Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review
Abstract
:1. Introduction
2. Pre-Treatments
Microalgae | Lipid Productivity (mg/L/day) | References |
---|---|---|
Phaeodactylum tricomutum | 44.8 | [36] |
Chaetoceros muelleri | 21.8 | [37] |
Skeletonema costatum | 17.4 | [37] |
Botryococcus braunii | 5.5 | [38] |
Dunaliella tertiolecta | 60.6–69.8 | [37] |
Dunaliella sp. | 33.5 | [36] |
Dunaliella salina | 116 | [36] |
Nannochloris sp. | 60.9–76.5 | [37] |
Nannochloropsis sp. | 54.8 | [38] |
Nannochloropsis oculata | 84.0–142.0 | [36] |
Scenedesmus sp. | 40.8–53.9 | [36] |
Chlorella sp. | 42.1 | [38] |
Chlorella vulgaris | 11.2–40.0 | [36] |
Chlorella protothecoides | 1214 | [36] |
Chlorella emersonii | 10.3–50.0 | [36] |
Pavlova salina | 49.4 | [36] |
2.1. Mechanical Pre-Treatment
2.1.1. High-Pressure Homogenisers
2.1.2. Bead Milling
2.1.3. High-Speed Homogenisers
2.2. Physical Pre-Treatment
2.2.1. Ultrasound Pre-Treatment
Microalgae | Operating Conditions | Output Studied | Review | Reference |
---|---|---|---|---|
Botryococcus sp. | 0.5%DCW, 5 min, 10 kHz–100 mL | 8.8% lipid recovery | Total lipids. | [54] |
Salvinia molesta. | 5 min and frequency of 2 kHz–100 mL | 19.7% increased lipid content | Perfect cell count, total lipids. | [86] |
Chlorella vulgaris | 20 kHz using 750 W for different times: 0, 5, 10, and 20 min, at 25 °C | 23% lipid content | Perfect cell count, total lipids. | [63] |
Chlorella sp. | 20 kHz, 0.8 kW-h/L cells | Efficiency of 12.6 (mg/g cell) | Perfect cell count, total lipids. | [87] |
Schizochytrium sp. | 150 W, time for 30 min, with temperature 50 °C | Oil yields up to 93.76 (dry weight) | Total lipids. | [88] |
Scenedesmus sp. | 20 W and frequency 18 Hz for 5 s. | 21.3% to 28.3% lipid yield | Perfect cell count, protein analysis | [64] |
2.2.2. Microwave Techniques
2.3. Thermal Pre-Treatment
2.3.1. Steam Explosion
2.3.2. Autoclaving
Microalgae | Operating Conditions | Output Studied | Review | Reference |
---|---|---|---|---|
Steam explosion | ||||
Nannochloropsis gaditana sp. | 150 °C for 5 min | Lipid recovery 0.3–3.6% | Total lipids. | [111] |
Chlorella sorokiniana | 120 °C for 5 min | 17.9% and 18.2% lipid extraction | Total lipids. | [108] |
Scenedesmus dimorphus | 100 °C–130 °C | Enchanted solubilisation | Perfect cell count, total lipids. | [112] |
Botryococcus braunii | 90 °C, 10 min | Hydrocarbon (0.4% at 75 °C). 97.8 wt% recovery | Biodiesel production perfect cell count, total lipids. | [113] |
Scenedesmus sp. | 90 °C | Efficient cell disruption | Total lipids. | [114] |
Nannochloropsis | 30 °C and 60 °C | Biomass yield of 41% | Total lipids. | [114] |
Chlorella pyrenoidosa | 130 °C for 60 min–10 mL | 2.1-fold increased lipid recovery | Total lipids. | [115] |
Autoclaving | ||||
Chlorella vulgaris | 100 °C for 10 min–200 mL | 15.4% lipid yield | Total lipids. | [116] |
100 °C, 1.5 MPa–5 min | Lipid content of 29.34% | Total lipids. | [54] | |
121 °C with 0.1 MPa for 5 min | Lipid content of 24% | Total lipids. | [117] | |
Botryococcus sp. | 125 °C with 1.5 MPa for 5 min | 5.4–11.9% lipid recovery | Total lipids. | [54] |
2.4. Chemical Treatments
2.4.1. Solvent Pre-Treatment
2.4.2. Catalytic Pre-Treatment
2.4.3. Enzymatic Treatment
Microalgae | Operating Conditions | Output Studied | Review | Reference |
---|---|---|---|---|
Solvent treatment | ||||
Chlorella vulgaris | Amine solvents (dimethylbutylamine, dipropylamine, ethylbutylamine, phenethylamine, and dimethylcyclohexylamine) + culture mixed in ratio of 1:1 with CO2 treatment–50 mL | Lipid extraction yield of 9.16% | Total lipids. | [133] |
Chlorella sp. | Dimethylbenzylamine solvent, culture (1:1 ratio for 1 h extraction time) | Lipid extraction of 25.97,32 and 40.8%. | Total lipids. | [134] |
Scenedesmus | Hexane: isopropanol (3:2) and solvent; culture (75:1) for 2 h extraction time. | FAMEs of 13% and total lipids, with polar FAME about 1.5% of total lipids | Biodiesel production, total lipids. | [135] |
Nannochloropsis oceanica | TEPDA solvent: culture (1:4 ratio with 2 h extraction time) | 98.2% lipid extraction efficiency. | Biodiesel production, total lipids. | [125] |
Catalytic treatment | ||||
Nannochloropsis sp. | Mixing 10% of Mg and Zr for 4 h at a temperature of 65 °C | Biodiesel potassium hydroxide yield of 28.0%. | Biodiesel production, total lipids. | [136] |
Monoraphidium sp. | 2 mL hexane and 5 mL of 20% saturated NaCl solution. | 82.86% saponifiable components and 17.14% unsaponifiable components. | Total lipids. | [137] |
Chlorella vulgaris | Dried in oven at 48 h at 100 °C | Lipid yield of 53.25% | Total lipids. | [138] |
220 °C, 2 h methanol per gram of biomass–8 mL | Biodiesel yield of 74.6% | Biodiesel production, total lipids. | [139] | |
Scenedesmus acutus | Dried in vacuum at 60 °C for 20 h. | ∼99 wt% hydrocarbons for biodiesel. 12.6% of extracted lipids. | Biodiesel production, total lipids. | [140] |
Enzymatic treatment | ||||
Rhodotorula glutinis | Adding glycerol, AA, and ChCl with 60 ℃ for 120 min, solid–liquid ratio is 1:20 | Lipid yield improved by 32.1% and 54% | Total lipids. | [107] |
Chlorella vulgaris | 12 h hydrolysis by protease 2% (v/w) enzymes at 45 °C for 45 min and 12 h hydrolysis by cellulase (2% v/w) enzymes at 45 °C for 45 min | 44% lipid yield. | Total lipids. | [64] |
Enzymatic hydrolysis was performed at pH 4.8 and 50 °C for 72 h. | 1.10–1.69-fold and 85.3% hydrolysis yield. | Total lipids. | [141] | |
Mixing sanilase and trypsin enzymes for hydrolysis. | 30% lipid yield | Total lipids. | [142] | |
Nannochloropsis sp. | Enzymatic treatment at 50 °C for 30 min and a pH of 4. | 90.0% lipid yield. | Total lipids. | [143] |
2.5. Biological Pre-Treatment
2.6. Supercritical Fluid Extraction
2.7. Pulsed Electric Treatment
2.8. Combined Pre-Treatment Methods
2.9. Other Latest Pre-Treatment Techniques
3. Comparison and Discussion on Different Pre-Treatment Techniques
4. Selection and Processing of Pre-Treatment Technique
- Many iterations must be carried out for process development using published literature. New methods should be evaluated and analysed for lipid yield by considering the environmental impacts and cost factors of the method.
- Improvement must be carried out according to successful studies using the available modern techniques, and the processing should be continued.
- Energy and cost are very significant. Along with this, product evaluation is also important and can show an increase in process profitability.
- Following the safety and legislation protocols is also essential. When using chemical methods, it is very important to consider safety and legislation factors.
