Study on the Hydration and Microstructure of B and B/Na Ion-Doped Natural Hydraulic Lime Composed with Silica Fume/Fly Ash
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation
2.3. Test Methods
3. Results
3.1. Mineral Content and Crystal Structure
3.2. Hydration Heat
3.3. Mechanical Properties
3.4. Phase Analysis of Binders
3.5. TG Analysis
3.6. Microstructure
3.7. Pore Structure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arizzi, A.; Cultrone, G. Mortars and plasters—How to characterise hydraulic mortars. Archaeol. Anthr. Sci. 2021, 13, 144. [Google Scholar] [CrossRef]
- Elsen, J.; Mertens, G.; Snellings, R. Portland Cement and Other Calcareous Hydraulic Binders: History, Production and Mineralogy. In Advances in the Characterization of Industrial Minerals; Mineralogical Society of Great Britian and Ireland: Twickenham, UK, 2011; pp. 441–479. [Google Scholar]
- Artioli, G.; Secco, M.; Addis, A. The Vitruvian Legacy: Mortars and Binders Before and After the Roman World; Mineralogical Society of Great Britian and Ireland: Twickenham, UK, 2019; pp. 151–202. [Google Scholar]
- Hall, C. On the history of Portland cement after 150 years. J. Chem. Educ. 1976, 53, 222–223. [Google Scholar] [CrossRef]
- Han, T.H.; Ponduru, S.A.; Cook, R.; Huang, J.; Sant, G.; Kumar, A. A Deep Learning Approach to Design and Discover Sustainable Cementitious Binders: Strategies to Learn From Small Databases and Develop Closed-form Analytical Models. Front. Mater. 2022, 8, 574. [Google Scholar] [CrossRef]
- Jia, Q.Q.; Chen, W.W.; Tong, Y.M.; Guo, L.Q. Strength, hydration, and microstructure properties of calcined ginger nut and natural hydraulic lime based pastes for earthen plaster restoration. Constr. Build. Mater. 2022, 323, 126606. [Google Scholar] [CrossRef]
- Hughes, D.C.; Jaglin, D.; Kozlowski, R.; Mucha, D. Roman cements-Belite cements calcined at low temperature. Cem. Concr. Res. 2009, 39, 77–89. [Google Scholar] [CrossRef]
- Kalagri, A.; Miltiadou-Fezans, A.; Vintzileou, E. Design and evaluation of hydraulic lime grouts for the strengthening of stone masonry historic structures. Mater. Struct. 2010, 43, 1135–1146. [Google Scholar] [CrossRef]
- Yang, F.W.; Zhang, B.J.; Ma, Q.L. Study of Sticky Rice-Lime Mortar Technology for the Restoration of Historical Masonry Construction. Acc. Chem. Res. 2010, 43, 936–944. [Google Scholar] [CrossRef]
- Ruegenberg, F.; Schidlowski, M.; Bader, T.; Diekamp, A. NHL-based mortars in restoration: Frost-thaw and salt resistance testing methods towards a field related application. Case Stud. Constr. Mater. 2021, 14, e00531. [Google Scholar] [CrossRef]
- Bauerova, P.; Reiterman, P.; Davidova, V.; Vejmelkova, E.; Storkanova, M.K.; Keppert, M. Lime Mortars with Linseed Oil: Engineering Properties and Durability. Rev. Romana Mater. 2021, 51, 239–246. [Google Scholar]
- Silva, B.A.P.; Pinto, A.P.F.; Gomes, A. Influence of natural hydraulic lime content on the properties of aerial lime-based mortars. Constr. Build. Mater. 2014, 72, 208–218. [Google Scholar] [CrossRef]
