How Does Green Finance Reform Affect Enterprise Green Technology Innovation? Evidence from China
Abstract
:1. Introduction
2. Literature Review and Theoretical Analysis
2.1. Literature Review
2.1.1. Economic Consequences of Green Finance
2.1.2. Drivers of Enterprise Innovation
2.1.3. The Impact of Green Finance on Business Innovation
2.2. Theoretical Analysis
3. Methodology
3.1. Econometric Model
3.1.1. Baseline Regression
3.1.2. Mediating Effect Model
3.2. Method for Evaluating Key Variables
3.2.1. Dependent Variables
3.2.2. Main Independent Variable
3.2.3. Mechanism Variables
3.2.4. Control Variables
3.3. Data
3.4. Descriptive Statistics
4. Results
4.1. Analysis of Baseline Regression
4.2. Mechanism Test: Intermediary Effect of Financing Constraints
4.3. Heterogeneity Analysis
4.3.1. Analysis of Heterogeneity of Enterprise Location
4.3.2. Analysis of Heterogeneity of Enterprise Ownership
4.4. Robustness Test
4.4.1. Parallel Trend Test
4.4.2. PSM-DID
4.4.3. Placebo Test
- (1)
- Counterfactual test
- (2)
- Fictitious treatment group
4.4.4. Replacement of Proxy Variables for Green Technological Innovation
4.4.5. Adding Macro Control Variables
5. Conclusions and Policy Implication
5.1. Conclusions
5.2. Policy Implication
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doluca, H.; Wagner, M.; Block, J. Sustainability and Environmental Behaviour in Family Firms: A Longitudinal Analysis of Environment-Related Activities, Innovation and Performance. Bus. Strategy Environ. 2018, 27, 152–172. [Google Scholar] [CrossRef]
- Taghizadeh-Hesary, F.; Yoshino, N. The way to induce private participation in green finance and investment. Financ. Res. Lett. 2019, 31, 98–103. [Google Scholar] [CrossRef]
- Huang, H.F.; Zhang, J. Research on the Environmental Effect of Green Finance Policy Based on the Analysis of Pilot Zones for Green Finance Reform and Innovations. Sustainability 2021, 13, 3754. [Google Scholar] [CrossRef]
- Liu, X.; Wang, E.; Cai, D. Green credit policy, property rights and debt financing: Quasi-natural experimental evidence from China. Financ. Res. Lett. 2019, 29, 129–135. [Google Scholar] [CrossRef]
- Xu, X.; Li, J. Asymmetric impacts of the policy and development of green credit on the debt financing cost and maturity of different types of enterprises in China. J. Clean. Prod. 2020, 264, 121574. [Google Scholar] [CrossRef]
- Lee, C.C.; Wang, C.W.; Ho, S.J.; Wu, T.P. The impact of natural disaster on energy consumption: International evidence. Energy Econ. 2021, 97, 105021. [Google Scholar] [CrossRef]
- Jiang, P.; Jiang, H.; Wu, J. Is inhibition of financialization the sub-effect of the green credit policy? Evidence from China. Financ. Res. Lett. 2022, 47 Pt B, 102737. [Google Scholar] [CrossRef]
- Liu, J.Y.; Xia, Y.; Fan, Y.; Lin, S.M.; Wu, J. Assessment of a green credit policy aimed at energy-intensive industries in China based on a financial CGE model. J. Clean. Prod. 2017, 163, 293–302. [Google Scholar] [CrossRef]
- Tang, D.Y.; Zhang, Y.P. Do shareholders benefit from green bonds? J. Corp. Financ. 2020, 61, 101427. [Google Scholar] [CrossRef]
- Zhu, X.W. Does green credit promote industrial upgrading?—Analysis of mediating effects based on technological innovation. Environ. Sci. Pollut. Res. 2022, 29, 41577–41589. [Google Scholar] [CrossRef]
