A Framework and Tool for Knowledge-Based Seismic Risk Assessment of School Buildings: SLaMA-School
Abstract
:1. Introduction
2. Material and Methods
2.1. Proposed Data Structure for Seismic Risk Assessment
- -
- Geometric criticalities;
- -
- Constructive and material-related criticalities;
- -
- Structural details criticalities.
2.1.1. Geometric Criticalities
2.1.2. Constructive and Material-Related Criticalities
2.1.3. Structural Detail Criticalities
2.2. Assessment Methodology
3. Results
3.1. PELL-Platform
- (a)
- Achieve a minimum standard of building knowledge;
- (b)
- Allow for interoperability with other existing databases by developing data-transmission protocols;
- (c)
- Monitor and evaluate buildings performances and services;
- (d)
- Enhance seismic safety and energy efficiency of public buildings by supporting the Public Administration (PA) in Italy towards the definition and implementation of integrated rehabilitation interventions.
3.1.1. PELL-School-RS
3.1.2. Data Sourced from Existing Forms
3.2. Multi-Knowledge Seismic Assessment: Implementation on a Representative/Prototypical Range of Possible Situations
3.3. Illustrative Application to a School Building
3.3.1. Description of the Case-Study Structure and Its Alternative Scenarios
- -
- Scenario 1: Basic building knowledge scenario. It is assumed that only information on the building geometry is available, while no data on either the reinforcement details or material properties are available/collected;
- -
- Scenario 2: Limited/Incomplete building knowledge scenario. It is assumed that information on building geometry and material properties is available, while no information on the reinforcement details is available/collected;
- -
- Scenario 3: Limited/Incomplete building knowledge scenario. It is assumed that information on building geometry and reinforcement details is available, while no information on the material properties is available/collected;
- -
- Scenario 4: Complete building knowledge scenario. It is assumed that information on geometry, reinforcement details, and material properties is available/collected.
3.3.2. SLaMA-Based Nonlinear Static Analysis
3.3.3. Seismic Risk Classification
3.4. Adaptive Seismic Risk Assessment of School Building Portfolio at Regional and/or National Level
- Seismic hazard: the official hazard map for the Italian code regulation (Stucchi et al. [45]) was adopted. As a simplified hypothesis, the same soil type was assumed over the whole Italian territory (i.e., soil type “A”: rock or stiff soil category).
- Vulnerability: five vulnerability classes are defined, namely, “A”, “B”, “C1”, “C2”, and “D” (vulnerability decreases from “A” to “D”), according to the EMS-98 [28] classification. For each vulnerability class, a set of five fragility curves is defined, corresponding to the probability of exceeding five different Damage States (DSs), from D1 to D5, defined following the EMS-98 scale.
- Exposure: the ISTAT database [46,47] is adopted to define the building typologies, considering construction material, number of floors, and construction age. Then, at municipality levels, each building typology is associated with one or more vulnerability classes, through a specific vulnerability-exposure model.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Legambiente. Ecosistema Scuola, 20th ed.; Legambiente: Milano, Italy, 2021; Available online: https://www.legambiente.it/wp-content/uploads/2021/03/Ecosistema-scuola-2021.pdf (accessed on 5 July 2022). (In Italian)
- Ministry of Business, Innovation and Employment (MBIE). Building (Earthquake Prone Buildings) Amendment Act; NZ. Portal ‘Managing Earthquake Prone Buildings’, New Zealand. 2016. Available online: www.building.govt.nz/managing-buildings/managing-earthquake-prone-buildings/ (accessed on 5 July 2022).