- Maravelaki-Kalaitzaki, P.; Bakolas, A.; Karatasios, I.; Kilikoglou, V. Hydraulic lime mortars for the restoration of historic masonry in Crete. Cem. Concr. Res. 2005, 35, 1577–1586. [Google Scholar] [CrossRef]
- Stankeviciute, M.; Siauciunas, R.; Miachai, A. Impact of α-C2SH calcination temperature on the mineral composition and heat flow of the products. J. Therm. Anal. 2018, 134, 101–110. [Google Scholar] [CrossRef]
- Wang, Q.; Manzano, H.; Guo, Y.; Lopez-Arbeloa, I.; Shen, X. Hydration Mechanism of Reactive and Passive Dicalcium Silicate Polymorphs from Molecular Simulations. J. Phys. Chem. C 2015, 119, 19869–19875. [Google Scholar] [CrossRef]
- Morsli, K.; de la Torre, A.G.; Cuberos, A.J.M.; Zahir, M.; Aranda, M.A.G. Preparation and characterization of alkali-activated white belite cements. Mater. Constr. 2009, 59, 19–29. [Google Scholar]
- Alonso, C.; Fernandez, L. Dehydration and rehydration processes of cement paste exposed to high temperature environments. J. Mater. Sci. 2004, 39, 3015–3024. [Google Scholar] [CrossRef]
- Gawlicki, M. Effect of stabilizers on beta-C2S hydration. Cem. Wapno Beton 2008, 13, 147. [Google Scholar]
- Huang, L.; Yang, Z. Sinterization and hydration of synthesized cement clinker doped with sulfates. J. Therm. Anal. 2019, 138, 973–981. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, J.; Wang, D.; Xu, C.; Zhai, M.; Ma, X. Comparative study on the properties of three hydraulic lime mortar systems: Natural hydraulic lime mortar, cement-aerial lime-based mortar and slag-aerial lime-based mortar. Constr. Build. Mater. 2018, 186, 42–52. [Google Scholar] [CrossRef]
- Uchima, J.S.; Restrepo-Baena, O.J.; Tobon, J.I. Mineralogical evolution of portland cement blended with metakaolin obtained in simultaneous calcination of kaolinitic clay and rice husk. Constr. Build. Mater. 2016, 118, 286–293. [Google Scholar] [CrossRef]
- Wang, S.D.; Chen, C.; Gong, C.C.; Chen, Y.M.; Lu, L.C.; Cheng, X. Setting and hardening properties of alite-barium calcium sulfoaluminate cement with SCMs. Adv. Cem. Res. 2015, 27, 147–152. [Google Scholar]
- Lin, K.-H.; Yang, C.-C. Effects of types and surface areas of activated materials on compressive strength of GGBS cement. Mag. Concr. Res. 2021, 74, 582–593. [Google Scholar] [CrossRef]
- Cheng, Z.; An, J.; Li, F.; Lu, Y.; Li, S. Effect of fly ash cenospheres on properties of multi-walled carbon nanotubes and polyvinyl alcohol fibers reinforced geopolymer composites. Ceram. Int. 2022, 48, 18956–18971. [Google Scholar] [CrossRef]
- Lu, D.; Shi, X.M.; Zhong, J. Interfacial nano-engineering by graphene oxide to enable better utilization of silica fume in cementitious composite. J. Clean. Prod. 2022, 354, 131381. [Google Scholar] [CrossRef]
- Alelweet, O.; Pavia, S. Pozzolanic and hydraulic activity of bauxite for binder production. J. Build. Eng. 2022, 51, 104186. [Google Scholar] [CrossRef]
