Techno-Economic Analysis of Hybrid Diesel Generators and Renewable Energy for a Remote Island in the Indian Ocean Using HOMER Pro
Abstract
:1. Introduction
2. Methodology
- (a)
- Location specification.
- (b)
- The modelling data require:
- (i)
- Average electric load demand;
- (ii)
- Daily radiation and clearness index at the location;
- (iii)
- The daily temperature at the location.
- (c)
- System architecture.
2.1. Location Specification
2.2. Modelling Data
2.2.1. Average Electric Load Demand
2.2.2. Radiation, Clearness Index, Temperature, and Wind Speed
2.3. Proposed System Architecture
2.3.1. Photovoltaic
2.3.2. Wind Turbine
2.3.3. Battery
2.3.4. Convertor
2.4. Economic Analysis
2.4.1. Interest Rate
2.4.2. Levelised Cost of Energy
2.4.3. Net Present Cost (NPC)
2.4.4. Salvage Value
2.4.5. Internal Rate of Return (IRR)
2.4.6. Return on Investment (ROI)
2.4.7. Simple Payback
2.4.8. Total Annualised Cost
3. Result and Discussions
3.1. Optimisation Results
3.2. Electricity Generation
3.3. Economic Evaluation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, W.W.; Rasul, M.G.; Liu, G.; Li, M.; Tan, X.H. Climate change impacts on techno-economic performance of roof PV solar system in Australia. Renew. Energy 2016, 88, 430–438. [Google Scholar] [CrossRef]
- Norouzi, N. The Pahlev Reliability Index: A measurement for the resilience of power generation technologies versus climate change. Nucl. Eng. Technol. 2021, 53, 1658–1663. [Google Scholar] [CrossRef]
- Johnson, L. Geographies of Securitized Catastrophe Risk and the Implications of Climate Change. Econ. Geogr. 2014, 90, 155–185. [Google Scholar] [CrossRef]
- Gonzalez-Salazar, M.; Poganietz, W.R. Evaluating the complementarity of solar, wind and hydropower to mitigate the impact of El Nino Southern Oscillation in Latin America. Renew. Energy 2021, 174, 453–467. [Google Scholar] [CrossRef]
- Graabak, I.; Korpas, M. Balancing of variable wind and solar production in Continental Europe with Nordic hydropower—A review of simulation studies. In Proceedings of the 5th International Workshop on Hydro Scheduling in Competitive Electricity Markets, Trondheim, Norway, 17–18 September 2015; pp. 91–99. [Google Scholar]
- Yao, Y.; Xu, J.H.; Sun, D.Q. Untangling global levelised cost of electricity based on multi-factor learning curve for renewable energy: Wind, solar, geothermal, hydropower and bioenergy. J. Clean. Prod. 2021, 285, 124827. [Google Scholar] [CrossRef]
- Norouzi, N.; Bozorgian, A.; Dehghani, M.A. Best Option of Investment in Renewable Energy: A Multicriteria Decision-Making Analysis for Iranian Energy Industry. J. Environ. Assess. Policy Manag. 2020, 22, 2250001. [Google Scholar] [CrossRef]
- Rahman, M.; Alam, K. Impact of industrialization and non-renewable energy on environmental pollution in Australia: Do renewable energy and financial development play a mitigating role? Renew. Energy 2022, 195, 203–213. [Google Scholar] [CrossRef]
- Sahin, U. Future of renewable energy consumption in France, Germany, Italy, Spain, Turkey and UK by 2030 using optimized fractional nonlinear grey Bernoulli model. Sustain. Prod. Consum. 2021, 25, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Dabboussi, M.; Abid, M. A comparative study of sectoral renewable energy consumption and GDP in the US: Evidence from a threshold approach. Renew. Energy 2022, 192, 705–715. [Google Scholar] [CrossRef]