- Pampanin, S. Towards the practical implementation of performance-based assessment and retrofit strategies for RC buildings: Challenges and solutions. In Proceedings of the Fourth Conference on Smart Monitoring, Assessment and Rehabilitation of Structures, SMAR2017, Keynote Lecture, Zurich, Switzerland, 13–15 September 2017. [Google Scholar]
- Italian Ministry of Infrastructures and Transports. Linee Guida per la Classificazione del Rischio Sismico Delle Costruzioni; Annex A to the Ministry Decree n.65 07/03/2017; Italian Ministry of Infrastructures and Transports: Rome, Italy, 2017. Available online: https://www.mit.gov.it/normativa/decreto-ministeriale-numero-65-del-07032017 (accessed on 5 July 2022). (In Italian)
- Giovinazzi, S.; Pampanin, S. Simplified Approaches for the Seismic Risk Rating of Reinforced Concrete Buildings and the Selection of Retrofit Strategies. In Proceedings of the XVII ANIDIS Conference, Italian Association for Earthquake Engineering, Pistoia, Italy, 17–22 September 2017. [Google Scholar]
- Pampanin, S. Simplified Analytical/Mechanical Procedure for Post-Earthquake Safety Evaluation and Loss Assessment of Buildings; Springer: Berlin/Heidelberg, Germany, 2021; pp. 3–25. [Google Scholar] [CrossRef]
- Di Ludovico, M.; Digrisolo, A.; Graziotti, F.; Moroni, C.; Belleri, A.; Caprili, S.; Carocci, C.; Dall’Asta, A.; De Martino, G.; De Santis, S.; et al. The contribution of ReLUIS to the usability assessment of school buildings following the 2016 central Italy earthquake. Boll. Geofis. Teor. Appl. 2017, 58, 353–376. [Google Scholar]
- Annunziato, M.; Blaso, L.; Buffarini, G.; Clemente, P.; Giovinazzi, S. PELL-Seismic-School: Integrated, standardized and interoperable platform supporting the seismic vulnerability assessment of Italian schools. In Proceedings of the XVIII ANIDIS Conference, Italian Association for Earthquake Engineering, Ascoli Piceno, Italy, 15–19 September 2019. [Google Scholar]
- New Zealand Society of Earthquake Engineering (NZSEE). The Seismic Assessment of Existing Building—Technical Guidelines for Engineering Assessments; New Zealand Society of Earthquake Engineering (NZSEE): Wellington, New Zealand, 2017. [Google Scholar]
- Applied Technology Council (ATC). Seismic Evaluation and Retrofit of Concrete Buildings; ATC-40; Applied Technology Council (ATC): Redwood City, CA, USA, 1996. [Google Scholar]
- Fajfar, P. A Nonlinear Analysis Method for Performance-Based Seismic Design. Earthq. Spectra 2000, 16, 573–592. [Google Scholar] [CrossRef]
- Lagomarsino, S.; Giovinazzi, S. Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull. Earthq. Eng. 2006, 4, 415–443. [Google Scholar] [CrossRef]
- Cosenza, E.; Manfredi, G.; Polese, M.; Verderame, G.M. A multilevel approach to the capacity assessment of existing RC buildings. J. Earthq. Eng. 2005, 9, 1–22. [Google Scholar] [CrossRef]
- Del Gaudio, C.; Ricci, P.; Verderame, G.M.; Manfredi, G. Development and urban-scale application of a simplified method for seismic fragility assessment of RC buildings. Eng. Struct. 2015, 91, 40–57. [Google Scholar] [CrossRef]
- Crowley, H.; Pinho, R.; Bommer, J.J. A probabilistic displacement-based vulnerability assessment procedure for earthquake loss estimation. Bull. Earthq. Eng. 2004, 2, 173–219. [Google Scholar] [CrossRef]
- Silva, V.; Crowley, H.; Pinho, R.; Varum, H. Extending displacement-based earthquake loss assessment (DBELA) for the computation of fragility curves. Eng. Struct. 2013, 56, 343–356. [Google Scholar] [CrossRef]
- Borzi, B.; Pinho, R.; Crowley, H. Simplified pushover-based vulnerability analysis for large-scale assessment of RC buildings. Eng. Struct. 2008, 30, 804–820. [Google Scholar] [CrossRef]
- Pampanin, S.; Calvi, G.M.; Moratti, M. Seismic Behaviour of RC Beam-Column Joints Designed for Gravity Loads. In Proceedings of the 12th European Conference on Earthquake Engineering, ECEE, London, UK, 9–13 September 2002. [Google Scholar]
- Blaso, L.; Giovinazzi, S.; Bianchi, S.; Pedone, L.; Ormando, C.; Clemente, P.; Pampanin, S.; Gozo, N.; Giuliani, G.; Pollino, M. PELL-schools a standardized and interoperable platform for the seismic vulnerability and energy efficiency data management of Italian Schools. In Proceedings of the COMPDYN Conference, Athens, Greece, 27–30 June 2021. [Google Scholar] [CrossRef]
- Presidency of the Council of Ministers. Primi Elementi in Materia di Criteri Generali per la Classificazione del Territorio Nazionale e di Normative Tecniche. Ordinance of the Presidency of the Council of Ministers (OPCM) n° 3274, G.U. n.105 of 08/05/2003. Gazzetta Ufficiale, 2003. Available online: https://www.gazzettaufficiale.it/eli/id/2003/05/08/03A04408/sg (accessed on 5 July 2022). (In Italian).