- Grilo, J.; Faria, P.; Veiga, R.; Silva, A.S.; Silva, V.; Velosa, A. New natural hydraulic lime mortars–Physical and microstructural properties in different curing conditions. Constr. Build. Mater. 2014, 54, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Diouri, A.; Boukhari, A.; Aride, J.; Puertas, F.; Vazquez, T. Elaboration of alpha L ’-C2S form of belite in phosphatic clinker. Study of hydraulic activity. Mater. Constr. 1998, 48, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Elhoweris, A.; Galan, I.; Glasser, F.P. Stabilisation of α′ dicalcium silicate in calcium sulfoaluminate clinker. Adv. Cem. Res. 2020, 32, 112–124. [Google Scholar] [CrossRef]
- Li, C.; Wu, M.X.; Yao, W. Effect of coupled B/Na and B/Ba doping on hydraulic properties of belite-ye’elimite-ferrite cement. Constr. Build. Mater. 2019, 208, 23–35. [Google Scholar] [CrossRef]
- Álvarez-Pinazo, G.; Cuesta, A.; García-Maté, M.; Santacruz, I.; Losilla, E.; De la Torre, A.; León-Reina, L.; Aranda, M. Rietveld quantitative phase analysis of Yeelimite-containing cements. Cem. Concr. Res. 2012, 42, 960–971. [Google Scholar] [CrossRef] [Green Version]
- Segata, M.; Marinoni, N.; Galimberti, M.; Marchi, M.; Cantaluppi, M.; Pavese, A.; De la Torre, G. The effects of MgO, Na2O and SO3 on industrial clinkering process: Phase composition, polymorphism, microstructure and hydration, using a multidisciplinary approach. Mater. Charact. 2019, 155, 109809. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, W.; Torres, S.; Kirk, C.; Leal, A.; Filho, M.L.; Diniz, D. Incorporation of minor constituents into Portland cement tricalcium silicate: Bond valence assessment of the alite M1 polymorph crystal structure using synchrotron XRPD data. Cem. Concr. Res. 2020, 136, 106125. [Google Scholar] [CrossRef]
- Abdelatif, Y.; Gaber, A.A.M.; Fouda, A.S.; Alsoukarry, T. Evaluation of Calcium Oxide Nanoparticles from Industrial Waste on the Performance of Hardened Cement Pastes: Physicochemical Study. Processes 2020, 8, 401. [Google Scholar] [CrossRef] [Green Version]
- Gualtieri, A.F.; Viani, A.; Montanari, C. Quantitative phase analysis of hydraulic limes using the Rietveld method. Cem. Concr. Res. 2006, 36, 401–406. [Google Scholar] [CrossRef]
- Cuesta, A.; Losilla, E.R.; Aranda, M.A.; Sanz, J.; De la Torre, G. Reactive belite stabilization mechanisms by boron-bearing dopants. Cem. Concr. Res. 2012, 42, 598–606. [Google Scholar] [CrossRef]
- Guo, P.; Wang, B.; Bauchy, M.; Sant, G. Misfit Stresses Caused by Atomic Size Mismatch: The Origin of Doping-Induced Destabilization of Dicalcium Silicate. Cryst. Growth Des. 2016, 16, 3124–3132. [Google Scholar] [CrossRef]
- Lai, G.C.; Nojiri, T.; Nakano, K. Studies of the Stability of Beta-Ca2SiO4 Doped by Minor Ions. Cem. Concr. Res. 1992, 22, 743–754. [Google Scholar] [CrossRef]
- Haustein, E.; Kuryłowicz-Cudowska, A.; Łuczkiewicz, A.; Fudala-Książek, S.; Cieślik, B.M. Influence of Cement Replacement with Sewage Sludge Ash (SSA) on the Heat of Hydration of Cement Mortar. Materials 2022, 15, 1547. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Q.; Feng, Y.; Chen, Q.; Xiao, C.; Li, H.; Xiang, Y.; Qi, C. Hydration and Mechanical Properties of Blended Cement with Copper Slag Pretreated by Thermochemical Modification. Materials 2022, 15, 3477. [Google Scholar] [CrossRef]