- Burke, P.J.; Kurniawati, S. Electricity subsidy reform in Indonesia: Demand-side effects on electricity use. Energy Policy 2018, 116, 410–421. [Google Scholar] [CrossRef] [Green Version]
- Satista. Energy Mix for Power Generation in Indonesia as of May 2020, by Source; Satista: Hamburg, Germany, 2021. [Google Scholar]
- IESR. Indonesia Solar Potential Report; IESR: Nairobi, Kenya, 2021. [Google Scholar]
- Aisyah, S.; Aditya, I.A.; Syamsudin, A. Optimum Hybrid Renewable Energy System Design Using Homer: Case Study Biaro Island, Indonesia. In Proceedings of the 4th International Tropical Renewable Energy Conference (i-TREC)—Sustainable Energy and Environment for Tropical Climate, Bali, Indonesia, 14–16 August 2019. [Google Scholar]
- Bukit, F.R.A.; Zulkarnaen, H.; Simarmata, G.D.A. Minimize the cost of electricity generation with hybrid power plants on pemping island of indonesia using HOMER. In Proceedings of the 2020 4th International Conference on Electrical, Telecommunication and Computer Engineering, ELTICOM, Medan, Indonesia, 3–4 September 2020; pp. 153–157. [Google Scholar]
- Yang, Y.C.; Javanroodi, K.; Nik, V.M. Climate Change and Renewable Energy Generation in Europe-Long-Term Impact Assessment on Solar and Wind Energy Using High-Resolution Future Climate Data and Considering Climate Uncertainties. Energies 2022, 15, 302. [Google Scholar] [CrossRef]
- Halabi, L.M.; Mekhilef, S.; Olatomiwa, L.; Hazelton, J. Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia. Energy Convers. Manag. 2017, 144, 322–339. [Google Scholar] [CrossRef]
- Sen, R.; Bhattacharyya, S.C. Off-grid electricity generation with renewable energy technologies in India: An application of HOMER. Renew. Energy 2014, 62, 388–398. [Google Scholar] [CrossRef]
- Shahzad, M.K.; Zahid, A.; Rashid, T.U.; Rehan, M.A.; Ali, M.; Ahmad, M. Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renew. Energy 2017, 106, 264–273. [Google Scholar] [CrossRef]
- Bahramara, S.; Moghaddam, M.P.; Haghifam, M.R. Optimal planning of hybrid renewable energy systems using HOMER: A review. Renew. Sustain. Energy Rev. 2016, 62, 609–620. [Google Scholar] [CrossRef]
- Ahmad, J.; Imran, M.; Khalid, A.; Iqbal, W.; Ashraf, S.R.; Adnan, M.; Ali, S.F.; Khokhar, K.S. Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar. Energy 2018, 148, 208–234. [Google Scholar] [CrossRef]
- HOMER Differences between HOMER Pro and HOMER Grid. Available online: https://www.homerenergy.com/products/pro-vs-grid.html (accessed on 26 July 2022).
- Manmadharao, S.; Chaitanya, S.; Rao, B.V.; Srinivasarao, G. Ieee Design and Optimization of Grid Integrated Solar Energy System Using HOMER GRID software. In Proceedings of the IEEE International Conference on Innovations in Power and Advanced Computing Technologies, Vellore, India, 22–23 March 2019. [Google Scholar]
- Ghatak, A.; Alfred, R.B.; Singh, R.R. Optimization for Electric Vehicle Charging Station using Homer Grid. In Proceedings of the 3rd IEEE International Virtual Conference on Innovations in Power and Advanced Computing Technologies, i-PACT 2021, Kuala Lumpur, Malaysia, 27–29 November 2021. [Google Scholar]
- HOMERGrid. Homer Grid Software; HOMER: Boulder, CO, USA, 2022. [Google Scholar]
- HOMERPro. HOMER Help Files; HOMER: Boulder, CO, USA, 2021. [Google Scholar]
- NREL. National Solar Radiation Database; NREL: Golden, CO, USA, 2021.