5. Energy Consumption of Pre-Treatment Techniques
6. Key Challenges and Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandrasekhar, K.; Lee, Y.-J.; Lee, D.-W.; Chandrasekhar, K.; Lee, Y.-J.; Lee, D.-W. Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes. Int. J. Mol. Sci. 2015, 16, 8266–8293. [Google Scholar] [CrossRef] [PubMed]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Belesova, K.; Berry, H.; Bouley, T.; Boykoff, M.; Byass, P.; Cai, W.; et al. The 2018 report of the Lancet Countdown on health and climate change: Shaping the health of nations for centuries to come. Lancet 2018, 392, 2479–2514. [Google Scholar] [CrossRef]
- Schenk, P.M.; Thomas-Hall, S.R.; Stephens, E.; Marx, U.C.; Mussgnug, j.; Posten, C.; Kruse, O.; Hankamer, B. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. BioEnergy Res. 2008, 1, 20–43. [Google Scholar] [CrossRef]
- Kadier, A.; Simayi, Y.; Abdeshahian, P.; Azman, N.F.; Chandrasekhar, K.; Kalil, M.S. A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alex. Eng. J. 2016, 55, 427–443. [Google Scholar] [CrossRef]
- Brennan, L.; Owende, P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- de Stefano, L.; de Stefano, M.; de Tommasi, E.; Rea, I.; Rendina, I. A natural source of porous biosilica for nanotech applications: The diatoms microalgae. Phys. Status Solidi (C) Curr. Top. Solid State Phys. 2011, 8, 1820–1825. [Google Scholar] [CrossRef]
- Harun, R.; Danquah, M.K. Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chem. Eng. J. 2011, 168, 1079–1084. [Google Scholar] [CrossRef]
- Hazar, H.; Aydin, H. Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)-diesel blends. Appl. Energy 2010, 87, 786–790. [Google Scholar] [CrossRef]
- Tsukahara, K.; Sawayama, S. Liquid fuel production using microalgae. J. Japan Pet. Inst. 2005, 48, 251–259. [Google Scholar] [CrossRef]
- Roberts, G.W.; Fortier, M.O.P.; Sturm, B.S.M.; Stagg-Williams, S.M. Promising pathway for algal biofuels through wastewater cultivation and hydrothermal conversion. Energy Fuels 2013, 27, 857–867. [Google Scholar] [CrossRef]
- Gerken, H.G.; Donohoe, B.; Knoshaug, E.P. Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 2013, 237, 239–253. [Google Scholar] [CrossRef]
- Scholz, M.J.; Weiss, T.L.; Jinkerson, R.E.; Jing, J.; Roth, R.; Goodenough, U.; Posewitz, M.C.; Gerken, H. Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot. Cell 2014, 13, 1450–1464. [Google Scholar] [CrossRef] [PubMed]
- Dufey, A.; International Institute for Environment and Development. Biofuels Production, Trade and Sustainable Development: Emerging Issues; IIED: London, UK, 2006. [Google Scholar]
- Olson, D.L.; Rosacker, K. Crowdsourcing and open source software participation. Serv. Bus. 2013, 7, 499–511. [Google Scholar] [CrossRef]
- Balat, M. An Overview of Biofuels and Policies in the European Union. Energy Sources Part B Econ. Plan. Policy 2007, 2, 167–181. [Google Scholar] [CrossRef]
- Shay, E.G. Diesel fuel from vegetable oils: Status and opportunities. Biomass Bioenergy 1993, 4, 227–242. [Google Scholar] [CrossRef]
- Becker, K.; Makkar, H.P.S. Jatropha curcas: A potential source for tomorrow’ s oil and biodiesel. Lipid Technol. 2008, 20, 104–107. [Google Scholar] [CrossRef]
- Dürre, P. Biobutanol: An attractive biofuel. Biotechnol. J. 2007, 2, 1525–1534. [Google Scholar] [CrossRef]
- Roessler, P.G.; Brown, L.M.; Dunahay, T.G.; Heacox, D.A.; Jarvis, E.E.; Schneider, J.C.; Talbot, S.G.; Zeiler, K.G. Genetic Engineering Approaches for Enhanced Production of Biodiesel Fuel from Microalgae. ACS Symp. Ser. 1994, 566, 255–270. [Google Scholar] [CrossRef]
- Li-Beisson, Y.; Thelen, J.J.; Fedosejevs, E.; Harwood, J.L. The lipid biochemistry of eukaryotic algae. Prog. Lipid Res. 2019, 74, 31–68. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.M.; Ren, L.J.; Zhao, Q.Y.; Ji, X.J.; Huang, H. Microalgae for the production of lipid and carotenoids: A review with focus on stress regulation and adaptation. Biotechnol. Biofuels 2018, 11, 1–16. [Google Scholar] [CrossRef]
- Barkia, I.; Saari, N.; Manning, S.R. Microalgae for High-Value Products Towards Human Health and Nutrition. Mar. Drugs 2019, 17, 304. [Google Scholar] [CrossRef]
- Lever, J.; Brkljaca, R.; Kraft, G.; Urban, S. Natural Products of Marine Macroalgae from South Eastern Australia, with Emphasis on the Port Phillip Bay and Heads Regions of Victoria. Mar. Drugs 2020, 18, 142. [Google Scholar] [CrossRef]
- Halim, R.; Rupasinghe, T.W.T.; Tull, D.L.; Webley, P.A. Mechanical cell disruption for lipid extraction from microalgal biomass. Bioresour. Technol. 2013, 140, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.; Reddy, H.; Muppaneni, T.; Ponnusamy, S.; Sun, Y.; Dailey, P.; Cooke, P.; Patil, U.; Deng, S. Optimization of microwave-enhanced methanolysis of algal biomass to biodiesel under temperature controlled conditions. Bioresour. Technol. 2013, 137, 278–285. [Google Scholar] [CrossRef]
- Patil, P.D.; Dandamudi, K.P.R.; Wang, J.; Deng, Q.; Deng, S. Extraction of bio-oils from algae with supercritical carbon dioxide and co-solvents. J. Supercrit. Fluids 2018, 135, 60–68. [Google Scholar] [CrossRef]
- Meullemiestre, A.; Breil, C.; Abert-Vian, M.; Chemat, F. Microwave, ultrasound, thermal treatments, and bead milling as intensification techniques for extraction of lipids from oleaginous Yarrowia lipolytica yeast for a biojetfuel application. Bioresour. Technol. 2016, 211, 190–199. [Google Scholar] [CrossRef]
- Passos, F.; Astals, S.; Ferrer, I. Anaerobic digestion of microalgal biomass after ultrasound pretreatment. Waste Manag. 2014, 34, 2098–2103. [Google Scholar] [CrossRef]
- Clarke, A.; Prescott, T.; Khan, A.; Olabi, A.G. Causes of breakage and disruption in a homogenizer. Appl. Energy 2010, 87, 3680–3690. [Google Scholar] [CrossRef]
- Maltseva, Y.M.K.; Maltsev, Y.; Maltseva, K.; Khmelnytskyi, B. Fatty acids of microalgae: Diversity and applications. Rev. Environ. Sci. Bio/Technol. 2021, 20, 515–547. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, L.; Qiu, S.; Ge, S. Determination of Microalgal Lipid Content and Fatty Acid for Biofuel Production. Bio. Med Res. Int. 2018, 2018, 1052036. [Google Scholar] [CrossRef]
- Dixon, C.; Wilken, L.R. Green microalgae biomolecule separations and recovery. Bioresour. Bioprocess. 2018, 5, 14. [Google Scholar] [CrossRef]
- Yoo, G.; Park, W.K.; Kim, C.W.; Choi, Y.E.; Yang, J.W. Direct lipid extraction from wet Chlamydomonas reinhardtii biomass using osmotic shock. Bioresour. Technol. 2012, 123, 717–722. [Google Scholar] [CrossRef]
- Engler, C.R. Disruption of Microbial Cells; Pergamon Press: Oxford, UK, 1985; Volume 2, pp. 305–324. [Google Scholar]
- Deshmukh, S.; Kumar, R.; Bala, K. Microalgae biodiesel: A review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Processing Technol. 2019, 191, 232–247. [Google Scholar] [CrossRef]
- Sajjadi, B.; Chen, W.Y.; Raman, A.A.A.; Ibrahim, S. Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew. Sustain. Energy Rev. 2018, 97, 200–232. [Google Scholar] [CrossRef]
- Ferreira, G.F.; Pinto, L.F.R.; Filho, R.M.; Fregolente, L.v. A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles. Renew. Sustain. Energy Rev. 2019, 109, 448–466. [Google Scholar] [CrossRef]
- Medeiros, H.; Kirleis, A.W.; Vetter, R.J. Microwave Inactivation of Thioglucosidase in Crambe. J. Am. Oil Chem. Soc. 1978, 55, 679–682. [Google Scholar] [CrossRef]
- Mercer, P.; Armenta, R.E. Developments in oil extraction from microalgae. Eur. J. Lipid Sci. Technol. 2011, 113, 539–547. [Google Scholar] [CrossRef]
- Engler, C.R. Disruption of Microbial Cells. Princ Biotechnol Eng. Consid 1985, 2, 305–324. [Google Scholar]
- Schütte, H.; Kroner, K.H.; Hustedt, H.; Kula, M.R. Experiences with a 20 litre industrial bead mill for the disruption of microorganisms. Enzym. Microb. Technol. 1983, 5, 143–148. [Google Scholar] [CrossRef]
- Shirgaonkar, I.Z.; Lothe, R.R.; Pandit, A.B. Comments on the mechanism of microbial cell disruption in high-pressure and high-speed devices. Biotechnol. Prog. 1998, 14, 657–660. [Google Scholar] [CrossRef]
- Kargi, F.; Moo-Young, M. Transport Phenomena in Bioprocesses; Pergamon Press: Oxford, UK, 1985. [Google Scholar]
- Tedesco, S.; Lochlainn, D.M.; Olabi, A.G. Particle size reduction optimization of Laminaria sbiomass for enhanced methane production. Energy 2014, 76, 857–862. [Google Scholar] [CrossRef]