- Amin, M.S.; Abo-El-Enein, S.A.; Rahman, A.A.; Alfalous, K.A. Artificial pozzolanic cement pastes containing burnt clay with and without silica fume Physicochemical, microstructural and thermal characteristics. J. Anal. Calorim. 2012, 107, 1105–1115. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, J.; Wang, D.; Wang, Y.; Ma, X. Influence of pozzolanic materials on the properties of natural hydraulic lime based mortars. Constr. Build. Mater. 2020, 244, 118360. [Google Scholar] [CrossRef]
- Yoon, S.; Choi, W.; Jeon, C. Hydration properties of mixed cement containing ground-granulated blast-furnace slag and expansive admixture. J. Mater. Cycles Waste Manag. 2022, 24, 1878–1892. [Google Scholar] [CrossRef]
- Hasan, M.F.; Lateef, K.H. Effect of MK and SF on the concrete mechanical properties. Mater. Today Proc. 2021, 42, 2914–2919. [Google Scholar] [CrossRef]
- Kim, M.J.; Oh, T.; Yoo, D.Y. Influence of curing conditions on the mechanical performance of ultra-high-performance strain-hardening cementitious composites. Arch. Civ. Mech. Eng. 2021, 21, 104325. [Google Scholar] [CrossRef]
- Muthadhi, A.; Dhivya, V. Investigating Strength Properties of Geopolymer Concrete with Quarry Dust. ACI Mater. J. 2017, 114, 355–363. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, P.; Liang, C.; Chen, M.; Niu, L.; Xu, J.; Sun, D.; Lu, L. Characterization and adaptability of layered double hydroxides in cement paste. Appl. Clay Sci. 2021, 211, 106197. [Google Scholar] [CrossRef]
- Poussardin, V.; Paris, M.; Tagnit-Hamou, A.; Deneele, D. Potential for calcination of a palygorskite-bearing argillaceous carbonate. Appl. Clay Sci. 2020, 198, 105846. [Google Scholar] [CrossRef]
- Sharara, A.; El-Didamony, H.; Ebied, E.; El-Aleem, A. Hydration characteristics of β-C2S in the presence of some pozzolanic materials. Cem. Concr. Res. 1994, 24, 966–974. [Google Scholar] [CrossRef]
- Lv, Y.J.; Yang, L.B.; Wang, J.L.; Zhan, B.J.; Xi, Z.M.; Qin, Y.M.; Liao, D. Performance of ultra-high-performance concrete incorporating municipal solid waste incineration fly ash. Case Stud. Constr. Mater. 2022, 17, e01155. [Google Scholar] [CrossRef]
- Rojo-Lopez, G.; Gonzalez-Fonteboa, B.; Martinez-Abella, F.; Gonzalez-Taboada, I. Rheology, durability, and mechanical performance of sustainable self-compacting concrete with metakaolin and limestone filler. Case Stud. Constr. Mater. 2022, 17, e01143. [Google Scholar] [CrossRef]
- Silva, A.S.; Cruz, T.; Paiva, M.J.; Candeias, A.; Adriano, P.; Schiavon, N.; Mirão, J.A.P. Mineralogical and chemical characterization of historical mortars from military fortifications in Lisbon harbour (Portugal). Environ. Earth Sci. 2011, 63, 1641–1650. [Google Scholar] [CrossRef]
- Ubbrìaco, P.; Traini, A.; Manigrassi, D. Characterization of FDR fly ash and brick/lime mixtures. J. Therm. Anal. 2008, 92, 301–305. [Google Scholar] [CrossRef]