- Baggio, C.; Bernardini, A.; Colozza, R.; Corazza, L.; della Bella, M.; di Pasquale, G.; Dolce, M.; Goretti, A.; Martinelli, A.; Orsini, G.; et al. Field Manual for Post-Earthquake Damage and Safety Assessment and Short Term Countermeasures AeDES; EUR 22868 EN-2007; Joint Research Center: Ispra, Italy, 2007. [Google Scholar]
- Magenes, G.; Pampanin, S. Seismic Response of Gravity-Load Design Frames with Masonry Infills. In Proceedings of the 13th 13th World Conference on Earthquake Engineering (13WCEE), Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- Pampanin, S.; Vallati, A.; Currà, E. Analisi Sismo-Energetiche di Edifici Pubblici Nella Provincia di Foggia e Strategie di Interventi Integrati di Miglioramento. Research Report, UEFA/ELENA Project; 2020. Available online: https://www.fg.camcom.gov.it/assistenza-alle-imprese/progetti/progetto-elena (accessed on 5 July 2022). (In Italian)
- Del Vecchio, C.; Gentile, R.; Di Ludovico, M.; Uva, G.; Pampanin, S. Implementation and Validation of the Simple Lateral Mechanism Analysis (SLaMA) for the Seismic Performance Assessment of a Damaged Case Study Building. J. Earthq. Eng. 2018, 24, 1771–1802. [Google Scholar] [CrossRef]
- Bianchi, S.; Ciurlanti, J.; Pampanin, S. A SLaMA-based analytical procedure for the Cost/Performance-based evaluation of buildings. In Proceedings of the COMPDYN Conference, Crete, Greece, 24–26 June 2019. [Google Scholar]
- Gentile, R.; Del Vecchio, C.; Pampanin, S.; Raffaele, D.; Uva, G. Refinement and Validation of the Simple Lateral Mechanism Analysis (SLaMA) Procedure for RC Frames. J. Earthq. Eng. 2019, 25, 1227–1255. [Google Scholar] [CrossRef]
- Pampanin, S.; Bolognini, D.; Pavese, A. Performance-based seismic retrofit strategy for existing reinforced concrete frame systems using fiber-reinforced polymer composites. J. Compos. Constr. 2007, 11, 211–226. [Google Scholar] [CrossRef]
- Grunthal, G. European Macroseismic Scale; European Seismological Commission. Conseil de l’Europe, Cahiers du Centre Européen de Géodynamique et de Séismologie: Luxembourg, 1998; Volume 15. [Google Scholar]
- Dolce, M.; Manfredi, G. Libro Bianco Sulla Ricostruzione Privata Fuori dai Centri Storici nei Comuni Colpiti dal Sisma Dell’abruzzo del 6 Aprile 2009; Doppiavoce: Napoli, Italy, 2016; ISBN 978-88-89972-50-2. (In Italian) [Google Scholar]
- Di Ludovico, M.; Prota, A.; Moroni, C.; Manfredi, G.; Dolce, M. Reconstruction process of damaged residential buildings outside the historical centres after L’Aquila earthquake—Part I: Light Reconstruction. Bull. Earthq. Eng. 2017, 15, 667–692. [Google Scholar] [CrossRef]
- Di Ludovico, M.; Prota, A.; Moroni, C.; Manfredi, G.; Dolce, M. Reconstruction process of damaged residential buildings outside the historical centres after L’Aquila earthquake—Part II: Heavy Reconstruction. Bull. Earthq. Eng. 2017, 15, 693–729. [Google Scholar] [CrossRef]
- Public Energy Living Lab, PELL. Available online: https://www.pell.enea.it/enea/ (accessed on 4 July 2022).
- Agency for Digital Italy, AgID. Available online: https://www.agid.gov.it/ (accessed on 4 July 2022).
