The Role of Renewable Energies, Storage and Sector-Coupling Technologies in the German Energy Sector under Different CO2 Emission Restrictions
Abstract
:1. Introduction
2. Technologies
2.1. Renewable Power Plants
2.1.1. Wind
2.1.2. Photovoltaic
2.1.3. Biomass
2.2. Sector-Coupling Technologies
2.2.1. Electrolysers
2.2.2. Heat Pumps
2.3. Storage
2.3.1. The Role of Storage Systems in the Energy Transition
2.3.2. Hydrogen Storage
2.3.3. Heat Storage
2.3.4. Battery Storage
2.3.5. Pumped Hydro Storage
3. Methods
3.1. Model
3.1.1. Electricity Sector
3.1.2. Heating Sector
3.1.3. Hydrogen Sector
3.2. Optimisation Function and Constraints
3.3. Costs
3.3.1. Marginal Cost
3.3.2. Capital Cost
3.4. CO2 Scenarios
4. Results and Discussion
5. Limitations and Boundaries
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Carbon dioxide | |
EEG | German Renewable Energy Sources Act |
ESSs | Energy storage systems |
GHG | Greenhouse gas |
Hydrogen | |
HP | Heat pumps |
IRENA | International Renewable Energy Agency |
LSBs | Large-scale batteries |
P2H | Power-to-heat |
P2H2 | Power-to-hydrogen |
PHS | Pumped hydro storage |
PV | Photovoltaic |
PyPSA | Python for power system analysis |
RE | Renewable energy |
TES | Thermal energy storage |
Appendix A
Generators Type | Installed Capacity (MW) | Marginal Cost (EUR/MWh) | Efficiency | Capital Cost 1 (EUR/MW) | Lifetime |
---|---|---|---|---|---|
Solar | 131,000 [40] | 0 | 1 | 718,000 [41] | 27 [41] |
Offshore Wind | 28,000 [40] | 0 | 1 | 2,937,000 [41] | 20 [41] |
Onshore Wind | 102,000 [40] | 0 | 1 | 1,366,000 [41] | 25 [41] |
Biomass | 8200 [40] | 120 | 0.25 [54] | - | - |
Hydro-power | 4800 [40] | 0.9 [55] | - | 80 [55] | |
Lignite Coal | 20,900 [40] | 5.1 | 0.39 [41] | - | - |
Hard Coal | 22,600 [40] | 31 | 0.42 [41] | - | - |
Natural gas | 29,900 [40] | 39 | 0.59 [41] | - | - |
Oil | 4400 [40] | 137.8 | 0.37 [56] | - | - |
Steam reforming | 2250 | 27.7 | 0.83 | 300,000 [46] | 30 [46] |
Heat boiler oil | 11,500 [57] | 54.3 | 0.94 [41] | 457,000 [58] | 20 [41] |
Heat boiler gas | 58,000 [57] | 23.5 | 0.98 [41] | 387,000 [58] | 20 [41] |
Storage Type | Capacity (GWh) | Maximum Possible Capacity (GWh) | Capital Cost (EUR/MWh) | Life Time (Years) | Standing Losses/Day | Standing Losses/Hour |
---|---|---|---|---|---|---|
Battery | 26.1 [59] | - | 225,000 [60] | 15 [41] | 2% | 0.0833% |
Hydro | 8000 [61] | - | 102,000 [30] | 80 [62] | 0.02% [62] | 0.0008% |
Hydrogen | 0 * | 26,500 [63] | 6000 [30] | 30 [41] | 2% [63] | 0.083% |
Heat | 54 [34] | - | 1945 [34] | 20 [34] | - | 0.0012% [34] |
Fuel | Price (EUR/) [42] | Emission Factor (Tons of / ) [41] |
---|---|---|
Coal | 13 | 0.34 |
Lignite | 2 | 0.4 |
Natural gas | 23 | 0.2 |
Oil | 51 | 0.28 |
Biomass | 15 | 0 |
Name | Efficiency | Capacity in (GW) | Capital Cost (EUR/MW) |
---|---|---|---|
Battery discharging | 0.872 [59] | Same as Storage capacity [59] | 23,750 [60] |
Hydro charging | 0.792 [30] | 7.7 [64] | - |
Hydro discharging | 0.8 [64] | 7.7 [64] | - |
Hydrogen charging | 0.98 [31] | 0 | 128,000 [65] |
Hydrogen discharging | 0.98 [31] | 0 | 41,121 [65] |
Heat pump | 1.84 [43] | 35 [43] | 450,000 [41] |
Heat storage charging | 0.989 [32] | 54 [22] | 2 [32] |
Heat storage discharging | 0.989 [32] | 54 [22] | 2 [32] |
Electrolyser | 0.71 [46] | 5 [24] | 1,137,000 [46] |
Appendix B
References
- United Nations. United Nations Framework Convention on Climate Change. Available online: https://unfccc.int/files/essential_background/background_publications_htmlpdf/application/pdf/conveng.pdf (accessed on 5 April 2022).
