D.A. Severe weather forecast decision aid. In NASA Technical Reports Server; NASA/CR-2005-212563; US Government: Washington, DC, USA, 2005. [Google Scholar]
- Mahmoudzadeh, A.; Daneshvar, M.R.M. Verification of Increased Intensity and Frequency of Earthquakes after the Climatic Anomalies in Jan 2020; Technical Report; Shakhes Pajouh Research Institute: Isfahan, Iran, 2020; (In Persian). [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; Marchetti, D. Developing a fuzzy inference system based on multi-sensor data to predict powerful earthquake parameters. Remote. Sens. 2022, 14, 3203. [Google Scholar] [CrossRef]
- Siedlecki, M. Selected instability indices in Europe. Theor. Appl. Climatol. 2009, 96, 85–94. [Google Scholar] [CrossRef]
- Wasula, A.C.; Bosart, L.F.; Lapenta, K.D. The Influence of Terrain on the severe weather distribution across interior eastern New York and Western New England. Water. Forecast. 2002, 17, 1277–1289. [Google Scholar] [CrossRef]
- Derubertis, D. Recent trends in four common stability indices derived from U.S. radiosonde observations. J. Clim. 2006, 19, 309–323. [Google Scholar] [CrossRef]
- Miller, P.W.; Mote, T.L. Characterizing severe weather potential in synoptically weakly forced thunderstorm environments. Nat. Hazards Earth Syst. Sci. 2018, 18, 1261–1277. [Google Scholar] [CrossRef]
- Abshaev, M.T.; Abshaev, A.M.; Mikhailovskiy, Y.P.; Sinkevich, A.A.; Popov, V.B.; Adzhiev, A.K. Characteristics of the Supercell Cb Thunderstorm and Electrical Discharges on 19 August 2015, North Caucasus: A Case Study. 2019. Available online: https://www.preprints.org/manuscript/201912.0033/v1 (accessed on 30 June 2022).
- Gregori, G.; Poscolieri, M.; Paparo, G.; De Simone, S.; Rafanelli, C.; Ventrice, G. Storms of crustal stress and AE earthquake precursors. Nat. Hazards Earth Syst. Sci. 2010, 10, 319–337. [Google Scholar] [CrossRef]
- Takeuchi, A.; Lau, B.W.S.; Freund, F.T. Current and surface potential induced by stress-activated positive holes in igneous rocks. Phys. Chem. Earth A B C 2006, 31, 240–247. [Google Scholar] [CrossRef]
- Takeuchi, A.; Nagao, T. Activation of hole charge carriers and generation of electromotive force in gabbro blocks subjected to nonuniform loading. J. Geophys. Res. Solid. Earth 2013, 118, 915–925. [Google Scholar] [CrossRef]
- Freund, F.T.; Hoenig, S.A.; Braun, A.; Dahlgren, R.P.; Momayez, M.; Chu, J.J. Softening Rocks with Stress-Activated Electric Current. 5th International Symposium on In-Situ Rock Stress (ISRSV); Francis and Taylor Publ.: Abingdon, UK, 2010; pp. 838–843. [Google Scholar]
- Iaffaldano, G.; Husson, L.; Bunge, H.P. Monsoon speeds up Indian plate motion. Earth Planet. Sci. Lett. 2011, 304, 503–510. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D. Lithosphere-atmosphere-ionosphere coupling (LAIC) model: An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D.; Karelin, A.V.; Boyarchuk, K.A.; Pokhmelnykh, L.A. The physical nature of thermal anomalies observed before strong earthquakes. Phys. Chem. Earth 2006, 31, 143–153. [Google Scholar] [CrossRef]
- Namgaladze, A.; Klimenko, M.V.V.; Klimenko, V.; Zakharenkova, I.E. Physical mechanism and mathematical modeling of earthquake ionospheric precursors registered in total electron content. Geomagn. Aeron. 2009, 49, 252–262. [Google Scholar] [CrossRef]