- Greenwell, H.C.; Laurens, L.M.L.; Shields, R.J.; Lovitt, R.W.; Flynn, K.J. Placing microalgae on the biofuels priority list: A review of the technological challenges. J. R. Interface R. Soc. 2010, 06, 703–726. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D. ‘Helping the Guards’: Illegal displays and blueshirt criminality, 1932–1936. Eire-Ireland 2014, 49, 22–43. [Google Scholar] [CrossRef]
- Spiden, E.M.; Scales, P.J.; Kentish, S.E.; Martin, G.J.O. Critical analysis of quantitative indicators of cell disruption applied to Saccharomyces cerevisiae processed with an industrial high pressure homogenizer. Biochem. Eng. J. 2013, 70, 120–126. [Google Scholar] [CrossRef]
- Ekpeni, L.E.N.; Benyounis, K.Y.; Nkem-Ekpeni, F.F.; Stokes, J.; Olabi, A.G. Underlying factors to consider in improving energy yield from biomass source through yeast use on high-pressure homogenizer (hph). Energy 2015, 81, 74–83. [Google Scholar] [CrossRef]
- Hoare, M.; Dunnill, P. Biochemical engineering challenges of purifying useful proteins. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1989, 324, 497–507. [Google Scholar] [CrossRef]
- Moore, E.K.; Hoare, M.; Dunnill, P. Disruption of baker’s yeast in a high-pressure homogenizer: New evidence on mechanism. Enzym. Microb. Technol. 1990, 12, 764–770. [Google Scholar] [CrossRef]
- Halim, R.; Harun, R.; Danquah, M.K.; Webley, P.A. Microalgal cell disruption for biofuel development. Appl. Energy 2012, 91, 116–121. [Google Scholar] [CrossRef]
- Lee, A.K.; Lewis, D.M.; Ashman, P.J. Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass Bioenergy 2012, 46, 89–101. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Yoo, C.; Jun, S.-Y.; Ahn, C.-Y.; Oh, H.-M. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 2010, 101, S75–S77. [Google Scholar] [CrossRef]
- Shene, C.; Monsalve, M.T.; Vergara, D.; Lienqueo, M.E.; Rubilar, M. High pressure homogenization of Nannochloropsis oculata for the extraction of intracellular components: Effect of process conditions and culture age. Eur. J. Lipid Sci. Technol. 2016, 118, 631–639. [Google Scholar] [CrossRef]
- Papachristou, I.; Silve, A.; Jianu, A.; Wüstner, R.; Nazarova, N.; Müller, G.; Frey, W. Evaluation of pulsed electric fields effect on the microalgae cell mechanical stability through high pressure homogenization. Algal Res. 2020, 47, 101847. [Google Scholar] [CrossRef]
- Grimi, N.; Dubois, A.; Marchal, L.; Jubeau, S.; Lebovka, N.I.; Vorobiev, E. Selective extraction from microalgae Nannochloropsis susing different methods of cell disruption. Bioresour. Technol. 2014, 153, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Mulchandani, K.; Kar, J.R.; Singhal, R.S. Extraction of Lipids from Chlorella saccharophila Using High-Pressure Homogenization Followed by Three Phase Partitioning. Appl. Biochem. Biotechnol. 2015, 1613, 176–1626. [Google Scholar] [CrossRef] [PubMed]
- Scopus—Document Details—Evaluation of Nutritional Value and Safety of the Green Microalgae Chlorella Vulgaris Treated with Novel Processing Methods | Signed in. Available online: https://www.scopus.com/record/display.uri?eid=2-s2.0-79961163938&origin=inward&txGid=50f30500ddba8978d392e1c26c85bc87&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1 (accessed on 4 March 2022).
- Bierau, H.; Zhang, Z.; Lyddiatt, A. Direct process integration of cell disruption and fluidised bed adsorption for the recovery of intracellular proteins. J. Chem. Technol. Biotechnol. 1999, 74, 208–212. [Google Scholar] [CrossRef]
- Melendres, A.v.; Unno, H.; Shiragami, N.; Honda, H. A concept of critical velocity for cell disruption by bead mill. J. Chem. Eng. Jpn. 1992, 25, 354–356. [Google Scholar] [CrossRef]
- Bunge, F.; Pietzsch, M.; Müller, R.; Syldatk, C. Mechanical disruption of Arthrobacter sDSM 3747 in stirred ball mills for the release of hydantoin-cleaving enzymes. Chem. Eng. Sci. 1992, 47, 225–232. [Google Scholar] [CrossRef]
- Nekkanti, V.; Vabalaboina, V.; Pillai, R. Drug Nanoparticles—An Overview. In The Delivery of Nanoparticles; InTech: London, UK, 2012. [Google Scholar] [CrossRef]
- Alavijeh, R.S.; Karimi, K.; Wijffels, R.H.; van den Berg, C.; Eppink, M. Combined bead milling and enzymatic hydrolysis for efficient fractionation of lipids, proteins, and carbohydrates of Chlorella vulgaris microalgae. Bioresour. Technol. 2020, 309, 123321. [Google Scholar] [CrossRef] [PubMed]
- Emparan, Q.; Jye, Y.S.; Danquah, M.K.; Harun, R. Cultivation of Nannochloropsis smicroalgae in palm oil mill effluent (POME) media for phycoremediation and biomass production: Effect of microalgae cells with and without beads. J. Water Process. Eng. 2020, 33, 101043. [Google Scholar] [CrossRef]
- Schwenzfeier, A.; Wierenga, P.A.; Gruppen, H. Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresour. Technol. 2011, 9121, 102–9127. [Google Scholar] [CrossRef] [PubMed]
- Doucha, J.; Lívanský, K. Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl. Microbiol. Biotechnol. 2008, 81, 431–440. [Google Scholar] [CrossRef]
- Postma, P.R.; Miron, T.L.; Olivieri, G.; Barbosa, M.J.; Wijffels, R.H.; Eppink, M.H.M. Mild disintegration of the green microalgae Chlorella vulgaris using bead milling. Bioresour. Technol. 2015, 184, 297–304. [Google Scholar] [CrossRef]
- Taleb, A.; Kandiliana, R.; Toucharda, R.; Montalescota, V.; Rinaldia, T.; Tahab, S.; Takachec, H.; Marchala, L.; Legranda, J.; Pruvosta, J. Screening of freshwater and seawater microalgae strains in fully controlled photobioreactors for biodiesel production. Bioresour. Technol. 2016, 218, 480–490. [Google Scholar] [CrossRef]
- Huang, O.; Bandyopadhyay, A.; Bose, S. Influence of processing parameters on PZT thick films. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2005, 116, 19–24. [Google Scholar] [CrossRef]
- Singh, S.; Meena, P.; Saharan, V.K.; Bhoi, R.; George, S. Enhanced lipid recovery from chlorella sBiomass by green approach: A combination of ultrasonication and homogenization pre-treatment techniques (hybrid method) using aqueous deep eutectic solvents. Mater. Today Proc. 2022, 57, 179–186. [Google Scholar] [CrossRef]
- Bernaerts, T.M.M.; Panozzo, A.; Doumen, V.; Foubert, I.; Gheysen, L.; Goiris, K.; Moldenaers, P.; Hendrickx, M.E.; Van Loey, A.M. Microalgal biomass as a (multi)functional ingredient in food products: Rheological properties of microalgal suspensions as affected by mechanical and thermal processing. Algal Res. 2017, 25, 452–463. [Google Scholar] [CrossRef]
- Zhou, L.; Guan, Y.; Bi, J.; Liu, X.; Yi, J.; Chen, Q.; Wu, X.; Zhouet, M. Change of the rheological properties of mango juice by high pressure homogenization. LWT—Food Sci. Technol. 2017, 82, 121–130. [Google Scholar] [CrossRef]
- Wang, M.; Yin, Z.; Zeng, M. Microalgae as a promising structure ingredient in food: Obtained by simple thermal and high-speed shearing homogenization. Food Hydrocoll. 2022, 131, 107743. [Google Scholar] [CrossRef]
- Balasubramanian, R.K.; Doan, T.T.Y.; Obbard, J.P. Factors affecting cellular lipid extraction from marine microalgae. Chem. Eng. J. 2013, 215–216, 929–936. [Google Scholar] [CrossRef]
- Malafronte, L.; Yilmaz-Turan, S.; Krona, A.; Martinez-Sanz, M.; Vilaplana, F.; Lopez-Sanchez, P. Macroalgae suspensions prepared by physical treatments: Effect of polysaccharide composition and microstructure on the rheological properties. Food Hydrocoll. 2021, 120, 106989. [Google Scholar] [CrossRef]
- Wang, G.; Wang, T. Characterization of lipid components in two microalgae for biofuel application. JAOCS J. Am. Oil Chem. Soc. 2012, 89, 135–143. [Google Scholar] [CrossRef]
- Chisti, Y.; Moo-Young, M. Disruption of microbial cells for intracellular products. Enzym. Microb. Technol. 1986, 8, 194–204. [Google Scholar] [CrossRef]
- Shi, M.; Wang, F.; Lan, P.; Zhang, Y.; Zhang, M.; Yan, Y.; Liu, Y. Effect of ultrasonic intensity on structure and properties of wheat starch-monoglyceride complex and its influence on quality of norther-style Chinese steamed bread. LWT 2021, 138, 110677. [Google Scholar] [CrossRef]
- Alzate, M.E.; Muñoz, R.; Rogalla, F.; Fdz-Polanco, F.; Pérez-Elvira, S.I. Biochemical methane potential of microalgae: Influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresour. Technol. 2012, 123, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Scenedesmus Dimorphus and Scenedesmus Quadricauda: Two Potent Indigenous Microalgae Strains for Biomass Production and CO2 Mitigation—A Study on Their Growth Behavior and Lipid Productivity under Different Concentration of Urea as Nitrogen Source. | Semantic Scholar. Available online: https://www.semanticscholar.org/paper/Scenedesmus-dimorphus-and-Scenedesmus-quadricauda-%3A-Goswami-Kalita/98746c87fce372e744d9ba4071fb23867f6abd7d (accessed on 16 May 2022).