- European Council. 2030 Climate and Energy Policy Framework. Available online: https://data.consilium.europa.eu/doc/document/ST-169-2014-INIT/en/pdf (accessed on 5 April 2022).
- United Nations. Paris Agreement. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 5 April 2022).
- European Commission. 2030 Climate & Energy Framework. Available online: https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2030-climate-energy-framework_en (accessed on 5 April 2022).
- Agora Energiewende. Energiewende 2030: The Big Picture; Megatrends, Targets, Strategies and a 10-Point Agenda for the Second Phase of Germany’s Energy Transition. Available online: https://static.agora-energiewende.de/fileadmin/Projekte/2017/Big_Picture/134_Big-Picture_EN_WEB.pdf (accessed on 5 April 2022).
- Sterner, M.; Specht, M. Power-to-Gas and Power-to-X—The history and results of developing a new storage concept. Energies 2021, 14, 6594. [Google Scholar] [CrossRef]
- Bird, L.; Cochran, J.; Wang, X. Wind and Solar Energy Curtailment: Experience and Practices in the United States; Technical Report for National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2014. [CrossRef] [Green Version]
- Bundesnetzagentur, Bundeskartellamt. Key Findings and Summary—Monitoring Report 2021. Available online: https://www.bundesnetzagentur.de/SharedDocs/Downloads/EN/Areas/ElectricityGas/CollectionCompanySpecificData/Monitoring/KernaussagenEng_MB2021.pdf;jsessionid=9B83F68F32A9F089AD680F193CC2DB4B?__blob=publicationFile&v=2 (accessed on 5 April 2022).
- Bundesnetzagentur, Bundeskartellamt. Key Findings and Summary—Monitoring Report 2020. Available online: https://www.bundesnetzagentur.de/SharedDocs/Downloads/EN/Areas/ElectricityGas/CollectionCompanySpecificData/Monitoring/KernaussagenEng_MB2020.pdf;jsessionid=9B83F68F32A9F089AD680F193CC2DB4B?__blob=publicationFile&v=2 (accessed on 5 April 2022).
