The Impact of Economic Policy Uncertainty on Industrial Output: The Regulatory Role of Technological Progress
Abstract
:1. Introduction
2. Literature Review
3. Empirical Design
3.1. Calculation of Industrial Technological Progress
3.2. Empirical Model Setting
3.3. Variable Description and Data Source
- (1)
- Explained variable: industry output.
- (2)
- Moderating variable: technical-progress index (TFP).
- (3)
- Other explanatory or control variables.
4. Analysis of Empirical Results
4.1. Statistical Test
4.2. Analysis of Whole-Sample Results
4.2.1. Impact of EPU on Industrial Output
4.2.2. The Regulative Role of Technological Progress in the Influence of EPU on Industrial Output
5. Empirical Analysis of Subdivided Samples
5.1. Comparative Analysis of Industries Dominated by State-Owned Enterprises and Non-State-Owned Enterprises
5.2. Comparative Analysis of Samples of Cyclical and Noncyclical Industries
5.3. Comparative Analysis of Regression Results of Three Industries
6. Conclusions and Research Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gulen, H.; Ion, M. Policy uncertainty and corporate investment. Rev. Financ. Stud. 2015, 29, 523–564. [Google Scholar] [CrossRef]
- Leahy, J.; Whited, T.M. The Effect of Uncertainty on Investment: Some Stylized Facts. J. Money Credit. Bank. 1996, 28, 64–83. [Google Scholar] [CrossRef] [Green Version]
- Ghosal, V.; Loungani, P. Product Market Competition and the Impact of Price Uncertainty on Investment: Some Evidence from us Manufacturing Industries. J. Ind. Econ. 1996, 44, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Schwert, G.W. Why Does Stock Market Volatility Change Over Time? J. Financ. 1989, 44, 1115–1153. [Google Scholar] [CrossRef]
- Bloom, N. Uncertainty and the Dynamics of R&D. Am. Econ. Rev. 2007, 97, 250–255. [Google Scholar]
- Julio, B.; Yook, Y. Political Uncertainty and Corporate Investment Cycles. J. Financ. 2012, 67, 45–84. [Google Scholar] [CrossRef]
- Kim, H.; Kung, H. The Asset Redeployability Channel: How Uncertainty Affects Corporate Investment. Rev. Financ. Stud. 2017, 30, 245–280. [Google Scholar] [CrossRef]
- Bachmann, R.; Elstner, S.; Sims, E.R. Uncertainty and Economic Activity: Evidence from Business Survey Data. Am. Econ. J. Macroecon. 2013, 5, 217–249. [Google Scholar] [CrossRef] [Green Version]
- Baum, C.F.; Caglayan, M.; Stephan, A.; Talavera, O. Uncertainty determinants of corporate liquidity. Econ. Model. 2008, 25, 833–849. [Google Scholar] [CrossRef] [Green Version]
- Barradale, M.J. Impact of public policy uncertainty on renewable energy investment: Wind power and the production tax credit. Energy Policy 2010, 38, 7698–7709. [Google Scholar] [CrossRef]
- Creal, D.D.; Wu, J.C. Monetary policy uncertainty and economic fluctuations. Int. Econ. Rev. 2017, 58, 1317–1354. [Google Scholar] [CrossRef] [Green Version]