- González-Fernández, C.; Sialve, B.; Bernet, N.; Steyer, J.P. Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour. Technol. 2012, 110, 610–616. [Google Scholar] [CrossRef]
- Zhang, X.; Mi, T.; Gao, W.; Wu, Z.; Yuan, C.; Cui, B.; Dai, Y.; Liu, P. Ultrasonication effects on physicochemical properties of starch–lipid complex. Food Chem. 2022, 388, 133054. [Google Scholar] [CrossRef] [PubMed]
- Samson, R.; Leduy, A. Influence of mechanical and thermochemical pretreatments on anaerobic digestion ofSpirulina maxima algal biomass. Biotechnol. Lett. 1983, 5, 671–676. [Google Scholar] [CrossRef]
- Schwede, S.; Kowalczyk, A.; Gerber, M.; Span, R. Influence of Different Cell Disruption Techniques on Mono Digestion of Algal Biomass. Available online: https://www.semanticscholar.org/paper/Influence-of-Different-Cell-Disruption-Techniques-Schwede-Kowalczyk/ad21f21a945afe30cb56c09e8866b467db460611 (accessed on 10 July 2022).
- Mubarak, M.; Shaija, A.; Suchithra, T.V. Ultrasonication: An effective pre-treatment method for extracting lipid from Salvinia molesta for biodiesel production. Resour. -Effic. Technol. 2016, 2, 126–132. [Google Scholar] [CrossRef]
- Natarajan, R.; Ang, W.M.R.; Chen, X.; Voigtmann, M.; Lau, R. Lipid releasing characteristics of microalgae species through continuous ultrasonication. Bioresour. Technol. 2014, 158, 7–11. [Google Scholar] [CrossRef]
- Hao, X.; Suo, H.; Peng, H.; Xu, P.; Gao, X.; Du, S. Simulation and exploration of cavitation process during microalgae oil extracting with ultrasonic-assisted for hydrogen production. Int. J. Hydrog. Energy 2021, 46, 2890–2898. [Google Scholar] [CrossRef]
- Ji, J.; Wang, J.; Li, Y.; Yu, Y.; Xu, Z. Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics 2006, 44, e411–e414. [Google Scholar] [CrossRef] [PubMed]
- Borthwick, K.A.J.; Coakley, W.T.; McDonnell, M.B.; Nowotny, H.; Benes, E.; Gröschl, M. Development of a novel compact sonicator for cell disruption. J. Microbiol. Methods 2005, 60, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.; Alaswad, A.; Mooney, J.; Prescott, T.; Olabi, A.G. Pre-treatment techniques used for anaerobic digestion of algae. Fuel Processing Technol. 2015, 138, 765–779. [Google Scholar] [CrossRef]
- Choi, I.; Cho, S.J.; Chun, J.K.; Moon, T.W. Extraction yield of soluble protein and microstructure of soybean affected by microwave heating. J. Food Processing Preserv. 2006, 30, 407–419. [Google Scholar] [CrossRef]
- Kumar, V.; Arora, N.; Pandey, S.; Jaiswal, K.K.; Nanda, M.; Vlaskin, M.S.; Chauhan, P.K. Microwave-assisted pretreatment of harmful algal blooms for microbial oil-centered biorefinery approach. Biomass Convers. Biorefinery 2020, 12, 3097–3105. [Google Scholar] [CrossRef]
- Cheng, J.; Huang, R.; Yu, T.; Li, T.; Zhou, J.; Cen, K. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction. Bioresour. Technol. 2014, 151, 415–418. [Google Scholar] [CrossRef]
- Biodiesel Production from Dry Microalga Biomass by Microwave-Assisted In-Situ Transesterification | MATEC Web of Conferences. Available online: https://www.matec-conferences.org/articles/matecconf/abs/2018/15/matecconf_rsce2018_06005/matecconf_rsce2018_06005.html (accessed on 6 January 2022).
- Zheng, H.; Yin, J.; Gao, Z.; Huang, H.; Ji, X.; Dou, C. Disruption of chlorella vulgaris cells for the release of biodiesel-producing lipids: A comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl. Biochem. Biotechnol. 2011, 164, 1215–1224. [Google Scholar] [CrossRef]
- Wahidin, S.; Idris, A.; Yusof, N.M.; Kamis, N.H.H.; Shaleh, S.R.M. Optimization of the ionic liquid-microwave assisted one-step biodiesel production process from wet microalgal biomass. Energy Convers. Manag. 2018, 171, 1397–1404. [Google Scholar] [CrossRef]
- Iqbal, J.; Theegala, C. Microwave assisted lipid extraction from microalgae using biodiesel as co-solvent. Algal Res. 2013, 2, 34–42. [Google Scholar] [CrossRef]
- Biller, P.; Friedman, C.; Ross, A.B. Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products. Bioresour. Technol. 2013, 136, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Amarni, F.; Kadi, H. Kinetics study of microwave-assisted solvent extraction of oil from olive cake using hexane. Comparison with the conventional extraction. Innov. Food Sci. Emerg. Technol. 2010, 11, 322–327. [Google Scholar] [CrossRef]
- Pasquet, V.; Chérouvrier, J.; Farhat, F.; Thiéry, V.; Piot, J.; Bérard, J.; Kaas, R.; Serive, B.; Patrice, T.; Cadoret, J.; et al. Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process. Biochem. 2011, 46, 59–67. [Google Scholar] [CrossRef]
- Aboulfoth, A.; El Gohary, E.H.; El Monayeri, O.D. Effect of thermal pretreatment on the solubilization of organic matters in a mixture of primary and waste activated sludge. J. Urban Environ. Eng. 2015, 9, 82–88. [Google Scholar] [CrossRef]
- Mahdy, A.; Mendez, L.; Ballesteros, M.; González-Fernández, C. Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition. Energy Convers. Manag. 2014, 85, 551–557. [Google Scholar] [CrossRef]
- Velásquez, J.A.; Ferrando, F.; Salvadó, J. Effects of kraft lignin addition in the production of binderless fiberboard from steam exploded Miscanthus sinensis. Ind. Crops Prod. 2003, 18, 17–23. [Google Scholar] [CrossRef]
- Schell, D.; Nguyen, Q.; Tucker, M.; Boynton, B. Pretreatment of softwood by acid-catalyzed steam explosion followed by alkali extraction. Appl. Biochem. Biotechnol. Part A Enzym. Eng. Biotechnol. 1998, 17, 70. [Google Scholar] [CrossRef]
- Romaní, A.; Garrote, G.; Ballesteros, I.; Ballesteros, M. Second generation bioethanol from steam exploded Eucalyptus globulus wood. Fuel 2013, 111, 66–74. [Google Scholar] [CrossRef]
- Chen, W.H.; Pen, B.L.; Yu, C.T.; Hwang, W.S. Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresour. Technol. 2011, 102, 2916–2924. [Google Scholar] [CrossRef]
- Lorente, E.; Farriol, X.; Salvadó, J. Steam explosion as a fractionation step in biofuel production from microalgae. Fuel Process. Technol. 2015, 131, 93–98. [Google Scholar] [CrossRef]
- Matsakas, L.; Nitsos, C.; Raghavendran, V.; Yakimenko, O.; Persson, G.; Olsson, E.; Rova, U.; Olsson, L.; Christakopoulos, P. A novel hybrid organosolv: Steam explosion method for the efficient fractionation and pretreatment of birch biomass. Biotechnol. Biofuels 2018, 11, 160. [Google Scholar] [CrossRef]
- Olofsson, M.; Lamela, T.; Nilsson, E.; Bergé, J.-P.; Del Pino, V.; Uronen, P.; Legrand, C. Combined effects of nitrogen concentration and seasonal changes on the production of lipids in Nannochloropsis oculate. Mar. Drugs 2014, 12, 1891–1910. [Google Scholar] [CrossRef]
- Nurra, C.; Torras, C.; Clavero, E.; Ríos, S.; Rey, M.; Lorente, E.; Farriol, X.; Salvadó, J. Biorefinery concept in a microalgae pilot plant. Culturing, dynamic filtration and steam explosion fractionation. Bioresour. Technol. 2014, 163, 136–142. [Google Scholar] [CrossRef]
- Chandra, T.S.; Suvidha, G.; Mukherji, S.; Chauhan, V.S.; Vidyashankar, S.; Krishnamurthi, K.; Sarada, R.; Mudliar, S.N. Statistical optimization of thermal pretreatment conditions for enhanced biomethane production from defatted algal biomass. Bioresour. Technol. 2014, 162, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Kita, K.; Okada, S.; Sekino, H.; Imou, K.; Yokoyama, S.; Amano, T. Thermal pre-treatment of wet microalgae harvest for efficient hydrocarbon recovery. Appl. Energy 2010, 87, 2420–2423. [Google Scholar] [CrossRef]