- Zhou, X.G.; Cui, Y.D. Green Bonds, Corporate Performance, and Corporate Social Responsibility. Sustainability 2019, 11, 6881. [Google Scholar] [CrossRef] [Green Version]
- Baulkaran, V. Stock market reaction to green bond issuance. J. Asset Manag. 2019, 20, 331–340. [Google Scholar] [CrossRef]
- Karpf, A.; Mandel, A. The changing value of the ‘green’ label on the US municipal bond market. Nat. Clim. Change 2018, 8, 161–165. [Google Scholar] [CrossRef]
- Jafari, H.; Hejazi, S.R.; Rasti-Barzoki, M. Sustainable development by waste recycling under a three-echelon supply chain: A game-theoretic approach. J. Clean. Prod. 2017, 142, 2252–2261. [Google Scholar] [CrossRef]
- Jin, J.Y.; Han, L.Y. Assessment of Chinese green funds: Performance and industry allocation. J. Clean. Prod. 2018, 171, 1084–1093. [Google Scholar] [CrossRef]
- Silva, F.; Cortez, M.C. The performance of US and European green funds in different market conditions. J. Clean. Prod. 2016, 135, 558–566. [Google Scholar] [CrossRef]
- Li, W.; Hu, M.Z. An overview of the environmental finance policies in China: Retrofitting an integrated mechanism for environmental management. Front. Environ. Sci. Eng. 2014, 8, 316–328. [Google Scholar] [CrossRef]
- Chen, Q.P.; Ning, B.; Pan, Y.; Xiao, J.L. Green finance and outward foreign direct investment: Evidence from a quasi-natural experiment of green insurance in China. Asia Pac. J. Manag. 2021, 1–26. [Google Scholar] [CrossRef]
- Chang, J.; Bai, X.; Li, J.J. The influence of leadership on product and process innovations in China: The contingent role of knowledge acquisition capability. Ind. Mark. Manag. 2015, 50, 18–29. [Google Scholar] [CrossRef]
- Fang, L.H.; Lerner, J.; Wu, C.P. Intellectual Property Rights Protection, Ownership, and Innovation: Evidence from China. Rev. Financ. Stud. 2017, 30, 2446–2477. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.J.; Chen, G.; Fu, Y. Competition Order and Innovation Behaviors of Enterprise in China. Discret. Dyn. Nat. Soc. 2020, 2020, 3869356. [Google Scholar] [CrossRef]
- Heo, Y.N.; Hou, F.F.; Park, S.G. Does corruption grease or sand the wheels of investment or innovation? Different effects in advanced and emerging economies. Appl. Econ. 2021, 53, 35–60. [Google Scholar] [CrossRef]
- Xu, G.; Yano, G. How does anti-corruption affect corporate innovation? Evidence from recent anti-corruption efforts in China. J. Comp. Econ. 2017, 45, 498–519. [Google Scholar] [CrossRef]
- Aghion, P.; Van Reenen, J.; Zingales, L. Innovation and Institutional Ownership. Am. Econ. Rev. 2013, 103, 277–304. [Google Scholar] [CrossRef] [Green Version]
- Sakaki, H.; Jory, S.R. Institutional investors’ ownership stability and firms’ innovation. J. Bus. Res. 2019, 103, 10–22. [Google Scholar] [CrossRef]
- Wen, J.; Yang, D.; Feng, G.F.; Dong, M.Y.; Chang, C.P. Venture capital and innovation in China: The non-linear evidence. Struct. Change Econ. Dyn. 2018, 46, 148–162. [Google Scholar] [CrossRef]
- Tian, X.; Wang, T.Y. Tolerance for Failure and Corporate Innovation. Rev. Financ. Stud. 2014, 27, 211–255. [Google Scholar] [CrossRef]
- Benner, M.J.; Ranganathan, R. Offsetting illegitimacy? How pressures from securities analysts influence incumbents in the face of new technologies. Acad. Manag. J. 2012, 55, 213–233. [Google Scholar] [CrossRef]