- Li, S.Q.; Mao, Q.L. How does Tariff Policy Uncertainty Influence Employment and Wages? J. World Econ. 2018, 41, 28–52. [Google Scholar]
- Caldara, D.; Iacoviello, M.; Molligo, P.; Prestipino, A.; Raffo, A. The economic effects of trade policy uncertainty. J. Monet. Econ. 2020, 109, 38–59. [Google Scholar] [CrossRef]
- Baker, S.R.; Bloom, N.; Davis, S.J. Measuring economic policy uncertainty. Q. J. Econ. 2016, 131, 1593–1636. [Google Scholar] [CrossRef]
- Huang, Y.; Luk, P. Measuring economic policy uncertainty in China. China Econ. Rev. 2020, 59, 101367. [Google Scholar] [CrossRef]
- Li, F.Y.; Yang, M.Z. Can Economic Policy Uncertainty Influence Corporate Investment? The Empirical Research by Using China Economic Policy Uncertainty Index. J. Financ. Res. 2015, 4, 115–129. [Google Scholar]
- Handley, K.; Limao, N. Trade and investment under policy uncertainty: Theory and firm evidence. Am. Econ. J. Econ. Policy 2015, 7, 189–222. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Ma, Y. Economic Policy Uncertainty, Cooperate Strategy, and Corporate Risk Taking. For. Chem. Rev. 2022, 6, 894–918. [Google Scholar]
- Hsieh, H.C.; Boarelli, S.; Vu, T.H.C. The effects of economic policy uncertainty on outward foreign direct investment. Int. Rev. Econ. Financ. 2019, 64, 377–392. [Google Scholar] [CrossRef]
- Ghirelli, C.; Gil, M.; Pérez, J.J.; Urtasun, A. Measuring economic and economic policy uncertainty and their macroeconomic effects: The case of Spain. Empir. Econ. 2021, 60, 869–892. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Chen, L.Y. Research on the Impact of Differences in Economic Policy Uncertainty on the Business Cycle Synchronization; China Soft Science: Beijing, China, 2017; pp. 46–54. [Google Scholar]
- Zhang, L.; Liu, J. The Stage Characteristics of China’s Economic Policy Uncertainty and Its Dynamic Consumption Effects. Jinan J. (Philos. Soc. Sci. Ed.) 2019, 41, 46–56. [Google Scholar]
- Greenland, A.; Ion, M.; Lopresti, J. Exports, investment and policy uncertainty. Can. J. Econ. 2019, 52, 1248–1288. [Google Scholar] [CrossRef]
- Istiak, K. Economic policy uncertainty and the real economy of Singapore. Singap. Econ. Rev. 2020, 67, 1307–1331. [Google Scholar] [CrossRef]
- Feng, L.; Lu, J.; Wang, J. A systematic review of enterprise innovation ecosystems. Sustainability 2021, 13, 5742. [Google Scholar] [CrossRef]
- Meng, Q.B.; Shi, Q. The Impact of Macroeconomic Policy Uncertainty on Enterprises’ R&D: Theoretical Analysis and Empirical Study. J. World Econ. 2017, 40, 75–98. [Google Scholar]
- Yang, Z.; Lin, H.; Chen, J. Uncertainty of economic policy, corporate social responsibility and firm technological innovation. Stud. Sci. Sci. 2021, 39, 544–555. [Google Scholar]
- Wang, Y.N.; Cheng, X.S. Environmental uncertainty, absorbed slack and enterprise innovation:Evidence from Chinese listed enterprises in manufacture industry. Stud. Sci. Sci. 2014, 32, 1242–1250. [Google Scholar]