- Robinius, M.; Otto, A.; Heuser, P.; Welder, L.; Syranidis, K.; Ryberg, D.; Grube, T.; Markewitz, P.; Peters, R.; Stolten, D. Linking the power and transport sectors—Part 1: The principle of sector coupling. Energies 2017, 10, 956. [Google Scholar] [CrossRef] [Green Version]
- Palzer, A.; Henning, H.M. A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part II: Results. Renew. Sustain. Energy Rev. 2014, 30, 1019–1034. [Google Scholar] [CrossRef]
- Henning, H.M.; Palzer, A. A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part I: Methodology. Renew. Sustain. Energy Rev. 2014, 30, 1003–1018. [Google Scholar] [CrossRef]
- Abdur Rehman, O.; Palomba, V.; Frazzica, A.; Cabeza, L.F. Enabling technologies for sector coupling: A review on the role of heat pumps and thermal energy storage. Energies 2021, 14, 8195. [Google Scholar] [CrossRef]
- Bashir, A.A.; Lund, A.; Pourakbari-Kasmaei, M.; Lehtonen, M. Optimizing power and heat sector coupling for the implementation of carbon-free communities. Energies 2021, 14, 1911. [Google Scholar] [CrossRef]
- Robinius, M.; Otto, A.; Syranidis, K.; Ryberg, D.S.; Heuser, P.; Welder, L.; Grube, T.; Markewitz, P.; Tietze, V.; Stolten, D. Linking the power and transport sectors—Part 2: Modelling a sector coupling scenario for Germany. Energies 2017, 10, 957. [Google Scholar] [CrossRef] [Green Version]
- Traber, T.; Hegner, F.S.; Fell, H.J. An economically viable 100% renewable energy system for all energy sectors of Germany in 2030. Energies 2021, 14, 5230. [Google Scholar] [CrossRef]
- Sharma, R.; Dhillon, J. PyPSA: Open source Python tool for Load flow Study. J. Phys. Conf. Ser. 2021, 1854, 012036. [Google Scholar] [CrossRef]
- Brown, T.; Hörsch, J.; Schlachtberger, D. Python for power system analysis (PyPSA): Free software for Planning energy systems with high shares of renewables. In Proceedings of the 1st International Conference on Large-Scale Grid Integration of Renewable Energy in India, New Delhi, India, 6–8 September 2017. [Google Scholar]
- Victoria, M.; Zhu, K.; Brown, T.; Andresen, G.B.; Greiner, M. The role of photovoltaics in a sustainable European energy system under variable CO2 emissions targets, transmission capacities, and costs assumptions. Prog. Photovoltaics Res. Appl. 2020, 28, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Frysztacki, M.; Brown, T. Modeling Curtailment in Germany: How Spatial Resolution Impacts Line Congestion. In Proceedings of the 2020 17th International Conference on the European Energy Market (EEM), Stockholm, Sweden, 16–18 September 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Umweltbundesamt. Erneuerbare Energien in Deutschland. Daten zur Entwicklung im Jahr 2021; Umweltbundesamt: Dessau-Roßlau, Germany, 2022.
- International Energy Agency. Germany 2020—Energy Policy Review. 2020. Available online: https://iea.blob.core.windows.net/assets/60434f12-7891-4469-b3e4-1e82ff898212/Germany_2020_Energy_Policy_Review.pdf (accessed on 5 April 2022).
- Kazim, A.; Veziroglu, T. Utilization of solar–hydrogen energy in the UAE to maintain its share in the world energy market for the 21st century. Renew. Energy 2001, 24, 259–274. [Google Scholar] [CrossRef]
- Federal Ministry for Economic Affairs and Energy. The National Hydrogen Strategy. Available online: https://www.bmwi.de/Redaktion/EN/Publikationen/Energie/the-national-hydrogen-strategy.pdf?__blob=publicationFile&v=6 (accessed on 5 April 2022).
- Shiva Kumar, S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Agora Energiewende. Wärmewende 2030. Schlüsseltechnologien zur Erreichung der Mittelund Langfristigen Klimaschutzziele im Gebäudesektor. Available online: https://static.agora-energiewende.de/fileadmin/Projekte/2016/Sektoruebergreifende_EW/Waermewende-2030_WEB.pdf (accessed on 5 April 2022).