- Chesbrough, H. Business model innovation: It’s not just about technology anymore. Strategy Leadersh. 2007, 35, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.Y.; Zhou, C. A Correlational study on China Listed SMEs from board structure, executive incentive and innovation performance. In Proceedings of the 6th International Symposium on Project Management (ISPM), Chongqing, China, 21–23 July 2018; Chongqing University of Posts and Telecommunications: Chongqing, China, 2018; pp. 1042–1052. [Google Scholar]
- Hu, G.Q.; Wang, X.Q.; Wang, Y. Can the green credit policy stimulate green innovation in heavily polluting enterprises? Evidence from a quasi-natural experiment in China. Energy Econ. 2021, 98, 2793–2811. [Google Scholar] [CrossRef]
- Chen, Z.G.; Zhang, Y.Q.; Wang, H.S.; Ouyang, X.; Xie, Y.X. Can green credit policy promote low-carbon technology innovation? J. Clean. Prod. 2022, 359, 132061. [Google Scholar] [CrossRef]
- Wen, H.W.; Lee, C.C.; Zhou, F.X. Green credit policy, credit allocation efficiency and upgrade of energy-intensive enterprises. Energy Econ. 2021, 94, 105099. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, M.; Liu, N.N.; Wang, Y.Y. Spatial Effects of Environmental Regulation and Green Credits on Green Technology Innovation under Low-Carbon Economy Background Conditions. Int. J. Environ. Res. Public Health 2019, 17, 3027. [Google Scholar] [CrossRef] [Green Version]
- Hong, M.; Li, Z.H.; Drakeford, B. Do the Green Credit Guidelines Affect Corporate Green Technology Innovation? Empirical Research from China. Int. J. Environ. Res. Public Health 2021, 18, 1682. [Google Scholar] [CrossRef]
- Aghion, P.; Askenazy, P.; Berman, N.; Cette, G.; Eymard, L. Credit Constraints and the Cyclicality Of R&D Investment: Evidence from France. J. Eur. Econ. Assoc. 2012, 10, 1001–1024. [Google Scholar] [CrossRef]
- Hicks, J. The Theory of Wages; Springer: New York, NY, USA, 1963. [Google Scholar]
- Jiang, H.; Jiang, P.; Wang, D.; Wu, J. Can smart city construction facilitate green total factor productivity? A quasi-natural experiment based on China’s pilot smart city. Sustain. Cities Soc. 2021, 69, 102809. [Google Scholar] [CrossRef]
- Li, B.; Han, Y.; Wang, C.; Sun, W. Did civilized city policy improve energy efficiency of resource-based cities? Prefecture-level evidence from China. Energy Policy 2022, 167, 113081. [Google Scholar] [CrossRef]
- Wing, C.; Simon, K.; Bello-Gomez, R.A. Designing difference in difference studies: Best practices for public health policy research. Annu. Rev. Public Health 2018, 39, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Fan, M.; Shao, S.; Yang, L. Does carbon intensity constraint policy improve industrial green production performance in China? A quasi-DID analysis. Energy Econ. 2017, 68, 271–282. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, X.; Yang, L. Does Digital Inclusive Finance Narrow the Urban-Rural Income Gap through Primary Distribution and Redistribution? Sustainability 2022, 14, 2120. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, L.; Luo, S. Sustainable development, ESG performance and company market value: Mediating effect of financial performance. Bus. Strategy Environ. 2022, 1–17. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/bse.3089 (accessed on 9 August 2021).