- Brouwer, E.; Kleinknecht, A. Firm Size, Small Business Presence and Sales of Innovative Products: A Micro-econometric Analysis. Small Bus. Econ. 1996, 8, 189–201. [Google Scholar] [CrossRef]
- Atanassov, J.; Julio, B.; Leng, T. The Bright Side of Political Uncertainty: The Case of R&D; Social Science Electronic Publishing: Rochester, NY, USA, 2015. [Google Scholar]
- Xu, Z. Economic Policy Uncertainty, Cost of Capital, and Corporate Innovation; New York University: New York, NY, USA, 2017; Unpublished working Paper. [Google Scholar]
- Lou, Z.; Chen, S.; Yin, W.; Zhang, C.; Yu, X. Economic policy uncertainty and firm innovation: Evidence from a risk-taking perspective. Int. Rev. Econ. Financ. 2022, 77, 78–96. [Google Scholar] [CrossRef]
- Zhang, Y.; Qamruzzaman, M.; Karim, S.; Jahan, I. Nexus between economic policy uncertainty and renewable energy consumption in BRIC Nations: The mediating role of foreign direct investment and financial development. Energies 2021, 14, 4687. [Google Scholar] [CrossRef]
- Duan, M.; Li, Z.Q. Economic Policy Uncertainty, Financing Constraints and TFP: Empirical Evidences from Chinese Listed Companies. Contemp. Financ. Econ. 2019, 6, 1816. [Google Scholar]
- Song, Y.; Hao, F.; Hao, X.; Gozgor, G. Economic policy uncertainty, outward foreign direct investments, and green total factor productivity: Evidence from firm-level data in China. Sustainability 2021, 13, 2339. [Google Scholar] [CrossRef]
- He, F.; Ma, Y.; Zhang, X. How does economic policy uncertainty affect corporate Innovation?–Evidence from China listed companies. Int. Rev. Econ. Financ. 2020, 67, 225–239. [Google Scholar] [CrossRef]
- Nie, G.H.; Qiu, Y.D.; Long, W.Q. Informal finance, technological innovation and upgrading of industrial structure. Stud. Sci. Sci. 2018, 36, 1404–1413. [Google Scholar]
- Su, X.; Zhou, S.; Xue, R.; Tian, J. Does economic policy uncertainty raise corporate precautionary cash holdings? Evidence from China. Account. Financ. 2020, 60, 4567–4592. [Google Scholar] [CrossRef]
- Liu, R.; He, L.; Liang, X.; Yang, X.; Xia, Y. Is there any difference in the impact of economic policy uncertainty on the investment of traditional and renewable energy enterprises?—A comparative study based on regulatory effects. J. Clean. Prod. 2020, 255, 120102. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, X.Y.; Wu, L.D.; Yin, X.L. Product Innovation or Service Transition: Economic Policy Uncertainty and Manufacturing Innovation Choice. China Ind. Econ. 2019, 7, 101–118. [Google Scholar]
- Olley, G.S.; Pakes, A. The Dynamics of Productivity in the Telecommunications Equipment Industry. Econometrica 1996, 64, 1263–1297. [Google Scholar] [CrossRef]
- Levinsohn, J.; Petrin, A. Estimating Production Functions Using Inputs to Control for Unobservables. Rev. Econ. Stud. 2003, 70, 317–341. [Google Scholar] [CrossRef]
