Environmental Assessment of an Innovative High-Performance Experimental Agriculture Field
Abstract
:1. Introduction
2. Methodological Approach
2.1. Goal and Scope Definition
2.1.1. Objectives and Functional Unit
2.1.2. System Description and Boundaries
2.2. Life Cycle Inventory
2.2.1. Mulching Membrane FPO/TPO
- -
- Material: “Fleece, polyethylene RER, production, Alloc Def, U”;
- -
- Process: “Electricity, low voltage IT, market for, Alloc Def, U”;
- -
- Process: “Transport, freight, lorry 16–32 metric ton, EURO3 GLO, market for, Alloc Def, U (420 km Ponte di Piave—Perugia [39])”.
2.2.2. Water Source
2.2.3. Pumping System
- -
- Material: “Cast-iron GLO, market for, Alloc Def, U”;
- -
- Material: “Cable, three-conductor cable GLO, market for, Alloc Def, U”.
- -
- Process: “Electricity, low-voltage IT, market for, Alloc Def, U”.
2.2.4. Drip Irrigation
- -
- Material: “Polyethylene, linear low density, granulate RER, production, Alloc Def, U”;
- -
- Process: “Extrusion, plastic pipes RER, production, Alloc Def, U”.
- -
- Material: “Polyethylene, linear low density, granulate RER, production, Alloc Def, U”;
- -
- Process: “Extrusion, plastic pipes RER, production, Alloc Def, U”.
- -
- Material: “Polyethylene, linear low density, granulate RER, production, Alloc Def, U”;
- -
- Process: “Extrusion, plastic pipes RER, production, Alloc Def, U”.
2.2.5. Drainage
- -
- Material: “Polyvinylchloride, bulk polymerised RER, polyvinylchloride production, Alloc Def, U”;
- -
- Material: “Bitumen adhesive compound, hot RER, production, Alloc Def, U”;
- -
- Material: “Limestone, crushed, washed GLO, market for, Alloc Def, U”.
2.2.6. System Controls
- -
- Material: “Polypropylene, granulate GLO, market for, Alloc Def, U”;
- -
- Process: “Injection-moulding RER, processing, Alloc Def, U”.
- -
- Material: “Polyethylene pipe, corrugated, DN 75 RER, production, Alloc Def, U”;
- -
- Material: “Cable, data cable in infrastructure GLO, market for, Alloc Def, U”;
- -
- Material: “Battery cell, Li-ion RoW, production, Alloc Def, U”;
- -
- Material: “Control units RER, production, Alloc Def, U”.
2.2.7. Tomatoes
2.3. Life Cycle Impact Assessment
3. Results
3.1. One Year Life Cycle—Global Warming Potential Gases
3.2. One Year Life Cycle—Other CML Indicators
3.3. Thirty Year Life Cycle—Global Warming Potential Gases
3.4. Thirty-Year Life Cycle—Other CML Indicators
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CIRIAF | Interuniversity Research Centre for Pollution and Environment—Mauro Felli |
CML | Centrum voor Milieukunde |
EI | Environmental impacts |
F1 | Field 1 |
F2 | Field 2 |
GHG | Greenhouse gases |
GLO | Global |
GWP | Global warming potential |
LCA | Life cycle assessment |
MDPI | Multidisciplinary Digital Publishing Institute |
PE | Polyethylene |
PVC | Polyvinyl chloride |
RER | Europe |
RoW | Rest of the world |
References
- FAO. The Future of Food and Agriculture: Trends and Challenges; Technical Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- FAOSTAT. The Contribution of Agriculture to Greenhouse Gas Emissions; FAOSTAT: Rome, Italy, 2021. [Google Scholar]
- Edgerton, M.D. Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol. 2009, 149, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Eisenstein, M. Sustainable Nutrition: Outlook. Nature 2020, 588, S58–S59. [Google Scholar] [CrossRef] [PubMed]
- Mattila, T.J.; Hagelberg, E.; Söderlund, S.; Joona, J. How farmers approach soil carbon sequestration? Lessons learned from 105 carbon-farming plans. Soil Tillage Res. 2022, 215, 105204. [Google Scholar] [CrossRef]
- Agrobiofilm Consortium. Compostable Films for Agriculture. 2013, p. 160. Available online: http://www.agrobiofilm.eu/temps/docs/10_13_15_25_handbook_agrobiofilm.pdf (accessed on 12 November 2020).