- Rahman, M.M.; Oni, A.O.; Gemechu, E.; Kumar, A. Assessment of energy storage technologies: A review. Energy Convers. Manag. 2020, 223, 113295. [Google Scholar] [CrossRef]
- Kalair, A.; Abas, N.; Saleem, M.S.; Kalair, A.R.; Khan, N. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 2021, 3, e135. [Google Scholar] [CrossRef] [Green Version]
- Denholm, P. Energy storage to reduce renewable energy curtailment. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Klumpp, F. Comparison of pumped hydro, hydrogen storage and compressed air energy storage for integrating high shares of renewable energies—Potential, cost-comparison and ranking. J. Energy Storage 2016, 8, 119–128. [Google Scholar] [CrossRef]
- Elberry, A.M.; Thakur, J.; Santasalo-Aarnio, A.; Larmi, M. Large-scale compressed hydrogen storage as part of renewable electricity storage systems. Int. J. Hydrog. Energy 2021, 46, 15671–15690. [Google Scholar] [CrossRef]
- Bott, C.; Dressel, I.; Bayer, P. State-of-technology review of water-based closed seasonal thermal energy storage systems. Renew. Sustain. Energy Rev. 2019, 113, 109241. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. A comprehensive review of thermal energy storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- International Renewable Energy Agency. Innovation Outlook: Thermal Energy Storage. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Nov/IRENA_Innovation_Outlook_TES_2020.pdf (accessed on 5 April 2022).
- Hesse, H.C.; Schimpe, M.; Kucevic, D.; Jossen, A. Lithium-ion battery storage for the grid—A review of stationary battery storage system design tailored for applications in modern power grids. Energies 2017, 10, 2107. [Google Scholar] [CrossRef] [Green Version]
- Kübler, M.; Völler, J.; Simolka, M.; Beilfuß, A. German Experiences with Large-Scale Batteries German Experiences with Large-Scale Batteries, a Study in the Context of German-Turkish-Cooperation in the Energy Sector. A Regulatory Framework and Business Models. 2020. Available online: https://www.dena.de/fileadmin/user_upload/200716_short_study_Large_scale_batteries_dena_final.pdf (accessed on 5 April 2022).
- Hiesl, A.; Ajanovic, A.; Haas, R. On current and future economics of electricity storage. Greenh. Gases Sci. Technol. 2020, 10, 1176–1192. [Google Scholar] [CrossRef]
- Wessel, M.; Madlener, R.; Hilgers, C. Economic feasibility of semi-underground pumped storage hydropower plants in open-pit mines. Energies 2020, 13, 4178. [Google Scholar] [CrossRef]
- Wiese, F.; Schlecht, I.; Bunke, W.D.; Gerbaulet, C.; Hirth, L.; Jahn, M.; Kunz, F.; Lorenz, C.; Mühlenpfordt, J.; Reimann, J.; et al. Open power system Data–Frictionless data for electricity system modelling. Appl. Energy 2019, 236, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Michalski, J.; Altmann, M.; Bünger, U.; Weindorf, W. Wasserstoffstudie Nordrhein-Westfalen. 2019. Available online: https://www.wirtschaft.nrw/sites/default/files/asset/document/bericht_wasserstoffstudie_nrw-2019-04-09_komp.pdf (accessed on 5 April 2022).
- Sterchele, P.; Brandes, J.; Heilig, J.; Wrede, D.; Kost, C.; Schlegl, T.; Bett, A.; Henning, H.M. Wege zu Einem Klimaneutralen Energiesystem: Die Deutsche Energiewende im Kontext Gesellschaftlicher Verhaltensweisen. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Fraunhofer-ISE-Studie-Wege-zu-einem-klimaneutralen-Energiesystem.pdf (accessed on 5 April 2022).
- Ripplel, K.; Wiede, T.; Meinecke, M.; König, R. Netzentwicklungsplan Strom 2030: Zweiter Entwurf der Übertragungsnetzbetreiber. Available online: https://www.netzentwicklungsplan.de/sites/default/files/paragraphs-files/NEP_2030_V2019_2_Entwurf_Teil1.pdf (accessed on 5 April 2022).