- Hao, N.; Li, J. Technological progress,“Erosion effect” of the human capital and international technology gap-empirical analysis based on multinational panel data from 2001 to 2015. Economist 2018, 7, 55–62. [Google Scholar]
- Cloodt, M.; Hagedoorn, J.; Kranenburg, H.V. Mergers and acquisitions: Their effect on the innovative performance of companies in high-tech industries. Res. Policy 2006, 35, 642–654. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Industrial structure, technical progress and carbon intensity in China’s provinces. Renew. Sustain. Energy Rev. 2018, 81, 2935–2946. [Google Scholar] [CrossRef]
- Fare, R.; Grosslopf, S.; Lovell, C. Production Frontiers; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Malmquist, S. Index numbers and indifference surfaces. Trab. Estad. 1953, 4, 209–242. [Google Scholar] [CrossRef]
- Caves, D.W.; Christensen, L.R.; Diewert, W.E. Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers. Econ. J. 1982, 92, 73–86. [Google Scholar] [CrossRef]
- Wen, Z.L.; Ye, B.J. Analyses of mediating effects: The development of methods and models. Adv. Psychol. Sci. 2014, 22, 731–745. [Google Scholar] [CrossRef]
- Zhu, S.P.; Ye, A.Z. The Effect of Economic Policy Uncertainty on Economic Growth from the Perspective of Technological Progress. J. Syst. Sci. Math. Sci. 2022, 42, 398–416. [Google Scholar]
- Tian, Y. Estimation on capital stock of sectors in China: 1990–2014. J. Quant. Tech. Econ. 2016, 6, 3–21. [Google Scholar]
- Yao, X.; Li, B.; Wu, G. A mechanism analysis of the impact of outsourcing in service on the total factor productivity of services industry. Sci. Res. Manag. 2015, 36, 128–135. [Google Scholar]
- Liu, D.; Shi, Z.; Yuan, L. Profit-led or Wage-led? A Theoretical Inquiry and Empirical Research in the Impact of Labor Share on Economic Growth. Nankai Econ. Stud. 2014, 3–29. [Google Scholar] [CrossRef]
- Li, F.Y.; Shi, Y.D. Economic policy uncertainty and corporate cash holding strategy: Empirical research by using China economic policy uncertainty index. J. Manag. Sci. China 2016, 19, 157–170. [Google Scholar]
- Moyen, N.; Platikanov, S. Corporate Investments and Learning. Rev. Financ. 2009, 17, 1437–1488. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.D.; Cheng, X.K.; Yao, L.J. Economic Policy Uncertainty, Industry Periodicity and Dynamic Cash Holdings Adjustment. J. Cent. Univ. Financ. Econ. 2014, 25, 68–78. [Google Scholar]
- Boudoukh, J.; Richardson, M.; Whitelaw, R.F. Industry Returns and the Fisher Effect. J. Financ. 1994, 49, 1595–1615. [Google Scholar] [CrossRef]
Variable | Symbol | Mean Value | Standard Deviation | Minimum Value | Maximum | |
---|---|---|---|---|---|---|
Industry added value | overall | 9.22068 | 1.02961 | 6.71228 | 12.09287 | |
between | 0.99669 | 7.27428 | 11.58820 | |||
within | 0.33934 | 8.24417 | 9.84862 | |||
Technical progress | overall | 1.04255 | 0.08053 | 0.75300 | 1.38400 | |
between | 0.02735 | 0.98500 | 1.08869 | |||
within | 0.07599 | 0.73624 | 1.39294 | |||