- Manni, M.; Di Giuseppe, A.; Petrozzi, A.; Nicolini, A.; Rossi, F.; Cotana, F. High-reflective Mulching Membrane for a Sustainable Development: Monitoring Campaign. E3S Web Conf. 2020, 197, 08012. [Google Scholar] [CrossRef]
- Bamber, N.; Jones, M.; Nelson, L.; Hannam, K.; Nichol, C.; Pelletier, N. Life cycle assessment of mulch use on Okanagan apple orchards: Part 1—Attributional. J. Clean. Prod. 2020, 267, 121960. [Google Scholar] [CrossRef]
- Bos, U.; Makishi, C.; Fischer, M. Life cycle assessment of common used agricultural plastic products in the EU. Acta Hortic. 2008, 801 Pt 1, 341–349. [Google Scholar] [CrossRef]
- Chi, T.; Chen, K.j.; Marsh, T.L. Application of biodegradable mulches in crop production: A life cycle assessment. In Proceedings of the Agricultural & Applied Economics Association Annual Meeting, Atlanta, GA, USA, 21–23 July 2019. [Google Scholar]
- Blanco, I.; Ingrao, C.; Siracusa, V. Life-cycle assessment in the polymeric sector: A comprehensive review of application experiences on the Italian scale. Polymers 2020, 12, 1212. [Google Scholar] [CrossRef]
- Cadillo-Benalcazar, J.J.; Renner, A.; Giampietro, M. A multiscale integrated analysis of the factors characterizing the sustainability of food systems in Europe. J. Environ. Manag. 2020, 271, 110944. [Google Scholar] [CrossRef]
- Meier, M.S.; Stoessel, F.; Jungbluth, N.; Juraske, R.; Schader, C.; Stolze, M. Environmental impacts of organic and conventional agricultural products—Are the differences captured by life-cycle assessment? J. Environ. Manag. 2015, 149, 193–208. [Google Scholar] [CrossRef]
- Cerutti, A.K.; Beccaro, G.L.; Bruun, S.; Bosco, S.; Donno, D.; Notarnicola, B.; Bounous, G. Life cycle assessment application in the fruit sector: State of the art and recommendations for environmental declarations of fruit products. J. Clean. Prod. 2014, 73, 125–135. [Google Scholar] [CrossRef]
- Caffrey, K.R.; Veal, M.W. Conducting an agricultural life-cycle assessment: Challenges and perspectives. Sci. World J. 2013, 2013, 472431. [Google Scholar] [CrossRef] [PubMed]
- Clune, S.; Crossin, E.; Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 2017, 140, 766–783. [Google Scholar] [CrossRef]
- Hayashi, K.; Gaillard, G.; Nemecek, T. Life Cycle Assessment of Agricultural Production Systems: Current Issues and Future Perspectives. In Proceedings of the International Seminar on Technology Development for Good Agriculture Practice in Asia and Oceania, Ibaraki, Japan, 25–28 October 2005; pp. 98–110. [Google Scholar]
- Coletto, L.; Frezza, A.; Elsayed, M.; Nicoletto, C.; Sambo, P.; Bona, S. Using LCA to assess environmental impact of processing tomato production: First approach. Acta Hortic. 2012, 936, 79–86. [Google Scholar] [CrossRef]
- Del Borghi, A.; Tacchino, V.; Moreschi, L.; Matarazzo, A.; Gallo, M.; Arellano Vazquez, D. Environmental assessment of vegetable crops towards the water-energy-food nexus: A combination of precision agriculture and life cycle assessment. Ecol. Indic. 2022, 140, 109015. [Google Scholar] [CrossRef]
- Stoessel, F.; Juraske, R.; Pfister, S.; Hellweg, S. Life cycle inventory and carbon and water foodprint of fruits and vegetables: Application to a swiss retailer. Environ. Sci. Technol. 2012, 46, 3253–3262. [Google Scholar] [CrossRef]
- Haas, G.; Wetterich, F.; Geier, U. Life cycle assessment framework in agriculture on the farm level. Int. J. Life Cycle Assess. 2000, 5, 345–348. [Google Scholar] [CrossRef]
- Alhashim, R.; Deepa, R.; Anandhi, A. Environmental impact assessment of agricultural production using lca: A review. Climate 2021, 9, 164. [Google Scholar] [CrossRef]
