Variations and Factors Characterizing Ecological Niches of Understory Herbaceous Species in Plantation Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Areas
2.2. Survey and Sampling
2.3. Selection of Environmental Factors
2.4. Relative Calculations and Laboratory Analyses
2.5. Statistical Analyses
3. Results
3.1. Characteristics of Understory Herbaceous Species Composition in Plantation Forests
3.2. Characteristics of Niche on Understory Herbaceous Species in Plantation Forest
3.3. Classification of Understory Herbaceous Species in Plantation Forest
3.4. Environmental Interpretation of Niche Characteristics
4. Discussion
4.1. Variation Law of Niche Breadth and Niche Overlap of Understory Herbaceous Species
4.2. Differentiation of Understory Herbaceous Species
4.3. Factors Affecting Niche Patterns of Understory Herbaceous Species
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grinnell, J. The niche-relationships of the California thrasher. Auk 1917, 34, 427–433. [Google Scholar] [CrossRef]
- Hutchinson, G. Concluding Remarks: Population Studies and Animal Ecology and Demography. In Cold Spring Harbor Symposiaon Quantitative Biology; The Biological Laboratory: New York, NY, USA, 1957; Volume 22, pp. 415–427. [Google Scholar]
- Turnbull Lindsay, A.; Isbell, F.; Purves, D.W.; Loreau, M.; Hector, A. Understanding the value of plant diversity for ecosystem functioning through niche theory. Proc. Biol. Sci. 2016, 283, 1844. [Google Scholar] [CrossRef]
- Löffler, J.; Pape, R. Thermal niche predictors of alpine plant species. Ecology 2020, 101, e02891. [Google Scholar] [CrossRef]
- Ehrl´en, J.; Morris, W.F. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 2015, 18, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.D.; Kang, X.R.; Shao, W.H.; Yang, X.; Zhang, J.F.; Liu, X.Q.; Chen, G.C. Characteristics of herbaceous plant biodiversity in Cunninghamia lanceolate plantations with different community structures. Acta Ecol. Sin. 2021, 41, 2118–2128. [Google Scholar]
- Xie, H.; Tang, Y.; Yu, M.; Wang, G.G. The effects of afforestation tree species mixing on soil organic carbon stock, nutrients accumulation, and understory vegetation diversity on reclaimed coastal lands in Eastern China. Glob. Ecol. Conserv. 2021, 26, e01478. [Google Scholar] [CrossRef]
- David, T. Competition and Biodiversity in Spatially Structured Habitats. Ecology 1994, 75, 2–16. [Google Scholar]
- Qian, L.Y.; Shen, Y.; Li, X.W.; Chen, G.; Li, D.H.; Fan, C. Early effects of crop tree management on undergrowth plant diversity and soil physicochemical properties in a Pinus massoniana plantation. PeerJ 2021, 9, e11852. [Google Scholar]
- Tilman, D.; Lehman, C.L.; Thomson, K.T. Plant diversity and ecosystem productivity: Theoretical considerations. Proc. Natl. Acad. Sci. USA 1997, 94, 1857–1861. [Google Scholar] [CrossRef] [PubMed]
- Gilliam, F.S. The Ecological Significance of the Herbaceous Layer in Temperate Forest Ecosystems. BioScience 2007, 57, 845–858. [Google Scholar]
- Chávez, V.; Macdonald, S.E. Partitioning vascular understory diversity in mixedwood boreal forests: The importance of mixed canopies for diversity conservation. For. Ecol. Manag. 2012, 271, 19–26. [Google Scholar] [CrossRef]
- Small, C.J.; McCarthy, B.C. Relationship of understory diversity to soil nitrogen, topographic variation, and stand age in an eastern oak forest, USA. For. Ecol. Manag. 2005, 217, 229–243. [Google Scholar] [CrossRef]
- Márialigeti, S.; Tinya, F.; Bidló, A.; Ódor, P. Environmental drivers of the composition and diversity of the herb layer in mixed temperate forests in Hungary. Plant Ecol. 2016, 217, 549–563. [Google Scholar] [CrossRef]
- Chudomelov, M.; Zelen, D.; Li, C.F. Contrasting patterns of fine-scale herblayer species composition in temperate forests. Acta Oecol. 2017, 80, 24–31. [Google Scholar] [CrossRef]
- Fucang, Q.; Zhenqi, Y.; Long, L. Research progress on soil erosion mechanism and ecological restoration technology in feldspathic sandstone region. J. Beijing For. Univ. 2020, 42, 142–150. (In Chinese) [Google Scholar]