Investment | overall | 1.38759 | 2.62162 | 0.01040 | 15.00601 | |
between | 2.25243 | 0.05798 | 8.44306 | |||
within | 1.43071 | −5.04648 | 7.95053 | |||
Foreign direct investment | overall | 54.02680 | 106.40500 | 0 | 521.01000 | |
between | 104.30210 | 0.04000 | 434.34920 | |||
within | 31.20542 | −99.52089 | 220.16370 | |||
Number of foreign-direct-investment projects | overall | 0.15831 | 0.34344 | 0 | 2.89280 | |
between | 0.29513 | 0.00015 | 1.15819 | |||
within | 0.18734 | −0.59859 | 1.89291 | |||
Labor cost | overall | 3.67699 | 1.67663 | 0.80620 | 9.51996 | |
between | 1.21939 | 1.64338 | 6.27115 | |||
within | 1.18182 | 0.27708 | 6.95810 | |||
Ownership composition type | overall | 0.44534 | 0.49801 | 0 | 1 | |
between | 0.46479 | 0 | 1 | |||
within | 0.20622 | −0.47773 | 1.29150 | |||
EPU | overall | 1.68353 | 0.96870 | 0.64962 | 3.64833 | |
between | 0 | 1.68353 | 1.68353 | |||
within | 0.96870 | 0.64962 | 3.64833 |
1 | ||||||||
0.0122 | 1 | |||||||
0.4749 *** | 0.0254 | 1 | ||||||
0.6036 *** | −0.0053 | 0.7417 *** | 1 | |||||
0.4558 *** | 0.0025 | 0.2369 *** | 0.6931 *** | 1 | ||||
0.1525 ** | −0.1621 ** | 0.0451 | 0.0438 | −0.0683 | 1 | |||
−0.424 *** | 0.1499 ** | −0.2097 *** | −0.3734 *** | −0.302 *** | −0.1695 *** | 1 | ||
0.228 *** | −0.084 | 0.2134 *** | 0.0802 | −0.0228 | 0.5125 *** | −0.0836 | 1 |
Variable | Model (2) | |||||
---|---|---|---|---|---|---|
Fe | Re | POLS | Fe | Re | POLS | |
L.TFP | 0.26432 ** (0.10346) | 0.27196 ** (0.10519) | 0.8054 (0.63286) | 0.27371 *** (0.10088) | 0.28113 *** (0.10251) | 0.86868 (0.63312) |
L.inv | 0.02029 ** (0.00871) | 0.02286 *** (0.00881) | 0.04749 (0.04205) | 0.02427 *** (0.00857) | 0.02674 *** (0.00867) | 0.05262 (0.04212) |
L.hum | 0.24981 *** (0.01092) | 0.24599 *** (0.01105) | 0.03767 (0.03738) | 0.24141 *** (0.01093) | 0.23771 *** (0.01105) | 0.03143 (0.03756) |
L.fdi | 0.00061 * (0.00031) | 0.00073 ** (0.00031) | 0.003 ** (0.00131) | 0.00047 (0.00031) | 0.00058 * (0.00031) | 0.00274 * (0.0013) |
L.fdixm | −0.02 (0.05806) | −0.00348 (0.05877) | 0.46252 * (0.26594) | 0.01649 (0.05760) | 0.03258 (0.05827) | 0.51799 ** (0.26832) |
L.ownership | 0.08851 ** (0.04122) | 0.07931 * (0.04175) | −0.48477 *** (0.11288) | 0.07836 * (0.04029) | 0.06955 * (0.04079) | −0.49323 *** (0.11279) |
L.epu | 0.00321 (0.01247) | 0.00391 (0.01268) | 0.1402* (0.07146) | 0.14846 *** (0.04436) | 0.15137 *** (0.04508) | 0.52231 * (0.28251) |
L.epu2 | −0.03355 *** (0.00985) | −0.03408 *** (0.01002) | −0.09103 (0.06512) | |||
_cons | 8.01136 *** (0.12081) | 8.00759 *** (0.23344) | 8.00975 *** (0.68294) | 7.91126 *** (0.12138) | 7.90603 *** (0.23359) | 7.65828 *** (0.72637) |
R2 | 0.8727 | 0.8726 | 0.4527 | 0.8798 | 0.8795 | 0.4576) |
F statistic | 198.06 *** | 26 *** | 183.84 *** | 23.09 *** | ||
Fixed-effects F test | 530.97 *** | 554.41 *** | ||||
Wald test | 1338.57 *** | 1422.34*** | ||||
Hausman test | 13.25 * | 12.93 * | ||||