- Urbano, B.; Barquero, M.; González-Andrés, F. The environmental impact of fresh tomatoes consumed in cities: A comparative LCA of long-distance transportation and local production. Sci. Hortic. 2022, 301, 111126. [Google Scholar] [CrossRef]
- Gordon, G.G.; Foshee, W.G.; Reed, S.T.; Brown, J.E.; Vinson, E.L. The effects of colored plastic mulches and row covers on the growth and yield of okra. HortTechnology 2010, 20, 224–233. [Google Scholar] [CrossRef]
- Decoteau, D.; Kasperbauer, M.; Hunt, P. Mulch surface color affects yield of fresh-market tomatoes. J. Am. Soc. Hortic. Sci. (USA) 1989, 114, 216–219. [Google Scholar] [CrossRef]
- Decoteau, D.R. Leaf area distribution of tomato plants as influenced by polyethylene mulch surface color. HortTechnology 2007, 17, 341–345. [Google Scholar] [CrossRef]
- Fortnum, B.A.; Decoteau, D.R.; Kasperbauer, M.J. Colored mulches affect yield of fresh-market tomato infected with Meloidogyne incognita. J. Nematol. 1997, 29, 538–546. [Google Scholar] [PubMed]
- Decoteau, D.; Kasperbauer, M.; Daniels, D.; Hunt, P. Plastic Mulch Color Effects on Reflected Light and Tomato Plant Growth. Sci. Hortic. 1988, 34, 169–175. [Google Scholar] [CrossRef]
- Tarara, J.M. Microclimate modification with plastic mulch. HortScience 2000, 35, 169–180. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework; Technical Report; International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines; Technical Report; International Organization for Standardization: Geneva, Switzerland, 2006.
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Ekvall, T. Attributional and Consequential Life Cycle Assessment. In Sustainability Assessment at the 21st Century; IntechOpen: Rijeka, Croatia, 2020; Volume 32, pp. 137–144. [Google Scholar] [CrossRef]
- Curran, M.A. Life Cycle Assessment: A review of the methodology and its application to sustainability. Curr. Opin. Chem. Eng. 2013, 2, 273–277. [Google Scholar] [CrossRef]
- EPD International AB. Prepared and Preserved Vegetable and Fruit Products, Including Juice; Technical Report; EPD International: Stockholm, Sweden, 2019. [Google Scholar]
- Nemecek, T.; Bengoa, X.; Rossi, V.; Humbert, S.; Lansche, J.; Mouron, P. World Food LCA Database: Methodological Guidelines for the Life Cycle Inventory of Agricultural Products. Version 3.5. 2019, p. 88. Available online: https://simapro.com/wp-content/uploads/2020/11/WFLDB_MethodologicalGuidelines_v3.5.pdf (accessed on 30 December 2020).
- Polyglass SpA. Environmental Product Declaration; Technical Report; Polyglass SpA: Ponte di Piave, Italy, 2016. [Google Scholar]
- Torrellas, M.; Antón, A.; López, J.C.; Baeza, E.J.; Parra, J.P.; Muñoz, P.; Montero, J.I. LCA of a tomato crop in a multi-Tunnel greenhouse in Almeria. Int. J. Life Cycle Assess. 2012, 17, 863–875. [Google Scholar] [CrossRef]
- Mapei, G. Manuale di installazione Mapeplan T FpO. Available online: https://cdnmedia.polyglass.com/docs/librariesprovider71/lines-technical-documentation/mapeplan-fpo-tpo-installation-manual.pdf?sfvrsn=69192b71_6 (accessed on 30 December 2020).
- Irrigazione Riccini. Modello Serbatoi Serie; Irrigazione Riccini: Perugia, Italy, 2020. [Google Scholar]
- Elbi, S.p.A. Autoclavi a Membrana per Acqua Sanitaria; Elbi S.p.A.: Limena, Italy, 2021. [Google Scholar]
- Amazon Catalog. Valvola a Sfera SUS304 Neufday; Amazon Catalog. 2020. Available online: https://www.amazon.it/Neufday-Valvola-Filetto-Femmina-Inossidabile/dp/B08B6D (accessed on 3 November 2020).