- Marsolek, M.D.; Kendall, E.; Thompson, P.L.; Shuman, T.R. Thermal pretreatment of algae for anaerobic digestion. Bioresour. Technol. 2014, 151, 373–377. [Google Scholar] [CrossRef]
- Song, W.; Huang, R.; Guo, H.; Yin, C.; Wang, C.; Cheng, J.; Yang, W. Characterization of wet microalgal cells pretreated with steam for lipid extraction. Chin. J. Chem. Eng. 2021, 37, 114–120. [Google Scholar] [CrossRef]
- Silva, A.P.F.d.; Costa, M.C.; Lopes, A.C.; Neto, E.F.A.; Leitão, R.C.; Mota, C.R.; Santos, A.B.d. Comparison of pretreatment methods for total lipids extraction from mixed microalgae. Renew. Energy 2014, 63, 762–766. [Google Scholar] [CrossRef]
- Prabakaran, P.; Ravindran, A.D. A comparative study on effective cell disruption methods for lipid extraction from microalgae. Lett. Appl. Microbiol. 2011, 53, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.R.; Passarinho, P.C.; Gouveia, L. Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour. Technol. 2012, 104, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Kendir, E.; Ugurlu, A. A comprehensive review on pretreatment of microalgae for biogas production. Int. J. Energy Res. 2018, 42, 3711–3731. [Google Scholar] [CrossRef]
- Gonzalez-Fernandez, C.; Barreiro-Vescovo, S.; de Godos, I.; Fernandez, M.; Zouhayr, A.; Ballesteros, M. Biochemical methane potential of microalgae biomass using different microbial inocula. Biotechnol. Biofuels 2018, 11, 184. [Google Scholar] [CrossRef]
- Cho, S.; Park, S.; Seon, J.; Yu, J.; Lee, T. Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production. Bioresour. Technol. 2013, 143, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Bohutskyi, P.; Betenbaugh, M.J.; Bouwer, E.J. The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains. Bioresour. Technol. 2014, 155, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Cardeña, R.; Moreno, G.; Bakonyi, P.; Buitrón, G. Enhancement of methane production from various microalgae cultures via novel ozonation pretreatment. Chem. Eng. J. 2017, 307, 948–954. [Google Scholar] [CrossRef]
- Jessop, P.G.; Subramaniam, B. Gas-expanded liquids. Chem. Rev. 2007, 2666, 107–2694. [Google Scholar] [CrossRef]
- Guo, H.; Cheng, J.; Mao, Y.; Qian, L.; Yang, W.; Park, J.Y. Synergistic effect of ultrasound and switchable hydrophilicity solvent promotes microalgal cell disruption and lipid extraction for biodiesel production. Bioresour. Technol. 2022, 343, 126087. [Google Scholar] [CrossRef]
- Atadashi, I.M.; Aroua, M.K.; Aziz, A.R.A.; Sulaiman, N.M.N. The effects of catalysts in biodiesel production: A review. J. Ind. Eng. Chem. 2013, 26, 25. [Google Scholar] [CrossRef]
- Vicente, G.; Martínez, M.; Aracil, J. Integrated biodiesel production: A comparison of different homogeneous catalysts systems. Bioresour. Technol. 2004, 92, 297–305. [Google Scholar] [CrossRef]
- Li, Y. One-step production of biodiesel from Nannochloropsis son solid base Mg-Zr catalyst. Appl. Energy 2011, 3313, 88–3317. [Google Scholar] [CrossRef]
- Taher, H.; Al-Zuhair, S.; Al-Marzouqi, A.H.; Haik, Y.; Farid, M. Effective extraction of microalgae lipids from wet biomass for biodiesel production. Biomass Bioenergy 2014, 66, 159–167. [Google Scholar] [CrossRef]
- Kondo, M.; Rezaei, K.; Temelli, F.; Goto, M. On-line extraction—Reaction of canola oil with ethanol by immobilized lipase in SC-CO 2. Ind. Eng. Chem. Res. 2002, 41, 5770–5774. [Google Scholar] [CrossRef]
- Tewari, Y.B.; Ihara, T.; Phinney, K.W.; Mayhew, M.P. A thermodynamic study of the lipase-catalyzed transesterification of benzyl alcohol and butyl acetate in supercritical carbon dioxide media. J. Mol. Catal. B Enzym. 2004, 304, 131–136. [Google Scholar] [CrossRef]
- Besa, E.C. New opportunities in a personalized approach to the preleukemic phase of myelodysplastic syndrome and acute myelogenous leukemia. Trends Green Chem. 2018, 4, 1–45. [Google Scholar] [CrossRef]
- Choi, O.K.; Lee, J.W. CO2-triggered switchable solvent for lipid extraction from microalgal biomass. Sci. Total Environ. 2022, 819, 153084. [Google Scholar] [CrossRef] [PubMed]
- Anto, S.; Premalatha, M.; Mathimani, T. Tertiary amine as an efficient CO2 switchable solvent for extracting lipids from hypersaline microalgae. Chemosphere 2022, 288, 132442. [Google Scholar] [CrossRef]
- Lage, S.; Willfors, A.; Hörnberg, A.; Gentili, F.G. Impact of organic solvents on lipid-extracted microalgae residues and wastewater sludge co-digestion. Bioresour. Technol. Rep. 2021, 16, 100850. [Google Scholar] [CrossRef]
- Wimmer, Z.; Zarevúcka, M. A Review on the Effects of Supercritical Carbon Dioxide on Enzyme Activity. Int. J. Mol. Sci. 2010, 11, 233–253. [Google Scholar] [CrossRef] [PubMed]
- Delmiro, T.M.; Calixto, G.Q.; Viegas, C.V.; Melo, D.M.A.; Viana, G.A.C.M.; Mendes, L.B.B.; Braga, R.M. Renewable aromatic hydrocarbons from flash catalytic pyrolysis of Monoraphidium slipid extract. Bioresour. Technol. Rep. 2021, 15, 100799. [Google Scholar] [CrossRef]
- Raheem, A.; Cui, X.; Mangi, F.H.; Memon, A.A.; Ji, G.; Cheng, B.; Dong, W.; Zhao, M. Hydrogen-rich energy recovery from microalgae (lipid-extracted) via steam catalytic gasification. Algal Res. 2020, 52, 102102. [Google Scholar] [CrossRef]
- Felix, C.; Ubando, A.; Madrazo, C.; Gue, I.H.; Sutanto, S.; Tran-Nguyen, P.L.; Go, A.W.; Ju, Y.; Culaba, A.; Chang, J.; et al. Non-catalytic in-situ (trans) esterification of lipids in wet microalgae Chlorella vulgaris under subcritical conditions for the synthesis of fatty acid methyl esters. Appl. Energy 2019, 248, 526–537. [Google Scholar] [CrossRef]
- Santillan-Jimenez, E.; Pace, R.; Marques, S.; Morgan, T.; McKelphin, C.; Mobley, J.; Crocker, M. Extraction, characterization, purification and catalytic upgrading of algae lipids to fuel-like hydrocarbons. Fuel 2016, 180, 668–678. [Google Scholar] [CrossRef]
- Lee, S.Y.; Cho, J.M.; Chang, Y.K.; Oh, Y.K. Cell disruption and lipid extraction for microalgal biorefineries: A review. Bioresour. Technol. 2017, 244, 1317–1328. [Google Scholar] [CrossRef]
- Liang, K.; Zhang, Q.; Cong, W. Enzyme-Assisted Aqueous Extraction of Lipid from Microalgae. J. Agric. Food Chem. 2012, 601, 1177–11776. [Google Scholar] [CrossRef]
- Wu, C.; Xiao, Y.; Lin, W.; Li, J.; Zhang, S.; Zhu, J.; Rong, J. Aqueous enzymatic process for cell wall degradation and lipid extraction from Nannochloropsis sp. Bioresour. Technol. 2017, 223, 312–316. [Google Scholar] [CrossRef]
- Harrison, S.T.L. Bacterial cell disruption: A key unit operation in the recovery of intracellular products. Biotechnol. Adv. 1991, 9, 217–240. [Google Scholar] [CrossRef]
- McKenzie, H.A.; White, F.H. Lysozyme and α-lactalbumin: Structure, function, and interrelationships. Adv. Protein Chem. 1991, 41, 173–315. [Google Scholar] [CrossRef] [PubMed]
- Lucy; Montgomery, F.R.; Bochmann, G. Pretreatment of feedstock for enhanced biogas production. 2014. Available online: https://www.iea-biogas.net/files/daten-redaktion/download/Technical%20Brochures/pretreatment_web.pdf (accessed on 10 July 2022).
- Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind. Eng. Chem. Res. 2009, 48, 3713–3729. [Google Scholar] [CrossRef]
- Fu, C.C.; Hung, T.C.; Chen, J.Y.; Su, C.H.; Wu, W.T. Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresour. Technol. 2010, 101, 8750–8754. [Google Scholar] [CrossRef] [PubMed]
- Demuez, M.; González-Fernández, C.; Ballesteros, M. Algicidal microorganisms and secreted algicides: New tools to induce microalgal cell disruption. Biotechnol. Adv. 2015, 33, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; der Bai, M.; Chang, J.S. Improving microalgal oil collecting efficiency by pretreating the microalgal cell wall with destructive bacteria. Biochem. Eng. J. 2013, 81, 170–176. [Google Scholar] [CrossRef]
- Abrahamsson, V.; Cunico, L.P.; Andersson, N.; Nilsson, B.; Turner, C. Multicomponent inverse modeling of supercritical fluid extraction of carotenoids, chlorophyll A, ergosterol and lipids from microalgae. J. Supercrit. Fluids 2018, 139, 53–61. [Google Scholar] [CrossRef]
- Nagappan, S.; Devendran, S.; Tsai, P.C.; Dinakaran, S.; Dahms, H.U.; Ponnusamy, V.K. Passive cell disruption lipid extraction methods of microalgae for biofuel production—A review. Fuel 2019, 252, 699–709. [Google Scholar] [CrossRef]
- Lee, S.; Posarac, D.; Ellis, N. An experimental investigation of biodiesel synthesis from waste canola oil using supercritical methanol. Fuel 2012, 91, 229–237. [Google Scholar] [CrossRef]
- Obeid, S.; Beaufils, N.; Camy, S.; Takache, H.; Ismail, A.; Pontalier, P.Y. Supercritical carbon dioxide extraction and fractionation of lipids from freeze-dried microalgae Nannochloropsis oculata and Chlorella vulgaris. Algal Res. 2018, 34, 49–56. [Google Scholar] [CrossRef]
- Viguera, M.; Marti, A.; Masca, F.; Prieto, C.; Calvo, L. The process parameters and solid conditions that affect the supercritical CO2 extraction of the lipids produced by microalgae. J. Supercrit. Fluids 2016, 113, 16–22. [Google Scholar] [CrossRef]
- Zinnai, A.; Sanmartin, C.; Taglieri, I.; Andrich, G.; Venturi, F. Supercritical fluid extraction from microalgae with high content of LC-PUFAs. A case of study: Sc-CO2 oil extraction from Schizochytrium sp. J. Supercrit. Fluids 2016, 116, 126–131. [Google Scholar] [CrossRef]
- Lorenzen, J.; Gl, N.; Tippelt, M.; Stege, A.; Qoura, F.; Sohling, U.; Brück, T. Extraction of microalgae derived lipids with supercritical carbon dioxide in an industrial relevant pilot plant. Bioprocess Biosyst. Eng. 2017, 40, 911–918. [Google Scholar] [CrossRef] [PubMed]
- De Melo, M.M.R.; Sapatinha, M.; Pinheiro, J.; Lemos, M.F.L.; Bandarra, N.M.; Batista, I.; Paulo, M.C.; Coutinho, J.; Saraiva, J.A.; Portugal, I.; et al. Supercritical CO2 extraction of Aurantiochytrium sbiomass for the enhanced recovery of omega-3 fatty acids and phenolic compounds. J. CO2 Util. 2020, 38, 24–31. [Google Scholar] [CrossRef]
- Sheng, J.; Vannela, R.; Rittmann, B.E. Evaluation of cell-disruption effects of pulsed-electric-field treatment of Synechocystis PCC 6803. Environ. Sci. Technol. 2011, 45, 3795–3802. [Google Scholar] [CrossRef]
- Salerno, M.B.; Lee, H.-S.; Parameswaran, P.; Rittmann, B.E. Using a pulsed electric field as a pretreatment for improved biosolids digestion and methanogenesis. Water Environ. Res. 2009, 81, 831–839. [Google Scholar] [CrossRef]
- Schoenbach, K.H.; Joshi, R.P.; Stark, R.H.; Dobbs, F.C.; Beebe, S.J. Bacterial decontamination of liquids with pulsed electric fields. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 637–645. [Google Scholar] [CrossRef]
- Cravotto, G.; Boffa, L.; Mantegna, S.; Perego, P.; Avogadro, M.; Cintas, P. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason. Sonochem. 2008, 15, 898–902. [Google Scholar] [CrossRef] [PubMed]
- Virot, M.; Tomao, V.; Ginies, C.; Visinoni, F.; Chemat, F. Microwave-integrated extraction of total fats and oils. J. Chromatogr. A 2008, 1196–1197, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Yoon, B.D.; Oh, H.M. Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol. Tech. 1998, 12, 553–556. [Google Scholar] [CrossRef]
- Spiden, E.M.; Scales, P.J.; Yap, B.H.J.; Kentish, S.E.; Hill, D.R.A.; Martin, G.J.O. The effects of acidic and thermal pretreatment on the mechanical rupture of two industrially relevant microalgae: Chlorella sand Navicula sp. Algal Res. 2015, 7, 5–10. [Google Scholar] [CrossRef]
- Xia, A.; Cheng, J.; Lin, R.; Lu, H.; Zhou, J.; Cen, K. Comparison in dark hydrogen fermentation followed by photo hydrogen fermentation and methanogenesis between protein and carbohydrate compositions in Nannochloropsis oceanica biomass. Bioresour. Technol. 2013, 138, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Guo, R.; Xu, X.; Fan, X.; Li, X. Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. Int. J. Hydrog. Energy 2010, 35, 9618–9623. [Google Scholar] [CrossRef]
- Adam, F.; Abert-Vian, M.; Peltier, G.; Chemat, F. ‘Solvent-free’ ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process. Bioresour. Technol. 2012, 114, 457–465. [Google Scholar] [CrossRef]
- Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Awad, F.N.; Qi, X.; Sahu, J.N. Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew. Sustain. Energy Rev. 2019, 105, 105–128. [Google Scholar] [CrossRef]
- Gaurav, N.; Sivasankari, S.; Kiran, G.S.; Ninawe, A.; Selvin, J. Utilization of bioresources for sustainable biofuels: A Review. Renew. Sustain. Energy Rev. 2017, 73, 205–214. [Google Scholar] [CrossRef]
- Lu, Z.; Xu, Y.; Peng, L.; Liang, C.; Liu, Y.; Ni, B.J. A two-stage degradation coupling photocatalysis to microalgae enhances the mineralization of enrofloxacin. Chemosphere 2022, 293, 133523. [Google Scholar] [CrossRef]
- Eppink, M.H.M.; Olivieri, G.; Reith, H.; van den Berg, C.; Barbosa, M.J.; Wijffels, R.H. From current algae products to future biorefinery practices: A review. Adv. Biochem. Eng. Biotechnol. 2019, 166, 99–123. [Google Scholar] [CrossRef] [PubMed]
- Boussetta, N.; Lesaint, O.; Vorobiev, E. A study of mechanisms involved during the extraction of polyphenols from grape seeds by pulsed electrical discharges. Innov. Food Sci. Emerg. Technol. 2013, 19, 124–132. [Google Scholar] [CrossRef]
- Production and Characterization of Algae Extract from Chlamydomonas Reinhardtii. Available online: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582014000100003 (accessed on 12 January 2014).
- Halim, R.; Hill, D.R.; Hanssen, E.; Webley, P.A.; Blackburn, S.; Grossman, A.R.; Posten, C.; Martin, G.J. Towards sustainable microalgal biomass processing: Anaerobic induction of autolytic cell-wall self-ingestion in lipid-rich Nannochloropsis slurries. Green Chem. 2019, 21, 2967–2982. [Google Scholar] [CrossRef]
- Orr, V.C.A.; Plechkova, N.v.; Seddon, K.R.; Rehmann, L. Disruption and Wet Extraction of the Microalgae Chlorella vulgaris Using Room-Temperature Ionic Liquids. ACS Sustain. Chem. Eng. 2016, 4, 591–600. [Google Scholar] [CrossRef]
- Wang, M.; Yuan, W.; Jiang, X.; Jing, Y.; Wang, Z. Disruption of microalgal cells using high-frequency focused ultrasound. Bioresour. Technol. 2014, 153, 315–321. [Google Scholar] [CrossRef]
- Ruiz-Domínguez, M.C.; Fuentes, J.L.; Mendiola, J.A.; Cerezal-Mezquita, P.; Morales, J.; Vílchez, C.; Ibáñez, E. Bioprospecting of cyanobacterium in Chilean coastal desert, Geitlerinema smolecular identification and pressurized liquid extraction of bioactive compounds. Food Bioprod. Process. 2021, 128, 227–239. [Google Scholar] [CrossRef]
- Wang, Q.; Oshita, K.; Takaoka, M.; Shiota, K. Influence of water content and cell disruption on lipid extraction using subcritical dimethyl ether in wet microalgae. Bioresour. Technol. 2021, 329, 124892. [Google Scholar] [CrossRef]
- Microalgae: How Tiny, Single-Celled Organisms Can Revolutionise the World—ADVISIAN. Available online: https://www.advisian.com/en/global-perspectives/microalgae-revolutionise-the-world (accessed on 1 January 2020).