- Agora Energiewende. Heat Transition 2030: Key Technologies for Reaching the Intermediate and Long-Term Climate Targets in the Building Sector. Available online: https://www.agora-energiewende.de/fileadmin/Projekte/2016/Sektoruebergreifende_EW/Heat-Transition-2030_Summary-WEB.pdf (accessed on 5 April 2022).
- Bernath, C.; Deac, G.; Sensfuss, F. Influence of heat pumps on renewable electricity integration: Germany in a European context. Energy Strategy Rev. 2019, 26, 100389. [Google Scholar] [CrossRef]
- Ruhnau, O. Heat, Wind, and Sun the Impacts of Electricity-Heat Sector Coupling on the Power System Integration of Variable Renewable Energy Sources. Master’s Thesis, Fakultät für Wirtschaftswissenschaften an der RWTH Aachen, Aachen, Germany, 2017. [Google Scholar]
- Kreidelmeyer, S.; Dambeck, H.; Almut, K.; Wünsch, M. Kosten und Transformationspfade für Strombasierte Energieträger. Available online: https://www.bmwi.de/Redaktion/DE/Downloads/Studien/transformationspfade-fuer-strombasierte-energietraeger.pdf?__blob=publicationFile (accessed on 5 April 2022).
- Harrison, K.W.; Remick, R.; Martin, G.D.; Hoskin, A. Hydrogen production: Fundamentals and case study summaries; Preprint. In Proceedings of the 18th World Hydrogen Energy Conference, Essen, Germany, 16–21 May 2010. [Google Scholar]
- Brown, T.; Schlachtberger, D.; Kies, A.; Schramm, S.; Greiner, M. Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system. Energies 2018, 160, 720–739. [Google Scholar] [CrossRef] [Green Version]
- Böing, F.; Regett, A. Hourly CO2 emission factors and marginal costs of energy carriers in future multi-energy systems. Energies 2019, 12, 2260. [Google Scholar] [CrossRef] [Green Version]
- Schulte, S.; Arnold, F.; Schlund, D. EWI Merit-Order-Tool 2021. Available online: https://www.ewi.uni-koeln.de/cms/wp-content/uploads/2021/01/Dokumentation_EWI_Merit_Order_Tool_2021_v2021_3.pdf (accessed on 5 April 2022).
- Chan, W.S.; Tse, Y.K. Financial Mathematics for Actuaries, 2nd ed.; World Scientific: New Jersey, NJ, USA, 2018. [Google Scholar]
- BMUB. Climate Action Plan 2050—Principles and Goals of the German Government’s Climate Policy. Available online: https://www.bmuv.de/fileadmin/Daten_BMU/Pools/Broschueren/klimaschutzplan_2050_en_bf.pdf (accessed on 15 April 2022).
- International Renewable Energy Agency. Power System Flexibility for the Energy Transition, Part 2: IRENA FlexTool Methodology. Available online: https://irena.org/-/media/Files/IRENA/Agency/Publication/2018/Nov/IRENA_Power_system_flexibility_2_2018.pdf?la=en&hash=B7028E2E169CF239269EC9695D53276E084A29AE (accessed on 5 April 2022).
- Kost, C.; Shammugam, S.; Fluri, V.; Peper, D.; Memar, A.D.; Schlegl, T. Levelized Cost of Electricity Renewable Energy Technologies. Available online: https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/EN2021_Fraunhofer-ISE_LCOE_Renewable_Energy_Technologies.pdf (accessed on 5 April 2022).
- Eurelectric. Facts of Hydropower in the EU. Available online: https://cdn.eurelectric.org/media/3178/facts_of_europe-2018-030-0372-01-e-h-32C5DF62.pdf (accessed on 5 April 2022).
- Nierop, S.; Humperdinck, S. International Comparison of Fossil Power Efficiency and CO2 Intensity—Update 2018. Available online: https://guidehouse.com/-/media/www/site/downloads/energy/2018/intl-comparison-of-fossil-power-efficiency–co2-in.pdf (accessed on 5 April 2022).