- Calpeda. Pompe con Girante Periferica CT61; Calpeda: Montorso Vicentino, Italy, 2021. [Google Scholar]
- Leroy Merlin. Tubo Polietilene in Rotolo L 100 m ∅ 25 mm; Leroy Merlin: Lezennes, France, 2020. [Google Scholar]
- Irrigazione Riccini. Ala Gocciolante Multibar; Irrigazione Riccini: Perugia, Italy, 2020. [Google Scholar]
- Claber. Catalogo. 2020. Available online: https://www.claber.com/en/prodotti/catalogo/2020/18/ (accessed on 1 January 2021).
- Irrigazione Riccini. Cathalog; Irrigazione Riccini: Perugia, Italy, 2020. [Google Scholar]
- Catalog, A. Contatore per flusso d’acqua, per la casa e il giardino, 1.5 m3/h, per Connettori da Giardino, per Acqua Fredda, DIAMOND. 2020. Available online: https://www.amazon.it/Contatore-flusso-dacqua-giardino-connet (accessed on 6 November 2020).
- Rosenbaum, R.K.; Hauschild, M.Z.; Boulay, A.M.; Fantke, P.; Laurent, A.; Núñez, M.; Vieira, M. Life Cycle Assessment; Springer International Publishing: Cham, Switzerland, 2018; Chapter 10. [Google Scholar] [CrossRef]
- Beer, H.R. Longevity and Ecology of Polyolefin Roof Membranes. In Proceedings of the Fourth International Symposium on Roofing Technology, Sarnen, Switzerland, 17–19 September 1997; pp. 14–20. [Google Scholar]
- Agribalyse. Tomate de Saison, Crue; ADEME: Angers, France, 2020. [Google Scholar]
- Paolini, R.; Zinzi, M.; Poli, T.; Carnielo, E.; Mainini, A.G. Effect of ageing on solar spectral reflectance of roofing membranes: Natural exposure in Roma and Milano and the impact on the energy needs of commercial buildings. Energy Build. 2014, 84, 333–343. [Google Scholar] [CrossRef]
- Paolini, R. An Overview on the Performance over time of Cool and Green Roofs as Countermeasures to Urban Heat Islands. TEMA: Tempo Mater. Archit. 2015, 1, 9–14. [Google Scholar] [CrossRef]
- Dominguez-Delgado, A.; Domínguez-Torres, H.; Domínguez-Torres, C.A. Energy and economic life-cycle assessment of cool roofs applied to the refurbishment of social housing in southern Spain. Sustainability 2020, 12, 5602. [Google Scholar] [CrossRef]
- Akbari, H.; Berhe, A.A.; Levinson, R.; Graveline, S.; Foley, K.; Delgado, A.H.; Paroli, R.M. Aging and weathering of cool roofing membranes. In Proceedings of the First International Conference on Passive and LowEnergy Cooling for the Built Environment, Santorini, Greece, 19–21 May 2005. [Google Scholar]
- Alfred Kärcher SE & Co. KG. Technical Data K 7 Premium Full Control Plus; Technical Report; Alfred Kärcher SE & Co. KG: Winnenden, Germany, 2020. [Google Scholar]
Inputs | Alloc | (%) | Lifespan | Field 1 | Field 2 | Field 1 | Field 2 |
n LC | 1 Year | n LC | 30 Years | ||||
Connection parts (PVC) | 83 | 17 | 15 | 1 | 1 | 3 | 3 |
Mulch FPO/TPO | 100 | - | 30 [37] | 1 | - | 1 | - |
Drip irrigation (PE) | 83 | 17 | 5 | 1 | 1 | 6 | 6 |
Drainage | 83 | 17 | 10 | 1 | 1 | 3 | 3 |
Logic system | 83 | 17 | 10 | 1 | 1 | 3 | 3 |
Logic system cables | 83 | 17 | 15 | 1 | 1 | 2 | 2 |
Pressure system | 83 | 17 | 10 | 1 | 1 | 3 | 3 |
Pumping system | 83 | 17 | 15 | 1 | 1 | 2 | 2 |
Tomato | 83 | 17 | 1 [38] | 1 | 1 | 30 | 30 |
Water storage | 83 | 17 | 10 | 1 | 1 | 3 | 3 |
Outputs (yield, kg) | Field 1 | Field 2 | Field 1 | Field 2 | |||