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Factories 2018, 17, 36. [Google Scholar] [CrossRef]
- Mahesar, S.A.; Sherazi, S.T.H.; Abro, K.; Kandhro, A.; Bhanger, M.I.; van de Voort, F.R.; Sedman, J. Application of microwave heating for the fast extraction of fat content from the poultry feeds. Talanta 2018, 75, 1240–1244. [Google Scholar] [CrossRef]
- Han, S.F.; Jin, W.B.; Tu, R.J.; Wu, W.M. Biofuel production from microalgae as feedstock: Current status and potential. Crit. Rev. Biotechnol. 2015, 35, 255–268. [Google Scholar] [CrossRef] [PubMed]
- González-González, L.M.; Astals, S.; Pratt, S.; Jensen, P.D.; Schenk, P.M. Impact of osmotic shock pre-treatment on microalgae lipid extraction and subsequent methane production. Bioresour. Technol. Rep. 2019, 7, 100214. [Google Scholar] [CrossRef]
- Gruber-Brunhumer, M.R.; Jerney, J.; Zohar, E.; Nussbaumer, M.; Hieger, C.; Bromberger, P.; Bochmann, G.; Jirsa, F.; Schagerl, M.; Obbard, J.P.; et al. Associated effects of storage and mechanical pre-treatments of microalgae biomass on biomethane yields in anaerobic digestion. Biomass Bioenergy 2016, 93, 259–268. [Google Scholar] [CrossRef]
- Ometto, F.; Quiroga, G.; Pšenička, P.; Whitton, R.; Jefferson, B.; Villa, R. Impacts of microalgae pre-treatments for improved anaerobic digestion: Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Res. 2014, 65, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Okoro, V.; Azimov, U.; Munoz, J.; Hernandez, H.H.; Phan, A.N. Microalgae cultivation and harvesting: Growth performance and use of flocculants—A review. Renew. Sustain. Energy Rev. 2019, 1093, 11564. [Google Scholar] [CrossRef]
- Mehrabadi, A.; Craggs, R.; Farid, M.M. Biodiesel production potential of wastewater treatment high rate algal pond biomass. Bioresour. Technol. 2016, 221, 222–233. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, P. Effect of CO2 concentration on algal growth: A review. Renew. Sustain. Energy Rev. 2014, 38, 172–179. [Google Scholar] [CrossRef]
- Zhu, L.D.; Li, Z.H.; Hiltunen, E. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock. BioMed Res. Int. 2016, 2016, 8792548. [Google Scholar] [CrossRef]
- Dickinson, S.; Mientus, M.; Frey, D.M.; Amini-Hajibashi, A.; Ozturk, S.; Shaikh, F.; Sengupta, D.; El-Halwagi, M.M. A review of biodiesel production from microalgae. Clean Technol. Environ. Policy 2017, 19, 637–668. [Google Scholar] [CrossRef]
- Cordeiro, R.S.; Vaz, I.C.D.; Magalhães, S.M.S.; Barbosa, F.A.R. Effects of nutritional conditions on lipid production by cyanobacteria. An Da Acad. Bras. De Ciências 2021, 89, 2017–2031. [Google Scholar] [CrossRef] [PubMed]
- Passos, I.F.F.; Carretero, J. Comparing pretreatment methods for improving microalgae anaerobic digestion: Thermal, hydrothermal, microwave and ultrasound. Chem. Eng. J. 2015, 279, 667–672. [Google Scholar] [CrossRef]
- Komaki, H.; Yamashita, M.; Niwa, Y.; Tanaka, Y.; Kamiya, N.; Ando, Y.; Furuse, M. The effect of processing of Chlorella vulgaris: K-5 on in vitro and in vivo digestibility in rats. Anim. Feed. Sci. Technol. 1998, 70, 363–366. [Google Scholar] [CrossRef]
- Cho, S.C.; Choi, W.; Oh, S.; Lee, C.; Seo, Y.; Kim, J.; Song, C.; Kim, G.; Lee, S.; Kang, D.; et al. Enhancement of lipid extraction from marine microalga, Scenedesmus associated with high-pressure homogenization process. J. Biomed. Biotechnol. 2012, 2012, 359432. [Google Scholar] [CrossRef] [PubMed]
- Chandler, D.P.; Brown, J.; Bruckner-Lea, C.J.; Olson, L.; Posakony, G.J.; Stults, J.R.; Valentine, N.B.; Bond, L.J. Continuous spore disruption using radially focused, high-frequency ultrasound. Anal. Chem. 2001, 84, 3773–3789. [Google Scholar] [CrossRef]
- Taylor, M.T.; Belgrader, P.; Furman, B.J.; Pourahmadi, F.; Kovacs, G.T.A.; Northrup, M.A. Lysing bacterial spores by sonication through a flexible interface in a microfluidic system. Anal. Chem. 2001, 73, 492–496. [Google Scholar] [CrossRef]
- Fykse, E.M.; Olsen, J.S.; Skogan, G. Application of sonication to release DNA from Bacillus cereus for quantitative detection by real-time PCR. J. Microbiol. Methods 2003, 55, 1–10. [Google Scholar] [CrossRef]
- Pan, X.; Niu, G.; Liu, H. Comparison of microwave-assisted extraction and conventional extraction techniques for the extraction of tanshinones from Salvia miltiorrhiza bunge. Biochem. Eng. J. 2002, 12, 71–77. [Google Scholar] [CrossRef]
- Ryckebosch, E.; Muylaert, K.; Foubert, I. Optimization of an Analytical Procedure for Extraction of Lipids from Microalgae. J. Am. Oil. Chem. Soc. 2012, 89, 189–198. [Google Scholar] [CrossRef]
- Luo, J.M.; Xiao, X.; Luo, S.L. Biosorption of cadmium(II) from aqueous solutions by industrial fungus Rhizopus cohnii. Trans. Nonferrous Met. Soc. China 2010, 20, 1104–1111. [Google Scholar] [CrossRef]
- Ko, C.H.; Wang, Y.N.; Chang, F.C.; Lee, C.Y.; Chen, W.H.; Hwang, W.S. Energy analysis of bioethanols produced from dendrocalamus latiflorus. Chem. Eng. Trans. 2013, 34, 109–114. [Google Scholar] [CrossRef]
- Cheng, J.J.; Timilsina, G.R. Status and barriers of advanced biofuel technologies: A review. Renew. Energy 2011, 36, 3541–3549. [Google Scholar] [CrossRef]
- González-Fernández, C.; Ballesteros, M. Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol. Adv. 2012, 30, 1655–1661. [Google Scholar] [CrossRef]
- Ghosh, A.; Khanra, S.; Mondal, M.; Halder, G.; Tiwari, O.N.; Saini, S.; Bhowmick, T.K.; Gayen, K. Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value added chemicals: A review. Energy Convers. Manag. 2016, 113, 104–118. [Google Scholar] [CrossRef]
- Brown, R.E.; Bartoletti, D.C.; Harrison, G.I.; Gamble, T.R.; Bliss, J.G.; Powell, K.T.; Weaver, J.C. Multiple-pulse electroporation: Uptake of a macromolecule by individual cells of Saccharomyces cerevisiae. J. Electroanal. Chem. 1992, 2343, 235–245. [Google Scholar] [CrossRef]
- Ehimen, E.A.; Holm-Nielsen, J.-B.; Poulsen, M.; Boelsmand, J.E. Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae. Renew. Energy 2013, 50, 476–480. [Google Scholar] [CrossRef]
- Córdova, O.; Passos, F.; Chamy, R. Enzymatic Pretreatment of Microalgae: Cell Wall Disruption, Biomass Solubilisation and Methane Yield Increase. Appl. Biochem. Biotechnol. 2019, 189, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Scopus—Document Details—Null Signed in. Available online: https://www.scopus.com/record/display.uri?eid=2-s2.0-85098242260&origin=inward&txGid=01fba7859a81fc45a17d6ee7a4eea580&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1 (accessed on 15 June 2022).