- NASA. NASA Prediction of Worldwide Energy Resources (POWER); NASA: Washington, DC, USA, 2022.
- Vermogen, Silent Generator/Genset Diesel—110 kw—Automatic. 2022. Available online: https://mall.shopee.co.id/SILENT-GENERATOR-GENSET-DIESEL-110-KW-OTOMATIS-VERMOGEN-i.266696978.8834295293?sp_atk=b424740c-a94b-4593-abb5-df51fe58e6ef (accessed on 3 November 2021).
- Cummins. Generator Cummins Air Cooler Type Genset; Cummins: Columbus, IN, USA, 2022. [Google Scholar]
- IRENA. Renewable Power Generation Costs in 2020; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021. [Google Scholar]
- Energy, P. On Farm Power Generation—Wind Power; Applied Horticultural Research: Eveleigh, Australia, 2021. [Google Scholar]
- Demiroren, A.; Yilmaz, U. Analysis of change in electric energy cost with using renewable energy sources in Gökceada, Turkey: An island example. Renew. Sustain. Energy Rev. 2010, 14, 323–333. [Google Scholar] [CrossRef]
- HOMERGrid. Homer Grid Software; HOMER: Boulder, CO, USA, 2021. [Google Scholar]
- Bloomberg USD-IDR X-Rate. Available online: https://www.bloomberg.com/quote/USDIDR:CUR (accessed on 3 November 2021).
- Globalpetrolprices, Indonesia Diesel Prices. Available online: https://www.globalpetrolprices.com/ (accessed on 14 February 2022).
- The World Bank. Real Interest Rate (%)—Indonesia; The World Bank: Jakarta, Indonesia, 2021. [Google Scholar]
- The World Bank. The World Bank in Indonesia; The World Bank: Jakarta, Indonesia, 2021. [Google Scholar]
- Attia, A.M.; Al Hanbali, A.; Saleh, H.H.; Alsawafy, O.G.; Ghaithan, A.M.; Mohammed, A. A multi-objective optimization model for sizing decisions of a grid-connected photovoltaic system. Energy 2021, 229, 120730. [Google Scholar] [CrossRef]
Component | Name | Capital Cost (USD) | Replacement | O&M Cost (USD) | Lifetime | Ref. |
---|---|---|---|---|---|---|
Generator #1 | Gen 110 kW | 0 | 11,300 | 0.025/op hour | 20,000 h | [29] |
Generator #2 | Gen 60 kW | 0 | 7600 | 0.020/op hour | 20,000 h | [30] |
PV | Flat plate PV | 1073/kW | 1073/kW | 10/year | 25 years | [31] |
Storage | 1 kWh Lead Acid | 300/kW | 300/kW | 25/year | 10 years | [25] |
Wind turbine | XANTM21 [100 kW] | 210,000 | 210,000 | 3500/year | 25 years | [32] |
Converter | System Converter | 300/kW | 300/kW | 0 | 15 years | [25] |
Capacity (kW) | Capital (USD) | Replacement (USD) | O&M (USD/year) |
---|---|---|---|
5 | 5365 | 5365 | 100 |
10 | 9979 | 9979 | 180 |
1000 | 708,180 | 708,180 | 1500 |
2000 | 1,158,840 | 1,158,840 | 3000 |
Capacity (kWh) | Capital (USD) | Replacement (USD) | O&M (USD/year) |
---|---|---|---|
5 | 1500 | 1500 | 0 |
10 | 3000 | 3000 | 0 |
200 | 47,400 | 47,400 | 1800 |
2000 | 366,000 | 366,000 | 16,000 |
8000 | 1,368,000 | 1,368,000 | 64,000 |
16,000 | 2,592,000 | 2,592,000 | 112,000 |