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef]
- Ma, R.W.; Li, F.F.; Du, M.Y. How Does Environmental Regulation and Digital Finance Affect Green Technological Innovation: Evidence From China. Front. Environ. Sci. 2022, 10, 782. [Google Scholar] [CrossRef]
- Zou, C.; Huang, Y.C.; Wu, S.S.; Hu, S.L. Does “low-carbon city” accelerate urban innovation? Evidence from China. Sustain. Cities Soc. 2022, 83, 103954. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.; Guo, Y.Y. The effects of equity financing and debt financing on technological innovation Evidence from developed countries. Balt. J. Manag. 2019, 14, 698–715. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, Y.F.; He, Z.H.; Yang, Y. The effect of local government debt on green innovation: Evidence from Chinese listed companies. Pac.-Basin Financ. J. 2022, 73, 101760. [Google Scholar] [CrossRef]
- Manova, K.; Yu, Z.H. How firms export: Processing vs. ordinary trade with financial frictions. J. Int. Econ. 2016, 100, 120–137. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.R.; Martinsson, G.; Petersen, B.C. Do financing constraints matter for R&D? Eur. Econ. Rev. 2012, 56, 1512–1529. [Google Scholar] [CrossRef] [Green Version]
- Feenstra, R.C.; Li, Z.Y.; Yu, M.J. Exports and Credit Constraints under Incomplete Information: Theory and Evidence from China. Rev. Econ. Stat. 2014, 96, 729–744. [Google Scholar] [CrossRef]
- Bu, M.L.; Qiao, Z.Z.; Liu, B.B. Voluntary environmental regulation and firm innovation in China. Econ. Model. 2020, 89, 10–18. [Google Scholar] [CrossRef]
- Coad, A.; Segarra, A.; Teruel, M. Innovation and firm growth: Does firm age play a role? Res. Policy 2016, 45, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.C.; Meng, Q.M.; McCarn, C.; Cooke, W.H.; Rodgers, J.; Shi, K.B. Effects of path dependencies and lock-ins on urban spatial restructuring in China: A historical perspective on government’s role in Lanzhou since 1978. Cities 2016, 56, 24–34. [Google Scholar] [CrossRef]
- Wang, Y.L.; Zhao, N.; Lei, X.D.; Long, R.Y. Green Finance Innovation and Regional Green Development. Sustainability 2021, 13, 8230. [Google Scholar] [CrossRef]
Type | Variable | Meaning | Measurement Index |
---|---|---|---|
Dependent variables | The overall number of green patent applications | Increase the overall number of green patent applications by 1 and then take the logarithm | |
Green invention patent applications | Increase the number of green invention patent applications by 1 and then take the logarithm | ||
Green utility model patent applications | Increase the number of green utility model patent applications by 1 and then take the logarithm | ||
Main independent variable | Policy effect of GFRI | is recorded as 0 from 2011 to 2016 and 1 from 2017 to 2018. If the province where the company is registered is a pilot area, then is recorded as 1; otherwise, 0. | |
Mechanism variables | Internal financing constraint | (current assets − current liabilities)/total assets | |
External financing constraint | interest expense/total assets | ||
Control variables | Enterprise size | The natural logarithm of the total assets at the end of the year | |
Enterprise age | Statistical year − year of establishment + 1 | ||