- Federal Ministry for Economic Affairs and Energy. Energy Solutions Made in Germany. Available online: https://www.bmwi.de/Redaktion/EN/Publikationen/energy-solutions-made-in-germany.pdf?__blob=publicationFile&v=16 (accessed on 5 April 2022).
- Fleiter, T.; Steinbach, J.; Ragwitz, M. Mapping and Analyses of the Current and Future (2020–2030) Heating/Cooling Fuel Deployment (Fossil/Renewables). Available online: https://energy.ec.europa.eu/system/files/2017-03/mapping-hc-final_report-wp5_0.pdf (accessed on 5 April 2022).
- Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik. Das Barometer der Energiewende. Batteriespeicher 2018. Available online: https://www.herkulesprojekt.de/de/Barometer/barometer_2018/batteriespeicher.html (accessed on 5 April 2022).
- Viebahn, P.; Zelt, O.; Fischedick, M.; Wietschel, M.; Hirzel, S.; Horst, J. Technologien für die Energiewende Technologiebericht—Band 1; Wuppertal Institut für Klima, Umwelt, Energie gGmbH: Wuppertal, Germany, 2018. [Google Scholar]
- Dena—German Energy Agency. Topics & Projects, Energy Systems, Flexability and Storage, Pumped-Storage Integrates Renewable Energy into the Grid. Available online: https://www.dena.de/en/topics-projects/energy-systems/flexibility-and-storage/pumped-storage/ (accessed on 5 April 2022).
- Fuchs, G.; Lunz, B.; Leuthold, M.; Sauer, D.U. Overview of non-electrochemical storage technologies. In Electrochemical Energy Storage for Renewable Sources and Grid Balancing; Elsevier: Amsterdam, The Netherlands, 2015; pp. 89–102. [Google Scholar] [CrossRef]
- Michalski, J.; Bünger, U.; Crotogino, F.; Donadei, S.; Schneider, G.S.; Pregger, T.; Cao, K.K.; Heide, D. Hydrogen generation by electrolysis and storage in salt caverns: Potentials, economics and systems aspects with regard to the German energy transition. Int. J. Hydrog. Energy 2017, 42, 13427–13443. [Google Scholar] [CrossRef]
- Steffen, B. Prospects for pumped-hydro storage in Germany. Energy Policy 2012, 45, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Mongird, K.; Viswanathan, V.; Alam, J.; Vartanian, C.; Sprenkle, V.; Baxter, R. 2020 Grid Energy Storage Technology Cost and Performance Assessment. Available online: https://www.pnnl.gov/sites/default/files/media/file/Final%20-%20ESGC%20Cost%20Performance%20Report%2012-11-2020.pdf (accessed on 5 April 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nebel, A.; Cantor, J.; Salim, S.; Salih, A.; Patel, D. The Role of Renewable Energies, Storage and Sector-Coupling Technologies in the German Energy Sector under Different CO2 Emission Restrictions. Sustainability 2022, 14, 10379. https://doi.org/10.3390/su141610379
Nebel A, Cantor J, Salim S, Salih A, Patel D. The Role of Renewable Energies, Storage and Sector-Coupling Technologies in the German Energy Sector under Different CO2 Emission Restrictions. Sustainability. 2022; 14(16):10379. https://doi.org/10.3390/su141610379
Chicago/Turabian StyleNebel, Arjuna, Julián Cantor, Sherif Salim, Amro Salih, and Dixit Patel. 2022. "The Role of Renewable Energies, Storage and Sector-Coupling Technologies in the German Energy Sector under Different CO2 Emission Restrictions" Sustainability 14, no. 16: 10379. https://doi.org/10.3390/su141610379
APA StyleNebel, A., Cantor, J., Salim, S., Salih, A., & Patel, D. (2022). The Role of Renewable Energies, Storage and Sector-Coupling Technologies in the German Energy Sector under Different CO2 Emission Restrictions. Sustainability, 14(16), 10379. https://doi.org/10.3390/su141610379