Description | Value | Unit | References |
---|---|---|---|
Currency | USD 1 | Rp 14,000 | [35] |
Diesel Price | USD 0.9/L | Rp 12,500 | [36] |
Nominal discount rate | 6.6 | % | [37] |
Expected inflation rate | 2.0 | % | [38] |
Project lifetime | 25 | year | [39] |
Rank | PV (kW) | M-21 | Gen110 (kW) | Gen60 (kW) | 1 MkWh LA | Converter (kW) | NPC (USD) | CoE (USD) | Ren Frac (%) |
---|---|---|---|---|---|---|---|---|---|
1 | 274 | 110 | 60 | 76 | 64.6 | 1,393,022 | 0.246 | 29.2 | |
2 | 261 | 110 | 60 | 59.2 | 1,477,688 | 0.261 | 20.6 | ||
3 | 257 | 1 | 110 | 60 | 84 | 61.5 | 1,550,089 | 0.274 | 36.5 |
4 | 110 | 60 | 1,654,675 | 0.292 | 0.0 | ||||
5 | 110 | 60 | 2 | 1.3 | 1,656,018 | 0.293 | 0.0 | ||
6 | 254 | 1 | 110 | 60 | 57.4 | 1,674,896 | 0.296 | 24.8 | |
7 | 1 | 110 | 60 | 1,813,790 | 0.320 | 2.40 | |||
8 | 2 | 110 | 60 | 64 | 16.5 | 1,943,753 | 0.343 | 13.0 |
Component | Name | Size |
---|---|---|
Generator #1 | Diesel Genset | 110 kW |
Generator #2 | Diesel Genset | 60 kW |
PV | Generic flat-plate PV | 274 kW |
Converter | System Converter | 65 kW |
Storage | Generic 1 kWh Lead Acid | 76 kWh |
Descriptions | Value |
---|---|
Internal Rate of Return | 14% |
Return on Investment | 10% |
Simple payback | 6.7 year |
Discounted payback | 8.4 year |
Capital Investment | USD 233,619 |
Annualised Savings | 33,434 USD/year |
Net Present Value | USD 261,653 |
Description | Base System | Optimised System |
---|---|---|
Net Present Cost | USD 1.65 M | USD 1.39 M |
CAPEX | USD 0.00 | USD 233,619 |
OPEX | USD 111,702 | USD 78,268 |
LCoE | 0.292 USD/kWh | 0.246 USD/kWh |
CO2 Emitted | 294,550 kg/year | 196,140 kg/year |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riayatsyah, T.M.I.; Geumpana, T.A.; Fattah, I.M.R.; Mahlia, T.M.I. Techno-Economic Analysis of Hybrid Diesel Generators and Renewable Energy for a Remote Island in the Indian Ocean Using HOMER Pro. Sustainability 2022, 14, 9846. https://doi.org/10.3390/su14169846
Riayatsyah TMI, Geumpana TA, Fattah IMR, Mahlia TMI. Techno-Economic Analysis of Hybrid Diesel Generators and Renewable Energy for a Remote Island in the Indian Ocean Using HOMER Pro. Sustainability. 2022; 14(16):9846. https://doi.org/10.3390/su14169846
Chicago/Turabian StyleRiayatsyah, T. M. I., T. A. Geumpana, I. M. Rizwanul Fattah, and T. M. Indra Mahlia. 2022. "Techno-Economic Analysis of Hybrid Diesel Generators and Renewable Energy for a Remote Island in the Indian Ocean Using HOMER Pro" Sustainability 14, no. 16: 9846. https://doi.org/10.3390/su14169846
APA StyleRiayatsyah, T. M. I., Geumpana, T. A., Fattah, I. M. R., & Mahlia, T. M. I. (2022). Techno-Economic Analysis of Hybrid Diesel Generators and Renewable Energy for a Remote Island in the Indian Ocean Using HOMER Pro. Sustainability, 14(16), 9846. https://doi.org/10.3390/su14169846