- McMillan, J.R.; Watson, I.A.; Ali, M.; Jaafar, W. Evaluation and comparison of algal cell disruption methods: Microwave, waterbath, blender, ultrasonic and laser treatment. Appl. Energy 2013, 103, 128–134. [Google Scholar] [CrossRef]
- He, S.; Fan, X.; Luo, S.; Katukuri, N.R.; Guo, R. Enhanced the energy outcomes from microalgal biomass by the novel biopretreatment. Energy Convers. Manag. 2017, 135, 291–296. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Wang, L.; Liu, S.; Wang, K.; Sun, J.; Xu, B. Evaluation of the possible non-thermal effect of microwave radiation on the inactivation of wheat germ lipase. J. Food Process. Eng. 2017, 40, e12506. [Google Scholar] [CrossRef]
Microalgae | Operating Conditions | Output Studied | Review | Reference |
---|---|---|---|---|
Nannochloris oculata | 68.9 MPa and 310 MPa using nozzle diameters of 130 mm and 185 mm, respectively, 6 passes–100 mL | Efficiency increased. | Biodiesel production, total lipids. | [53] |
1%DCW, 125 MPa, 5 passes. | Efficiency of 200 (mg/g cell) | Biodiesel production, total lipids. | [55] | |
Chlorococcum sp. | 0.85% DCW, 8 Mpa, 4 passes–200 mL | 90% cell disruption achieved | Perfect cell count, total lipids. | [52] |
Tetraselmissuecica | 86 MPa. 0.85% DCW, 5 passes–200 mL | 34.157 cell/mm3 cell concentration | Perfect cell count, total lipids. | [52] |
Auxenochlorella protothecoides | 150 Mpa, 5 passes. Energy input of 1.5 MJ/kg dry weight–40 mL | Yields up to 35% (dry weight) | Perfect cell count, protein analysis | [56] |
Chlorella vulgaris | 150 Mpa, 5 passes. Energy input of 1.5 MJ/kg dry weight–40 mL | ~25% (dry weight) protein release | Perfect cell count, protein analysis | [56] |
Nannochloropsis sp. | 150 Mpa, 1% DCW, nitrogen added, 6 passes–250 mL | 90% protein achieved | Protein analysis | [57] |
Chlorella saccharophila | 200 to 1000 bar, t-butanol, ammonium sulphate. | Efficiency of 400 (mg/g cell) | Perfect cell count, total lipids. | [58] |
Microalgae | Operating Conditions | Output Studied | Review | Reference |
---|---|---|---|---|
Chlorella vulgaris | 25 gDW L−1 biomass concentration, 2039 rpm, protease and cellulase (2% v/w, 1:1), 45 °C, 24 h–75 mL | 75% lipid recovery (solid phase) | Perfect cell count, total lipids. | [64] |
Nannochloropsis sp. | 3 kw 0.5 beads, 4500 rpm/10 min–25 mL | Highest biomass concentration and COD reduction of 1.268 g/L and 71%, respectively | Perfect cell count, total lipids. | [65] |
Chlorella vulgaris | Speed of the agitator set at 10 m−1 and a power of 24.5 kW for 90 min | 95% increase in cell disruption | Perfect cell count, total lipids. | [66] |
3.3 kW, 0.40–0.50 mm beads, 10.7% dry cell weight–1.4 L | 99% cell disintegration | Perfect cell count, total lipids | [67] | |
(25–145 gDW kg−1) and agitator speeds (6–12 m s−1) | 97% cell disintegration | Perfect cell count, protein analysis | [68] | |
Nannochloropsis oculata | 175 MPa, chloroform, methanol | Efficiency of 2.8 (mg/g cell) | Perfect cell count, total lipids. | [69] |
Microalgae | Operating Conditions | Output Studied | Review | Reference |
---|---|---|---|---|
Porphyridium cruentum | 5500 rpm for 10 min | ω3-PUFA food products | Perfect cell count. | [72] |
Synechococcus sp. | 10,000 rpm for 1 min (5 cycles) | 8.82% lipid recovery | Total lipids. | [74] |
Laminaria digitata | 150–500 bar for 15 min | 20% lipid content | Perfect cell count, total lipids. | [76] |
Chlorella sp. | 12,000 rpm for 15 min | Lipid efficiency of 13.05% | Perfect cell count, total lipids. | [71] |
Nannochloropsis sp. | Speed of 10,000 rpm–1 min–15 mL | Dry extraction yield of 75% | Total lipids. | [77] |
Microalgae | Operating Conditions | Output Studied | Review | Reference |
---|---|---|---|---|
Nannochloropsis oceanica | Power of 1025 W and frequency of 245 MHz for 15 min | 38.46% lipid production | Total lipids. | [94] |
Yarrowia lipolytica | 900 W power and a frequency of 245 MHz for 15 min | Lipid production of 8.18% | Total lipids. | [72] |
Chlorella sp. | For 15 min, 450 W power. Biomass and methanol ratio of 1:12 (w/v), catalyst: KOH | 32.18% lipid content | Biodiesel, total lipids. | [72] |
Power of 450 W, time of 60 min. Catalyst: 0.2 M H2SO4, 5 min | 75.68% (FAME for biodiesel production) | Biodiesel, total lipids. | [95] | |
2450 MHz and temperature of 100 °C, 5 min | Increased lipid efficiency. | Total lipids. | [96] | |
Botryococcus braunii | Power 1250 W and frequency 2450 MHz at 150 °C for 20 min | Enchanted lipid efficiency. | Biodiesel production, total lipids. | [73] |
Nannochloropsis sp. | 65 °C–25 min | 42.22% dry biomass yield for biodiesel | Biodiesel production, total lipids. | [97] |
1.2 kW power and frequency of 2.45 GHz. 5–15 min. | Increased cell disruption efficiency. | Total lipids. | [98] | |
Nannochloropsis oculata | 140 °C, 15 min | Lipid content increase: 6.25-fold | Perfect cell count, total lipids. | [99] |
Microalgae | Treatment Type | Operating Conditions | Production Yield | References |
---|---|---|---|---|
Chlorella sp. | Homogenisation + thermal | 84 MPa (123 °C and pH of 1.5, chloroform, methanol | Efficiency of 4.5 (mg/g cell) | [165] |
Chlorella vulgaris | Microwave + solvent | 700 W, 50 s–chloroform:methanol:water (2:2:1.9) | Lipid recovery of 31.70 | [141] |
Nannochloropsis oceanica | Microwave + diluted acid | 140 °C, 25 min–H2SO4 (1% v/v) | Hydrogen yield of 183.9 mL/g TVS | [166] |
Scenedesmus sp. | Thermal + alkaline | 100 °C, 8 h–NaOH | Lipid extraction- 45.54 mL H2/g (VS) of hydrogen | [167] |
Ultrasonication + solvent | 30 kHz, 1 kW for 5 to 60 min–hexane, chloroform/methanol (1:1 v/v) | Efficiency of 0.144 to 0.72 (mg/g cell) | [168] |
Cell Rupture Method | Parameters Affecting Lipid Production | Advantages | Disadvantages | Reference |
---|---|---|---|---|
Mechanical | Design of the blade, number of passes, pressure, and speed of rotation. | Surface area increases. No inhibitory or toxic compounds. Easy to operate and commercialisable. Biomass is easy to handle. | Requires high energy. High capital and maintenance costs. Influence inert materials. | [25,195] |
Ultrasonic | Power, time, and cycle number. | Extraction time and solvent consumption are reduced. Bulk medium of cell contents is reduced. No inhibitory or toxic compounds. | Requires high energy consumption. Scaling up is difficult. High capital and maintenance costs. | [90,196,197,198] |
Microwave | Temperature, stirring, power, and time. | Less energy demand and solvent usage. Fast and uniform heating. Eco-friendly. High extraction yield. | Efficiency differs when solvents are volatile or nonpolar. Scaling up is difficult. | [163,199] |
Autoclaving | Temperature, thermal stress, and pressure. | High lipid content. Life span of the product of maintained. Lower energy demands. | Requires high energy consumption for industrial processes. Time consuming process and scaling up is difficult. | [25,200,201] |
Steam Explosion | Temperature, thermal stress, microalgae species, and pressure. | No inhibitory or toxic compounds. Hazardous wastes can be reduced during lipid recovery. Low cost and commercialisable. | Efficiency is dependent on microalgae species. Requires high energy consumption for industrial processes. Time consuming process and scaling up is difficult. Energy costs for high temperatures. | [111,202,203] |
Catalytic | Stirring, chemical concentration of KOH and NaOH. | Lower energy consumption. Hemicellulose solubilisation. | Expensive chemical cost. Toxic and inhibitory. Contamination during extraction. | [8,118] |
Enzymatic | Enzymatic type, stirring. | Lower energy consumption. Higher lipid yield and speed process. | Expensive enzymatic cost. Agitation conditions. | [204,205] |
Pulsed electric field treatment | Oscillation, time, microalgae type, growth phase conditions, and conductivity. | High lipid content. Non-inhibitory compounds. Speed and uniform cell disruption. | Requires high energy consumption for industrial process. High capital and maintenance costs. | [206] |
Biological | Enzymes and combination of enzymes. | Energy demand is low. Non-inhibitory compounds. | Cross-contamination. High enzyme cost. Requires large space. Slow pre-treatment process. | [207] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishnamoorthy, A.; Rodriguez, C.; Durrant, A. Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review. Sustainability 2022, 14, 9953. https://doi.org/10.3390/su14169953
Krishnamoorthy A, Rodriguez C, Durrant A. Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review. Sustainability. 2022; 14(16):9953. https://doi.org/10.3390/su14169953
Chicago/Turabian StyleKrishnamoorthy, Amarnath, Cristina Rodriguez, and Andy Durrant. 2022. "Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review" Sustainability 14, no. 16: 9953. https://doi.org/10.3390/su14169953
APA StyleKrishnamoorthy, A., Rodriguez, C., & Durrant, A. (2022). Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review. Sustainability, 14(16), 9953. https://doi.org/10.3390/su14169953