821 | 113 | 24,630 | 3390 |
Connection PVC | Materials | Unit | |
Polyvinylchloride production, bulk polymerisation (EU) | 2.22 | kg | |
Bitumen adhesive compound, hot (EU), production | 4.45 × 10 | kg | |
Limestone, crushed, washed (GLO) market | 0.12 | kg | |
Processes | |||
Extrusion, plastic pipes (EU), production | 2.34 | kg | |
Transport, freight, light commercial vehicle (GLO) market | 0.03 | tkm | |
Transport, freight, lorry > 32 metric ton, EURO4 (GLO) market | 0.60 | tkm | |
Drainage | Materials | ||
Polyvinylchloride production, bulk polymerisation (EU), Alloc Def, U | 7.04 | kg | |
Bitumen adhesive compound, hot (EU), production | 0.01 | kg | |
Limestone, crushed, washed (GLO) market | 0.38 | kg | |
Concrete, normal (GLO) market | 0.37 | m | |
Cast iron (GLO) market | 220.00 | kg | |
Processes | |||
Extrusion, plastic pipes (EU), production | 7.43 | kg | |
Transport, freight, light commercial vehicle (GLO) market | 0.09 | tkm | |
Transport, freight, lorry > 32 metric ton, EURO4 (GLO) market | 1.89 | tkm | |
Drip irrigation | Materials | ||
Polyethylene, linear low density, granulate (EU), production | 6.63 | kg | |
Polyethylene, linear low density, granulate (EU), production | 31.98 | kg | |
Processes | |||
Extrusion, plastic pipes (EU), production | 6.63 | kg | |
Extrusion, plastic pipes (EU), production | 31.98 | kg | |
Transport, freight, light commercial vehicle (GLO) market for | 0.46 | tkm | |
Transport, freight, lorry > 32 metric ton, EURO4 (GLO) market | 9.85 | tkm | |
Logic system | Materials | ||
Electronics, for control units (EU), production | 4.52 | kg | |
Polypropylene, granulate (GLO) market for | 16.00 | kg | |
Battery cell, Li-ion (GLO) market for | 0.15 | kg | |
Processes | |||
Injection moulding (EU), processing | 16.00 | kg | |
Transport, freight, lorry, unspecified (GLO) market for | 4.52 | tkm | |
Logic cables | Materials | ||
Polyethylene pipe, corrugated, DN 75 (GLO) market for | 21.00 | m | |
Cable, data cable in infrastructure (GLO) market for | 21.00 | m | |
Cable, three-conductor cable (GLO) market for | 21.00 | m | |
Mulch FPO/TPO | Materials | ||
Fleece, polyethylene (EU), production | 209.10 | kg | |
Processes | |||
Electricity, low voltage (IT) market for | 2.34 | kWh | |
Transport, freight, lorry 16-32 metric ton, EURO3 (GLO) market for, Alloc Rec, U | 88.20 | tkm | |
Pressure system | Materials | ||
Steel, low-alloyed (GLO) market for | 9.00 | kg | |
Cast-iron (GLO) market for | 1.30 | kg | |
Pumping System | Materials | ||
Cast-iron (GLO) market for | 10.00 | kg | |
Cable, three-conductor cable (GLO) market for | 19.00 | m | |
Tomato | Materials | ||
Nitrogen fertiliser, as N (GLO) market for | 0.40 | kg | |
Tomato seeding | 168.00 | p | |
Glyphosate (GLO) market for | 0.70 | kg | |
Phosphate fertiliser, as P2O5 (GLO) market for | 0.20 | kg | |
Potassium fertiliser, as K2O (GLO) market for | 0.60 | kg | |
Polyethylene, high density, granulate (GLO) market for | 2.40 × 10 | kg | |
Processes | |||
Electricity, low voltage (IT) market for | 0.33 | kWh | |
Transport, passenger car, large size, diesel, EURO 4 (GLO) market for | 15.00 | km | |
Transport, passenger car, large size, diesel, EURO 4 (GLO) market for | 10.00 | km | |