- Hayakawa, M.; Schekotov, A.; Izutsu, J.; Yang, S.S.; Solovieva, M.; Hobara, Y. Multi-parameter observations of seismogenic phenomena related to the Tokyo earthquake (M = 5.9) on 7 October 2021. Geosciences 2022, 12, 265. [Google Scholar] [CrossRef]
- Kelly, M.C. (Ed.) Atmospheric electricity. In The Earth’s Electric Field; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 29–52. [Google Scholar]
- Freund, F.T.; Ouillon, G.; Scoville, J.; Sornette, D. Earthquake precursors in the light of peroxy defects theory: Critical review of systematic observations. Eur. Phys. J. Spec. Top. 2021, 230, 7–46. [Google Scholar] [CrossRef]
- Satti, M.S.; Ehsan, M.; Abbas, A.; Shah, M.; de Oliveira-Júnior, J.F.; Naqvi, N.A. Atmospheric and ionospheric precursors associated with Mw ≥ 6.5 earthquakes from multiple satellites. J. Atmos. Sol. Terr. Phys. 2022, 227, 105802. [Google Scholar] [CrossRef]
- Pulinets, S.A. The synergy of earthquake precursors. Earthq. Sci. 2011, 24, 535–548. [Google Scholar] [CrossRef]
- Liperovsky, V.A.; Meister, C.V.; Liperovskaya, E.V.; Davidov, V.F.; Bogdanov, V.V. On the possible influence of radon and aerosol injection on the atmosphere and ionosphere before earthquakes. Nat. Hazards Earth Syst. Sci. 2005, 5, 783–789. [Google Scholar] [CrossRef]
- Zhang, K.; Feichter, J.; Kazil, J.; Wan, H.; Zhuo, W.; Griffiths, A.D.; Sartorius, H.; Zahorowski, W.; Ramonet, M.; Schmidt, M.; et al. Radon activity in the lower troposphere and its impact on ionization rate: A global estimate using different radon emissions. Atmos. Chem. Phys. 2011, 11, 7817–7838. [Google Scholar] [CrossRef]
- Brothelande, E.; Amelung, F.; Yunjun, Z.; Wdowinski, S. Geodetic evidence for interconnectivity between Aira and Kirishima magmatic systems, Japan. Sci. Rep. 2018, 8, 9811. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Yamasato, H. The 2011 eruptive activity of Shinmoedake volcano, Kirishimayama, Kyushu, Japan—Overview of activity and Volcanic Alert Level of the Japan Meteorological Agency. Earth Planets Space 2013, 65, 489–504. [Google Scholar] [CrossRef]
- Shinohara, M.; Ichihara, M.; Sakai, S.; Yamada, T.; Takeo, M.; Sugioka, H.; Nagaoka, Y.; Takagi, A.; Morishita, T.; Ono, T.; et al. Continuous seismic monitoring of Nishinoshima volcano, Izu-Ogasawara, by using long-term ocean bottom seismometers. Earth Planets Space 2017, 69, 159. [Google Scholar] [CrossRef]
- Maeno, F.; Nakada, S.; Kaneko, T. Morphological evolution of a new volcanic islet sustained by compound lava flows. Geology 2016, 44, 259–262. [Google Scholar] [CrossRef]
- Kaneko, T.; Maeno, F.; Yasuda, A.; Takeo, M.; Takasaki, K. The 2017 Nishinoshima eruption: Combined analysis using Himawari-8 and multiple high-resolution satellite images. Earth Planets Space 2019, 71, 140. [Google Scholar] [CrossRef]
No. | Earthquake Date | Location Name | M | Latitude and Longitude | 1° × 1° Pixel of Spatial Coordination |
---|---|---|---|---|---|
1 | 9 May 2017 | Hirara | 6.0 | 24.450° N, 126.317° E | 24–25° N, 126–127° E |
2 | 26 July 2017 | Naze | 6.0 | 26.898° N, 130.184° E | 26–27° N, 130–131° E |
3 | 7 September 2017 | Chichi-Shima | 6.1 | 27.783° N, 139.804° E | 27–28° N, 139–140° E |
4 | 20 September 2017 | Kamaishi | 6.1 | 37.981° N, 144.660° E | 37–38° N, 144–145° E |
5 | 6 October 2017 | Ishinomaki | 6.2 | 37.503° N, 144.020° E | 37–38° N, 144–145° E |
6 | 9 November 2017 | Hachijo-Jima | 6.0 | 32.521° N, 141.438° E | 32–33° N, 141–142° E |