- Li, P.; Ma, Z.; Li, X.; Lu, X.; Hou, P.; Du, P. Effect of Gypsum on Hydration and Hardening Properties of Alite Modified Calcium Sulfoaluminate Cement. Materials 2019, 12, 3131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.; Wang, J.; Sun, Y. Effect of water binder ratio on the early hydration of natural hydraulic lime. Mater. Struct. 2015, 48, 3431–3441. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, Z.; Zheng, L.; Yang, S.; Su, W.; Li, B.; Ji, T. Interaction between composition and microstructure of cement paste and polymeric carbon nitride. Constr. Build. Mater. 2022, 335, 127464. [Google Scholar] [CrossRef]
Materials | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | Others | L.O.I |
---|---|---|---|---|---|---|---|---|
limestone | 48.33 | 3.61 | 0.81 | 0.73 | 3.00 | 0.05 | 0.38 | 43.09 |
Diatomite | 0.32 | 86.20 | 2.03 | 1.93 | 0.26 | 0.29 | 0.82 | 8.14 |
Fly ash | 2.88 | 50.54 | 26.86 | 5.95 | 0.74 | 0.52 | 5.93 | 6.59 |
Silica fume | 0.18 | 92.70 | 0.14 | 0.04 | 0.64 | 0.59 | 0.84 | 4.87 |
Sample | NHL | B1.5 | BNa1.5 | FA | SF | |
---|---|---|---|---|---|---|
Blank | NHL | 500 | ||||
F1 | 450 | 50 | ||||
F2 | 400 | 100 | ||||
S1 | 450 | 50 | ||||
S2 | 400 | 100 | ||||
B-ion doping | B1.5 | 500 | ||||
F1B1.5 | 450 | 50 | ||||
F2B1.5 | 400 | 100 | ||||
S1B1.5 | 450 | 50 | ||||
S2B1.5 | 400 | 100 | ||||
B/Na doping | BNa1.5 | 500 | ||||
F1BNa1.5 | 450 | 50 | ||||
F2BNa1.5 | 400 | 100 | ||||
S1BNa1.5 | 450 | 50 | ||||
S2BNa1.5 | 400 | 100 |
Phase | Space Group | ICSD Code | PDF Code |
---|---|---|---|
α’-C2S | Pnma | 81097 | 49-1674 |
β-C2S | P121/N1 | 963 | 33-0302 |
Portlandite | P-3M1 | 15471 | 44-1481 |
Rutile | P42/mnm | 9161 | 21-1276 |
Calcite | P3221 | 174 | 78-2315 |
Periclase | Fm-3m | 9863 | 45-0946 |
Samples | β-C2S | α’-C2S | ||||||
---|---|---|---|---|---|---|---|---|
V | a | b | c | V | a | b | c | |
NHL | 345.74 | 5.51 | 6.76 | 9.32 | ||||
B1.5 | 337.96 | 5.50 | 6.64 | 9.27 | 345.08 | 6.84 | 5.46 | 9.25 |
BNa1.5 | 345.68 | 5.51 | 6.75 | 9.31 | 344.91 | 6.85 | 5.45 | 9.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, Z.; Wang, J.; Shao, C.; Li, J.; Wang, D. Study on the Hydration and Microstructure of B and B/Na Ion-Doped Natural Hydraulic Lime Composed with Silica Fume/Fly Ash. Sustainability 2022, 14, 10484. https://doi.org/10.3390/su141710484
Zhang Y, Liu Z, Wang J, Shao C, Li J, Wang D. Study on the Hydration and Microstructure of B and B/Na Ion-Doped Natural Hydraulic Lime Composed with Silica Fume/Fly Ash. Sustainability. 2022; 14(17):10484. https://doi.org/10.3390/su141710484
Chicago/Turabian StyleZhang, Yanbo, Ze Liu, Jixiang Wang, Conghao Shao, Jiaxing Li, and Dongmin Wang. 2022. "Study on the Hydration and Microstructure of B and B/Na Ion-Doped Natural Hydraulic Lime Composed with Silica Fume/Fly Ash" Sustainability 14, no. 17: 10484. https://doi.org/10.3390/su141710484
APA StyleZhang, Y., Liu, Z., Wang, J., Shao, C., Li, J., & Wang, D. (2022). Study on the Hydration and Microstructure of B and B/Na Ion-Doped Natural Hydraulic Lime Composed with Silica Fume/Fly Ash. Sustainability, 14(17), 10484. https://doi.org/10.3390/su141710484