Tobin’s Q ratio | Enterprise market value/capital replacement value | ||
Gearing ratio | End-of-period liabilities/end-of-period total assets | ||
Return on assets | Net profit/total assets |
Variables | Mean | Std. Dev. | Min | Max | Obs | ||
---|---|---|---|---|---|---|---|
2011–2016 | Treatment group | 0.22 | 0.64 | 0.00 | 6.56 | 8363 | |
0.18 | 0.55 | 0.00 | 4.74 | 8363 | |||
0.31 | 0.77 | 0.00 | 6.69 | 8363 | |||
22.03 | 1.29 | 15.72 | 28.51 | 8363 | |||
9.52 | 6.77 | 0.00 | 26.00 | 8363 | |||
2.31 | 3.19 | 0.15 | 175.00 | 8363 | |||
0.41 | 0.21 | 0.01 | 1.01 | 8363 | |||
0.09 | 0.39 | −2.88 | 23.74 | 8363 | |||
Control group | 0.22 | 0.62 | 0.00 | 5.40 | 3543 | ||
0.20 | 0.58 | 0.00 | 5.35 | 3543 | |||
0.33 | 0.78 | 0.00 | 5.91 | 3543 | |||
21.83 | 1.12 | 17.66 | 26.10 | 3543 | |||
7.67 | 6.33 | 0.00 | 26.00 | 3543 | |||
2.31 | 2.38 | 0.77 | 92.25 | 3543 | |||
0.37 | 0.19 | 0.01 | 0.97 | 3543 | |||
0.15 | 3.78 | −0.08 | 224.93 | 3543 | |||
2017–2018 | Treatment group | 0.28 | 0.70 | 0.00 | 6.72 | 3713 | |
0.20 | 0.57 | 0.00 | 4.94 | 3713 | |||
0.38 | 0.83 | 0.00 | 6.87 | 3713 | |||
22.28 | 1.32 | 18.11 | 28.52 | 3713 | |||
10.49 | 7.85 | 0.00 | 28.00 | 3713 | |||
1.85 | 1.63 | 0.73 | 44.01 | 3713 | |||
0.40 | 0.19 | 0.02 | 0.99 | 3713 | |||
0.10 | 0.64 | −0.03 | 38.50 | 3713 | |||
Control group | 0.28 | 0.70 | 0.00 | 6.11 | 1783 | ||
0.26 | 0.64 | 0.00 | 5.19 | 1783 | |||
0.42 | 0.87 | 0.00 | 6.44 | 1783 | |||
22.06 | 1.18 | 18.11 | 26.43 | 1783 | |||
7.99 | 7.20 | 0.00 | 28.00 | 1783 | |||
1.83 | 1.22 | 0.75 | 33.87 | 1783 | |||
0.38 | 0.18 | 0.01 | 0.92 | 1783 | |||
0.09 | 0.07 | −0.03 | 0.85 | 1783 |
No Control Variables | Add Control Variables | |||||
---|---|---|---|---|---|---|
Variables | (I) | (II) | (III) | (IV) | (V) | (VI) |
0.0477 *** | 0.0579 *** | 0.0638 *** | 0.0422 *** | 0.0543 *** | 0.0572 *** | |
(0.014) | (0.013) | (0.017) | (0.014) | (0.013) | (0.017) | |
0.0490 *** | 0.0333 *** | 0.0599 *** | ||||
(0.009) | (0.008) | (0.010) | ||||
0.0106 *** | −0.0002 | 0.0097 *** | ||||
(0.002) | (0.002) | (0.002) | ||||
0.0018 | 0.0013 | 0.0022 | ||||
(0.002) | (0.002) | (0.002) | ||||
0.0448 | 0.0254 | 0.0502 | ||||
(0.033) | (0.031) | (0.040) | ||||
0.0006 | 0.0005 | 0.0007 | ||||
(0.002) | (0.002) | (0.002) | ||||
Constant | 0.1589 *** | 0.1536 *** | 0.2449 *** | −0.9728 *** | −0.5748 *** | −1.1199 *** |
(0.009) | (0.008) | (0.010) | (0.180) | (0.168) | (0.216) | |
Enterprise FE | Y | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y | Y |
N | 17,402 | 17,402 | 17,402 | 17,402 | 17,402 | 17,402 |
R2 | 0.0197 | 0.0087 | 0.0185 | 0.0226 | 0.0102 | 0.0215 |
Panel A | External Financing Constraints | ||||||
---|---|---|---|---|---|---|---|
Step 1 | Step 2 | Step 3 | |||||
Variables | (I) | (II) | (III) | (IV) | (V) | (VI) | (VII) |
1.4501 *** | 0.9769 *** | 1.5211 *** | 0.0006 *** | 1.4071 *** | 0.9335 *** | 1.4716 *** | |
(0.184) | (0.164) | (0.225) | (0.000) | (0.184) | (0.164) | (0.225) | |
75.2219 *** | 75.9437 *** | 86.4825 *** | |||||
(12.255) | (10.951) | (15.008) | |||||
Constant | −3.7295 *** | −3.0477 | −4.4476 *** | −0.0006 *** | −3.6877 *** | −3.0054 *** | −4.3994 *** |
(0.137) | (0.123) | (0.168) | (0.000) | (0.137) | (0.122) | (0.168) | |
Controls | Y | Y | Y | Y | Y | Y | Y |