Sample size | 228 | 228 | 228 | 228 | 228 | 228 |
Variable | Model (3) | |||||
---|---|---|---|---|---|---|
Fe (01) | Re | POLS | Fe (02) | Fe (03) | Fe (04) | |
L.TFP × epu | 0.20841 *** (0.07089) | 0.21382 *** (0.07173) | 0.34888 (0.45283) | 0.20386 *** (0.07182) | 0.14366 * (0.07624) | |
L.TFP × epu2 | 0.00003 (0.0025) | −0.00246 (0.00268) | ||||
L.inv | 0.02369 *** (0.00847) | 0.02595 *** (0.00854) | 0.05161 (0.04257) | 0.02388 *** (0.00872) | 0.02427 *** (0.00871) | 0.01892 * (0.01021) |
L.hum | 0.24123 *** (0.01063) | 0.23801 *** (0.01072) | 0.03197 (0.03801) | 0.24066 *** (0.01185) | 0.23643 *** (0.01094) | 0.22273 *** (0.01255) |
L.fdi | 0.0005 (0.00031) | 0.0006 ** (0.00031) | 0.00285 ** (0.00133) | 0.00052 * (0.00031) | 0.00036 (0.00031) | 0.00038 (0.00035) |
L.fdixm | 0.02165 (0.05702) | 0.03631 (0.05748) | 0.51141 * (0.2704) | 0.01895 (0.05816) | 0.007 (0.05839) | −0.00218 (0.06166) |
L.ownership | 0.10699 *** (0.03857) | 0.09941 ** (0.03891) | −0.45984 *** (0.11441) | 0.07906 * (0.04031) | 0.08352 * (0.04088) | 0.04849 (0.04276) |
L.epu | −0.06300 (0.08753) | −0.06709 (0.08858) | 0.09235 (0.54722) | −0.06811 (0.08875) | 0.14952 *** (0.04505) | 0.1558 (0.1281) |
L.epu2 | −0.03407 *** (0.00972) | −0.03438 *** (0.00984) | −0.0794 (0.06541) | −0.03272 *** (0.01003) | −0.03282 *** (0.01) | −0.08501 *** (0.03129) |
_cons | 8.1779 *** (0.04661) | 8.18035 *** (0.21125) | 8.60292 (0.26319) | 8.20067 *** (0.04716) | 8.21593*** (0.0468) | 8.27347 *** (0.06812) |
R2 | 0.8824 | 0.8822 | 0.4495 | 0.8827 | 0.8554 | 0.8523 |
F statistic | 188.51 *** | 22.35 *** | 163.27 *** | 202.67 *** | 116.01 *** | |
Fixed-effects F test | 575.62 *** | 553.64 *** | 541.80 *** | 500.27 *** | ||
Wald test | 1470.04 *** | |||||
Hausman test | 12.27 * | |||||
Sample size | 228 | 228 | 228 | 228 | 228 | 209 |
Variable | Industries Dominated by State-Owned Enterprises | Industries Dominated by Non-State-Owned Enterprises | ||
---|---|---|---|---|
L.TFP | 0.5135 *** (0.14538) | 0.12052 (0.13965) | ||
L.TFP × epu | 0.35339 *** (0.10879) | 0.1257 (0.09718) | ||
L.inv | 0.04274 ** (0.01969) | 0.04925 ** (0.01975) | 0.02241 ** (0.01013) | 0.02201 ** (0.01007) |
L.hum | 0.27181 *** (0.01576) | 0.26703 *** (0.01581) | 0.21539 *** (0.01517) | 0.2162 *** (0.015) |
L.fdi | −0.00437 ** (0.0019) | −0.00403 ** (0.00194) | 0.00061 * (0.00035) | 0.00065 * (0.00035) |
L.fdixm | 1.98975 *** (0.72056) | 2.16000 *** (0.73233) | −0.00574 (0.0659) | −0.00278 (0.06555) |
L.epu | 0.1302 ** (0.05603) | −0.24535 * (0.13336) | 0.18501 *** (0.06709) | 0.05421 (0.11873) |
L.epu2 | −0.03581 *** (0.01251) | −0.0349 *** (0.01266) | −0.03726 ** (0.01501) | −0.03747 ** (0.0149) |
_cons | 7.23147 *** (0.16689) | 7.77505 *** (0.05821) | 8.46927 *** (0.17537) | 8.59006 *** (0.06219) |
R2 | 0.9029 | 0.9047 | 0.8724 | 0.8736 |
F statistic | 122.19 *** | 124.73 *** | 100.64 *** | 101.67 *** |
Sample size | 108 | 108 | 120 | 120 |