- Dolce, M.; Speranza, E.; Bocchi, F.; Conte, C. Probabilistic assessment of structural operational efficiency in emergency limit conditions: The I.OPà.CLE method. Bull. Earthq. Eng. 2018, 16, 3791–3818. [Google Scholar] [CrossRef]
- Italian Ministry of Infrastructures and Transports. Aggiornamento Delle Norme Tecniche per le Costruzioni, Ministero delle Infrastrutture; Gazzetta Ufficiale n° 92; Gazzetta Ufficiale: Rome, Italy, 2018. (In Italian)
- Verderame, G.M.; Manfredi, G.; Frunzio, G. Le proprietà meccaniche dei calcestruzzi impiegati nelle strutture in cemento armato realizzate negli anni 60. In Proceedings of the X ANIDIS Conference, Potenza-Matera, Italy, 9–13 September 2001. (In Italian). [Google Scholar]
- Verderame, G.M.; Stella, A.; Cosenza, E. Le proprietà meccaniche degli acciai impiegati nelle strutture in cemento armato realizzate negli anni 60. In Proceedings of the X ANIDIS, Potenza-Matera, Italy, 9–13 September 2001. (In Italian). [Google Scholar]
- Council of Ministers. Regio Decreto Legge n. 2229 del 16/11/1939; Gazzetta Ufficiale n° 92, 18 April 1940; Gazzetta Ufficiale: Rome, Italy, 1939. (In Italian) [Google Scholar]
- Gentile, R.; Galasso, C.; Pampanin, S. Material Property Uncertainties versus Joint Structural Detailing: Relative Effect on the Seismic Fragility of Reinforced Concrete Frames. J. Struct. Eng. 2021, 147, 04021007. [Google Scholar] [CrossRef]
- Cosenza, E.; Del Vecchio, C.; Di Ludovico, M.; Dolce, M.; Moroni, C.; Prota, A.; Renzi, E. The Italian guidelines for seismic risk classification of constructions: Technical principles and validation. Bull. Earthq. Eng. 2018, 16, 5905–5935. [Google Scholar] [CrossRef]
- Italian Civil Protection Department. National Risk Assessment 2018. Overview of the Potential Major Disasters in Italy. 2018. Available online: https://www.protezionecivile.gov.it/static/5cffeb32c9803b0bddce533947555cf1/Documento_sulla_Valutazione_nazionale_dei_rischi.pdf (accessed on 5 July 2022).
- Dolce, M.; Prota, A.; Borzi, B.; Da Porto, F.; Lagomarsino, S.; Magenes, G.; Moroni, C.; Penna, A.; Polese, M.; Speranza, E.; et al. Seismic risk assessment of residential buildings in Italy. Bull. Earthq. Eng. 2021, 19, 2999–3032. [Google Scholar] [CrossRef]
- Borzi, B.; Onida, M.; Faravelli, M.; Polli, D.; Pagano, M.; Quaroni, D.; Cantoni, A.; Speranza, E.; Moroni, C. IRMA platform for the calculation of damages and risks of Italian residential buildings. Bull. Earthq. Eng. 2021, 19, 3033–3055. [Google Scholar] [CrossRef]
- Pagani, M.; Monelli, D.; Weatherill, G.; Danciu, L.; Crowley, H.; Silva, V.; Simionato, M. OpenQuake engine: An open hazard (and risk) software for the global earthquake model. Seismol. Res. Lett. 2014, 85, 692–702. [Google Scholar] [CrossRef]
- Stucchi, M.; Meletti, C.; Montaldo, V.; Crowley, H.; Calvi, G.M.; Boschi, E. Seismic hazard assessment (2003–2009) for the Italian building code. Bull. Seism. Soc. Am. 2011, 101, 1885–1911. [Google Scholar] [CrossRef]
- National Institute of Statistics (ISTAT). 14° Censimento Generale Della Popolazione e Delle Abitazioni; National Institute of Statistics (ISTAT): Rome, Italy, 2001. (In Italian) [Google Scholar]
- National Institute of Statistics (ISTAT). 15° Censimento Generale Della Popolazione—Dati Sulle Caratteristiche Strutturale Della Popolazione, Delle Abitazioni e Variabili; National Institute of Statistics (ISTAT): Rome, Italy, 2011; Available online: http://www.istat.it/it/archivio/104317 (accessed on 5 July 2022). (In Italian)