No. | Earthquake Date | Selected Storm Episode (Date) | Preceding Time Interval (Day) | Seismicity before Storm Event | Seismicity after Storm Event | Seismo-Climatic Index | ||||
---|---|---|---|---|---|---|---|---|---|---|
Earthquake Frequency | Mean Magnitude | Max. Magnitude | Earthquake Frequency | Mean Magnitude | Max. Magnitude | |||||
1 | 9 May 2017 | 25–26 April 2017 | 13–14 | 29 | 4.54 | 5.2 | 43 | 4.52 | 6 | 1.70 |
2 | 26 July 2017 | 18–19 July 2017 | 7–8 | 28 | 4.37 | 5.2 | 33 | 4.59 | 6 | 1.43 |
3 | 7 September 2017 | 30–31 August 2017 | 7–8 | 16 | 4.47 | 4.8 | 31 | 4.64 | 6.1 | 2.56 |
4 | 20 September 2017 | 16–17 September 2017 | 3–4 | 7 | 4.3 | 4.6 | 18 | 4.68 | 6.1 | 3.71 |
5 | 6 October 2017 | 27–28 September 2017 | 7–8 | 26 | 4.48 | 5.8 | 33 | 4.64 | 6.2 | 1.41 |
6 | 9 November 2017 | 28–29 October 2017 | 13–14 | 39 | 4.54 | 5.9 | 46 | 4.55 | 6 | 1.20 |
- | Mean | - | 24 | 4.45 | 5.3 | 34 | 4.60 | 6.1 | 2.00 |
No. | Selected Storm Episode (Date) | Variables before Storm Event | Variables after Storm Event | Gradient Values (Δ) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Accumulated Precipitation (mm) | SWEAT Index (Unit-Less) | Wind Speed (Knot) | Accumulated Precipitation (mm) | SWEAT Index (Unit-Less) | Wind Speed (Knot) | Accumulated Precipitation (%) | SWEAT Index (%) | Wind Speed (%) | ||
1 | 25–26 April 2017 | 41.4 | 117 | 9.6 | 60.3 | 143 | 10.9 | 46 | 22 | 14 |
2 | 18–19 July 2017 | 10.7 | 211 | 6.7 | 31.4 | 241 | 7.3 | 193 | 14 | 9 |
3 | 30–31 August 2017 | 13.6 | 220 | 8.5 | 104.3 | 267 | 11.9 | 667 | 21 | 40 |
4 | 16–17 September 2017 | 19.4 | 202 | 11.8 | 67.1 | 295 | 14.4 | 246 | 46 | 22 |
5 | 27–28 September 2017 | 18.7 | 185 | 9.4 | 21.1 | 263 | 9.9 | 13 | 42 | 5 |
6 | 28–29 October 2017 | 98.7 | 186 | 12.1 | 111.2 | 188 | 13.1 | 13 | 1 | 8 |
- | Mean | 33.8 | 187 | 9.7 | 65.9 | 233 | 11.3 | 95 | 25 | 16 |
Date (Month) | SWEAT Index | Accumulated Precipitation (mm) | EQ Freq. | EQ Max. | ||
---|---|---|---|---|---|---|
Hachijojima | Kagoshima | Hachijojima | Kagoshima | |||
Jan | 160 | 157 | 125 | 72 | 84 | 5.4 |
Feb | 175 | 152 | 88 | 67 | 85 | 5.7 |
Mar | 155 | 149 | 153 | 178 | 91 | 5.7 |
Apr | 145 | 193 | 140 | 195 | 77 | 5.7 |
May | 138 | 140 | 72 | 79 | 78 | 6.0 |
Jun | 230 | 220 | 121 | 217 | 96 | 5.5 |
Jul | 198 | 254 | 46 | 55 | 117 | 6.0 |
Aug | 224 | 256 | 127 | 188 | 79 | 5.7 |
Sep | 251 | 246 | 228 | 250 | 94 | 6.1 |
Oct | 243 | 227 | 276 | 192 | 95 | 6.2 |
Nov | 195 | 159 | 122 | 136 | 93 | 6.0 |
Dec | 157 | 158 | 53 | 51 | 100 | 5.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freund, F.T.; Mansouri Daneshvar, M.R.; Ebrahimi, M. Atmospheric Storm Anomalies Prior to Major Earthquakes in the Japan Region. Sustainability 2022, 14, 10241. https://doi.org/10.3390/su141610241
Freund FT, Mansouri Daneshvar MR, Ebrahimi M. Atmospheric Storm Anomalies Prior to Major Earthquakes in the Japan Region. Sustainability. 2022; 14(16):10241. https://doi.org/10.3390/su141610241
Chicago/Turabian StyleFreund, Friedemann T., Mohammad Reza Mansouri Daneshvar, and Majid Ebrahimi. 2022. "Atmospheric Storm Anomalies Prior to Major Earthquakes in the Japan Region" Sustainability 14, no. 16: 10241. https://doi.org/10.3390/su141610241
APA StyleFreund, F. T., Mansouri Daneshvar, M. R., & Ebrahimi, M. (2022). Atmospheric Storm Anomalies Prior to Major Earthquakes in the Japan Region. Sustainability, 14(16), 10241. https://doi.org/10.3390/su141610241