Enterprise FE | Y | Y | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y | Y | Y |
N | 8570 | 8570 | 8570 | 8570 | 8570 | 8570 | 8570 |
R2 | 0.007 | 0.098 | 0.108 | 0.007 | 0.111 | 0.103 | 0.111 |
Panel B | Internal Financing Constraints | ||||||
Step 1 | Step 2 | Step 3 | |||||
Variables | (I) | (II) | (III) | (IV) | (V) | (VI) | (VII) |
0.0333 ** | 0.0492 *** | 0.0612 *** | 0.0160 *** | 0.0302 * | 0.0473 *** | 0.0573 *** | |
(0.016) | (0.014) | (0.020) | (0.005) | (0.016) | (0.014) | (0.020) | |
0.1965 *** | 0.1180 *** | 0.2454 *** | |||||
(0.024) | (0.021) | (0.029) | |||||
Constant | −3.6927 *** | −2.9531 *** | −4.3646 *** | 0.4745 *** | −3.7859 *** | −3.0091 *** | −4.4810 *** |
(0.106) | (0.092) | (0.128) | (0.034) | (0.106) | (0.093) | (0.129) | |
Controls | Y | Y | Y | Y | Y | Y | Y |
Enterprise FE | Y | Y | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y | Y | Y |
N | 16116 | 16116 | 16116 | 16116 | 16116 | 16116 | 16116 |
R2 | 0.092 | 0.089 | 0.096 | 0.551 | 0.095 | 0.091 | 0.100 |
Eastern Region | Central and Western Regions | |||||
---|---|---|---|---|---|---|
Variables | (I) | (II) | (III) | (IV) | (V) | (VI) |
0.0461 *** | 0.0589 *** | 0.0635 *** | 0.0038 | 0.0528 * | 0.0170 | |
(0.016) | (0.015) | (0.020) | (0.032) | (0.032) | (0.039) | |
Constant | −0.8594 *** | −0.4502 ** | −0.9687 *** | −1.1167 *** | −0.8227 *** | −1.3287 *** |
(0.236) | (0.216) | (0.281) | (0.279) | (0.277) | (0.341) | |
Controls | Y | Y | Y | Y | Y | Y |
Enterprise FE | Y | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y | Y |
N | 12,059 | 12,059 | 12,059 | 5343 | 5343 | 5343 |
R2 | 0.026 | 0.011 | 0.025 | 0.018 | 0.010 | 0.016 |
State-Owned Enterprise | Non-State-Owned Enterprise | |||||
---|---|---|---|---|---|---|
Variables | (I) | (II) | (III) | (IV) | (V) | (VI) |
−0.0069 | 0.0569 ** | 0.0260 | 0.0660 *** | 0.0530 *** | 0.0724 *** | |
(0.025) | (0.023) | (0.029) | (0.017) | (0.016) | (0.021) | |
Constant | −1.0709 *** | −0.1413 | −1.0846 *** | −0.9740 *** | −0.7738 *** | −1.1620 *** |
(0.330) | (0.298) | (0.384) | (0.221) | (0.212) | (0.270) | |
Controls | Y | Y | Y | Y | Y | Y |
Enterprise FE | Y | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y | Y |
N | 6161 | 6161 | 6161 | 11,241 | 11,241 | 11,241 |
R2 | 0.025 | 0.008 | 0.021 | 0.023 | 0.012 | 0.022 |
Variables | (I) | (II) | (III) |
---|---|---|---|
0.0031 | −0.0180 | −0.0088 | |
(0.022) | (0.021) | (0.026) | |
0.0229 | −0.0141 | 0.0032 | |
(0.022) | (0.021) | (0.027) | |
0.0295 | 0.0128 | 0.0271 | |
(0.022) | (0.020) | (0.026) | |
0.0165 | −0.0100 | 0.0000 | |
(0.021) | (0.020) | (0.025) | |
0.0644 *** | 0.0536 *** | 0.0750 *** | |
(0.021) | (0.019) | (0.025) | |
0.0457 ** | 0.0453 ** | 0.0467 * | |
(0.021) | (0.020) | (0.025) | |
Constant | −0.9705 *** | −0.5761 *** | −1.1215 *** |
(0.180) | (0.169) | (0.216) | |
Controls | Y | Y | Y |
Enterprise FE | Y | Y | Y |
Year FE | Y | Y | Y |
N | 17,402 | 17,402 | 17,402 |
R2 | 0.023 | 0.010 | 0.022 |
Variables | Before/after Matching | Mean | Standard Deviation (%) | Decrease in Standard Deviation (%) | t-Test | |
---|---|---|---|---|---|---|
Treatment Group | Control Group | > | ||||
Before | 21.907 | 22.103 | −19.0 | 81.1 | 0.000 | |
After | 21.909 | 21.945 | −2.9 | 0.118 | ||
Before | 7.7768 | 9.8193 | −29.7 | 96.5 | 0.000 | |