Blow moulding (GLO) market for | 2.40 × 10 | kg | |
Tomato seeding | Materials | ||
Tap water (EU without Switzerland) market for | 0.75 | kg | |
Peat moss (GLO) market for | 3.00 × 10 | m | |
Processes | |||
Electricity, low voltage (IT) market for | 237.00 | Wh | |
Water Storage | Materials | ||
Polyethylene, high density, granulate (GLO) market for | 290.00 | kg | |
Injection-moulding (EU), processing | 290.00 | kg |
Emissions kg CO2 eq | Total | /m2 | Contribution | |||
---|---|---|---|---|---|---|
Field 1 | Field 2 | Field 1 | Field 2 | Field 1 | Field 2 | |
Connection parts (PVC) | 4.61 | 0.92 | 0.05 | 0.05 | 0% | 0% |
Mulch FPO/TPO | 574.18 | - | 5.74 | - | 25% | - |
Drip irrigation (PE) | 72.58 | 14.52 | 0.73 | 0.73 | 3% | 4% |
Drainage + concrete | 509.25 | 101.85 | 5.09 | 5.09 | 22% | 29% |
Logic system | 145.53 | 29.11 | 1.46 | 1.46 | 6% | 8% |
Logic system cables | 99.86 | 19.97 | 1.00 | 1.00 | 4% | 6% |
Pressure system | 15.98 | 3.20 | 0.16 | 0.16 | 1% | 1% |
Pumping system | 87.51 | 17.50 | 0.88 | 0.88 | 4% | 5% |
Tomato | 46.02 | 9.20 | 0.46 | 0.46 | 2% | 3% |
Water storage system | 774.13 | 154.83 | 7.74 | 7.74 | 33% | 44% |
1 year | 2329.65 | 351.09 | 23.30 | 17.55 | 100% | 100% |
Emissions kg CO2 eq | Total | /m2 | Contribution | |||
---|---|---|---|---|---|---|
Field 1 | Field 2 | Field 1 | Field 2 | Field 1 | Field 2 | |
Connection parts (PVC) | 13.84 | 2.77 | 0.14 | 0.14 | 0% | 0% |
Mulch FPO/TPO | 574.18 | - | 5.74 | - | 8% | - |
Drip irrigation (PE) | 435.48 | 87.12 | 4.35 | 4.36 | 6% | 7% |
Drainage + concrete | 1527.68 | 305.61 | 15.28 | 15.28 | 21% | 23% |
Logic system | 436.57 | 87.33 | 4.37 | 4.37 | 6% | 7% |
Logic system cables | 199.72 | 39.95 | 2.00 | 2.00 | 3% | 3% |
Pressure system | 47.93 | 9.59 | 0.48 | 0.48 | 1% | 1% |
Pumping system | 175.01 | 35.01 | 1.75 | 1.75 | 2% | 3% |
Tomato | 1380.56 | 276.18 | 13.81 | 13.81 | 19% | 21% |
Water storage system | 2322.29 | 464.57 | 23.22 | 23.23 | 33% | 36% |
30 years | 7113.25 | 1308.13 | 71.13 | 65.41 | 100% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frota de Albuquerque Landi, F.; Fabiani, C.; Pisello, A.L.; Petrozzi, A.; Milone, D.; Cotana, F. Environmental Assessment of an Innovative High-Performance Experimental Agriculture Field. Sustainability 2022, 14, 10462. https://doi.org/10.3390/su141710462
Frota de Albuquerque Landi F, Fabiani C, Pisello AL, Petrozzi A, Milone D, Cotana F. Environmental Assessment of an Innovative High-Performance Experimental Agriculture Field. Sustainability. 2022; 14(17):10462. https://doi.org/10.3390/su141710462
Chicago/Turabian StyleFrota de Albuquerque Landi, Fabiana, Claudia Fabiani, Anna Laura Pisello, Alessandro Petrozzi, Daniele Milone, and Franco Cotana. 2022. "Environmental Assessment of an Innovative High-Performance Experimental Agriculture Field" Sustainability 14, no. 17: 10462. https://doi.org/10.3390/su141710462
APA StyleFrota de Albuquerque Landi, F., Fabiani, C., Pisello, A. L., Petrozzi, A., Milone, D., & Cotana, F. (2022). Environmental Assessment of an Innovative High-Performance Experimental Agriculture Field. Sustainability, 14(17), 10462. https://doi.org/10.3390/su141710462