- Zuccaro, G.; Perelli, F.L.; De Gregorio, D.; Cacace, F. Empirical vulnerability curves for Italian masonry buildings: Evolution of vulnerability model from the DPM to curves as a function of acceleration. Bull. Earthq. Eng. 2020, 19, 3077–3097. [Google Scholar] [CrossRef]
- Lagomarsino, S.; Cattari, S.; Ottonelli, D. The heuristic vulnerability model: Fragility curves for masonry buildings. Bull. Earthq. Eng. 2021, 19, 3129–3163. [Google Scholar] [CrossRef]
- Donà, M.; Carpanese, P.; Follador, V.; Sbrogiò, L.; Da Porto, F. Mechanics-based fragility curves for Italian residential URM buildings. Bull. Earthq. Eng. 2020, 19, 3099–3127. [Google Scholar] [CrossRef]
- Rosti, A.; Rota, M.; Penna, A. Empirical fragility curves for Italian URM buildings. Bull Earthq Eng. 2020, 19, 3057–3076. [Google Scholar] [CrossRef]
- Rosti, A.; Del Gaudio, C.; Rota, M.; Ricci, P.; Di Ludovico, M.; Penna, A.; Verderame, G.M. Empirical fragility curves for Italian residential RC buildings. Bull. Earthq. Eng. 2020, 19, 3165–3183. [Google Scholar] [CrossRef]
- Borzi, B.; Faravelli, M.; Di Meo, A. Application of the SP-BELA methodology to RC residential buildings in Italy to produce seismic risk maps for the national risk assessment. Bull. Earthq. Eng. 2021, 19, 3185–3208. [Google Scholar] [CrossRef]
- Nettis, A.; Gentile, R.; Raffaele, D.; Uva, G.; Galasso, C. Cloud Capacity Spectrum Method: Accounting for record-to-record variability in fragility analysis using nonlinear static procedures. Soil. Dyn. Earthq. Eng. 2021, 150, 106829. [Google Scholar] [CrossRef]
- Vamvatsikos, D.; Cornell, C.A. Direct estimation of the seismic demand and capacity of oscillators with multi-linear static pushovers through IDA. Earthq. Eng. Struct. Dyn. 2006, 35, 1097–1117. [Google Scholar] [CrossRef]
- Lantada, N.; Pujades, L.G.; Barbat, A.H. Vulnerability index and capacity spectrum based methods for urban seismic risk evaluation. A comparison. Nat. Hazards 2009, 51, 501–524. [Google Scholar] [CrossRef]
- Martins, L.; Silva, V. Development of a fragility and vulnerability model for global seismic risk analyses. Bull. Earthq. Eng. 2021, 19, 6719–6745. [Google Scholar] [CrossRef]
- Gentile, R.; Galasso, C. Simplicity versus accuracy trade-off in estimating seismic fragility of existing reinforced concrete buildings. Soil Dyn. Earthq. Eng. 2021, 144, 106678. [Google Scholar] [CrossRef]
IS-V [%] | IS-V Class | EAL [%] | EAL Class | Seismic Risk Class | |
---|---|---|---|---|---|
Scenario 1 | 35–86% | DIS-V–AIS-V | 4.14–1.59% | EEAL–CEAL | E–C |
Scenario 2 | 86–100% | AIS-V–A+IS-V | 1.39–1.17% | BEAL | B |
Scenario 3 | 89–98% | AIS-V | 1.15–2.22% | CEAL–BEAL | C–B |
Scenario 4 | 96% | AIS-V | 1.08% | BEAL | B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedone, L.; Bianchi, S.; Giovinazzi, S.; Pampanin, S. A Framework and Tool for Knowledge-Based Seismic Risk Assessment of School Buildings: SLaMA-School. Sustainability 2022, 14, 9982. https://doi.org/10.3390/su14169982
Pedone L, Bianchi S, Giovinazzi S, Pampanin S. A Framework and Tool for Knowledge-Based Seismic Risk Assessment of School Buildings: SLaMA-School. Sustainability. 2022; 14(16):9982. https://doi.org/10.3390/su14169982
Chicago/Turabian StylePedone, Livio, Simona Bianchi, Sonia Giovinazzi, and Stefano Pampanin. 2022. "A Framework and Tool for Knowledge-Based Seismic Risk Assessment of School Buildings: SLaMA-School" Sustainability 14, no. 16: 9982. https://doi.org/10.3390/su14169982
APA StylePedone, L., Bianchi, S., Giovinazzi, S., & Pampanin, S. (2022). A Framework and Tool for Knowledge-Based Seismic Risk Assessment of School Buildings: SLaMA-School. Sustainability, 14(16), 9982. https://doi.org/10.3390/su14169982