Variable | Cyclical Industry | Noncyclical Industry | ||
---|---|---|---|---|
L.TFP | 0.09444 (0.28005) | 0.51036 ** (0.21440) | ||
L.TFP × epu | 0.11597 (0.19421) | 0.34321 ** (0.15792) | ||
L.inv | −0.01748 (0.02723) | −0.01728 (0.02719) | −0.00246 (0.02157) | −0.00141 (0.02163) |
L.hum | 0.24916 *** (0.03013) | 0.25032 *** (0.02987) | 0.25756 *** (0.02413) | 0.25393 *** (0.02405) |
L.fdi | −0.00161 * (0.00096) | −0.00156 (0.00096) | 0.00114 (0.00075) | 0.00116 (0.00076) |
L.fdixm | −0.20201 (0.14223) | −0.1967 (0.14220) | −0.17219 (0.63520) | −0.06916 (0.63595) |
L.epu | 0.32159 ** (0.1456) | 0.19362 (0.25869) | 0.05107 (0.08600) | −0.30043 (0.18649) |
L.epu2 | −0.08498 ** (0.03213) | −0.08338 ** (0.03214) | −0.0009 (0.01915) | −0.00258 (0.01924) |
_cons | 8.70525 *** (0.35934) | 8.79937 *** (0.14288) | 7.4904 *** (0.24565) | 8.02062 *** (0.08833) |
R2 | 0.6994 | 0.7005 | 0.7604 | 0.7587 |
F statistic | 23.27 *** | 23.39 *** | 56.67 *** | 56.14 *** |
Sample size | 84 | 84 | 144 | 144 |
Variable | Primary and Secondary Industries | Tertiary Industry | ||
---|---|---|---|---|
L.TFP | 0.23368 (0.21842) | 0.34808 *** (0.11636) | ||
L.TFP × epu | 0.16988 (0.14495) | 0.25943 *** (0.0863) | ||
L.inv | 0.00559 (0.02692) | 0.00496 (0.02687) | 0.03982 *** (0.01058) | 0.03894 *** (0.0106) |
L.hum | 0.21689 *** (0.03483) | 0.2179 *** (0.03467) | 0.24422 *** (0.01073) | 0.2419 *** (0.01053) |
L.fdi | 0.00032 (0.00118) | 0.00032 (0.00118) | −0.00003 (0.00037) | 0.00003 (0.00038) |
L.fdixm | −0.10501 (0.13587) | −0.10611 (0.13556) | 0.16818 (0.14972) | 0.20534 (0.15027) |
L.epu | 0.11149 (0.12423) | −0.06836 (0.19207) | 0.1744 *** (0.04434) | −0.0998 (0.10225) |
L.epu2 | −0.02154 (0.02745) | −0.0216 (0.02738) | −0.0413 *** (0.00989) | −0.04019 *** (0.00988) |
_cons | 9.14527 *** (0.28577) | 9.39149 *** (0.17938) | 7.48126 *** (0.13722) | 7.8505 *** (0.04101) |
R2 | 0.7577 | 0.7588 | 0.9155 | 0.9155 |
F statistic | 21.44 *** | 21.57 *** | 227.50 *** | 227.64 *** |
Sample size | 60 | 60 | 168 | 168 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Yu, G. The Impact of Economic Policy Uncertainty on Industrial Output: The Regulatory Role of Technological Progress. Sustainability 2022, 14, 10428. https://doi.org/10.3390/su141610428
Zhu S, Yu G. The Impact of Economic Policy Uncertainty on Industrial Output: The Regulatory Role of Technological Progress. Sustainability. 2022; 14(16):10428. https://doi.org/10.3390/su141610428
Chicago/Turabian StyleZhu, Songping, and Gaofeng Yu. 2022. "The Impact of Economic Policy Uncertainty on Industrial Output: The Regulatory Role of Technological Progress" Sustainability 14, no. 16: 10428. https://doi.org/10.3390/su141610428
APA StyleZhu, S., & Yu, G. (2022). The Impact of Economic Policy Uncertainty on Industrial Output: The Regulatory Role of Technological Progress. Sustainability, 14(16), 10428. https://doi.org/10.3390/su141610428