After | 7.7741 | 7.8461 | −1.0 | 0.571 | ||
Before | 2.1491 | 2.1694 | −0.8 | −51.1 | 0.638 | |
After | 2.1306 | 2.1612 | −1.2 | 0.395 | ||
Before | 0.3773 | 0.4061 | −14.7 | 83.6 | 0.000 | |
After | 0.3772 | 0.3820 | −2.4 | 0.206 | ||
Before | 0.1320 | 0.0962 | 1.6 | 84.0 | 0.214 | |
After | 0.0897 | 0.0955 | −0.3 | 0.408 |
Mixed | Year-by-Year | |||||
---|---|---|---|---|---|---|
Variables | (I) | (II) | (III) | (IV) | (V) | (VI) |
0.0423 *** | 0.0543 *** | 0.0572 *** | 0.0419 *** | 0.0539 *** | 0.0566 *** | |
(0.014) | (0.013) | (0.017) | (0.014) | (0.013) | (0.017) | |
Constant | −0.9793 *** | −0.5793 *** | −1.1272 *** | −0.9973 *** | −0.5910 *** | −1.1446 *** |
(0.180) | (0.169) | (0.216) | (0.184) | (0.173) | (0.221) | |
Controls | Y | Y | Y | Y | Y | Y |
Enterprise FE | Y | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y | Y |
N | 17,398 | 17,398 | 17,398 | 17,328 | 17,328 | 17,328 |
R2 | 0.023 | 0.010 | 0.022 | 0.023 | 0.010 | 0.022 |
Variables | (I) | (II) | (III) |
---|---|---|---|
0.0150 | 0.0088 | 0.0151 | |
(0.014) | (0.014) | (0.017) | |
Constant | −0.8506 *** | −0.4972 ** | −0.9718 *** |
(0.226) | (0.221) | (0.277) | |
Controls | Y | Y | Y |
Enterprise FE | Y | Y | Y |
Year FE | Y | Y | Y |
N | 11,906 | 11,906 | 11,906 |
R2 | 0.019 | 0.008 | 0.018 |
Variables | (I) | (II) | (III) |
---|---|---|---|
0.0339 ** | 0.0106 | 0.0341 *** | |
(0.014) | (0.010) | (0.013) | |
Constant | −0.6791 *** | −0.2626 ** | −0.5443 *** |
(0.176) | (0.131) | (0.166) | |
Controls | Y | Y | Y |
Enterprise FE | Y | Y | Y |
Year FE | Y | Y | Y |
N | 17,402 | 17,402 | 17,402 |
R2 | 0.025 | 0.022 | 0.013 |
Variables | (I) | (II) | (III) |
---|---|---|---|
0.0679 *** | 0.0811 *** | 0.1004 *** | |
(2.859) | (3.615) | (3.506) | |
0.0385 *** | 0.0252 *** | 0.0465 *** | |
(3.777) | (2.618) | (3.789) | |
0.0093 * | −0.0009 | 0.0091 | |
(1.835) | (−0.188) | (1.479) | |
0.0009 | 0.0008 | 0.0015 | |
(0.537) | (0.513) | (0.707) | |
0.0180 | 0.0121 | 0.0132 | |
(0.474) | (0.337) | (0.289) | |
0.0005 | 0.0005 | 0.0008 | |
(0.293) | (0.290) | (0.349) | |
0.0037 | −0.0096 | −0.0026 | |
(0.546) | (−1.494) | (−0.320) | |
0.0058 * | 0.0005 | 0.0031 | |
(1.871) | (0.188) | (0.835) | |
−0.0009 | 0.0005 | 0.0002 | |
(−0.384) | (0.234) | (0.078) | |
Enterprise FE | Y | Y | Y |
Year FE | Y | Y | Y |
Constant | −0.7914 *** | −0.2966 | −0.8189 *** |
(−3.201) | (−1.271) | (−2.747) | |
N | 14,009 | 14,009 | 14,009 |
R2 | 0.024 | 0.011 | 0.023 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, N.; Wu, J.; Liu, Z. How Does Green Finance Reform Affect Enterprise Green Technology Innovation? Evidence from China. Sustainability 2022, 14, 9865. https://doi.org/10.3390/su14169865
Lu N, Wu J, Liu Z. How Does Green Finance Reform Affect Enterprise Green Technology Innovation? Evidence from China. Sustainability. 2022; 14(16):9865. https://doi.org/10.3390/su14169865
Chicago/Turabian StyleLu, Na, Jiahui Wu, and Ziming Liu. 2022. "How Does Green Finance Reform Affect Enterprise Green Technology Innovation? Evidence from China" Sustainability 14, no. 16: 9865. https://doi.org/10.3390/su14169865
APA StyleLu, N., Wu, J., & Liu, Z. (2022). How Does Green Finance Reform Affect Enterprise Green Technology Innovation? Evidence from China. Sustainability, 14(16), 9865. https://doi.org/10.3390/su14169865