- Farooq, T.H.; Shakoor, A.; Wu, X.; Li, Y.; Rashid, M.H.U.; Zhang, X.; Yan, W.; Chen, X.; Kumar, U.; Gilani, M.M. Perspectives of plantation forests in the sustainable forest development of China. iForest-Biogeosci. For. 2021, 14, 166–174. [Google Scholar] [CrossRef]
- Ugawa, S.; Miura, S.; Iwamoto, K.; Kaneko, S.; Fukuda, K. Vertical patterns of fine root biomass, morphology and nitrogen concentration in a subalpine fir-wave forest. Plant Soil 2010, 335, 469–478. [Google Scholar] [CrossRef]
- Levins, R. Evolution in Changing Environments: Some Theoretical Exploration; Princeton University Press: Princeton, NJ, USA, 1968. [Google Scholar]
- Pianka, E.R. The structure of lizard communities. Annu. Rev. Ecol. Syst. 1973, 4, 53–74. [Google Scholar] [CrossRef]
- Krebs, C.J. Ecological Methodology; Harper and Row: New York, NY, USA, 1989; p. 381. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtijareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Lu, R.K. Soil Analysis Methods in Agricultural Chemistry; China Agricultural Sci-Tech Publication: Beijing, China, 1999; pp. 150, 179, 193. [Google Scholar]
- Yu, M.; Sun, O.J. Effects of forest patch type and site on herb-layer vegetation in a temperate forest ecosystem. For. Ecol. Manag. 2013, 300, 14–20. [Google Scholar] [CrossRef]
- Zhang, J. Quantitative Ecology; Science Press: Beijing, China, 2004; p. 121. [Google Scholar]
- Wilson, B.; Hayek, L.A.C. Distinguishing relative specialist and generalist species in the fossil record. Mar. Micropaleontol. 2015, 119, 7–16. [Google Scholar] [CrossRef]
- Wu, W.; Logares, R.; Huang, B.; Hsieh, C.H. Abundant and rare picoeukaryotic subcommunities present contrasting patterns in the epipelagic waters of marginal seas in the northwestern Pacific Ocean. Environ. Microbiol. 2017, 19, 287–300. [Google Scholar] [CrossRef]
- Ahmad, M.; Sharma, P.; Rathee, S.; Singh, H.P.; Batish, D.R.; Lone, G.R.; Kohli, R.K. Niche width analyses facilitate identification of high-risk endemic species at high altitudes in western Himalayas. Ecol. Indic. 2021, 126, 107653. [Google Scholar] [CrossRef]
- Hao, W.F.; Shan, C.J.; Liang, Z.S.; Chen, C.G. The study on the relationship betweensoil nutrient and productivity of plantation Robinia pseudoacacia forest in the Loess Plateau and Gully area of Northern Shaanxi. Chin. Agric. Sci. Bull 2005, 21, 129–135. (In Chinese) [Google Scholar]
- Treurnicht, M.; Pagel, J.; Tonnabel, J.; Esler, K.J.; Slingsby, J.A.; Schurr, F.M. Functional traits explain the Hutchinsonian niches of plant species. Glob. Ecol. Biogeogr. 2020, 29, 534–545. [Google Scholar] [CrossRef]
- Zhang, L.; Pang, R.; Xu, X.; Song, M.; Li, Y.; Zhou, H.; Cui, X.; Wang, Y.; Ouyang, H. ThreeTibetan grassland plant species tend to partition niches with limited plasticity in nitrogen use. Plant Soil 2019, 441, 601–611. [Google Scholar] [CrossRef]
- Zhang, X.G.; Wang, Q.C.; Wang, S.L.; Sun, Q. Effect of the close-to-nature transformation of larix gmelinii pure stands on plant diversity of understory vegetation in xiaoxing’an mountains of china. Sci. Silvae Sin. 2011, 47, 6–14. [Google Scholar]
- Tilman, D. Resource Competition and Community Structure; Monographs in Population Biology Series; Princeton University Press: Princeton, NJ, USA, 1982; Volume 17, pp. 1–296. [Google Scholar]
- Pastore, A.I.; Barabás, G.; Bimler, M.D.; Mayfield, M.M.; Miller, T.E. The evolution of niche overlap and competitive differences. Nat. Ecol. Evol. 2021, 5, 330–337. [Google Scholar] [CrossRef]
- Ingram, T.; Costa-Pereira, R.; Araújo, M.S. The dimensionality of individual niche variation. Ecology 2018, 99, 536–549. [Google Scholar] [CrossRef]
- Wu, G.; Gao, J.; Ou, W.; Wan, J.; Li, X. Effects of the hummock–depression microhabitat on plant communities of alpine marshy meadows in the Yellow River Source Zone, China. J. Plant Ecol. 2022, 15, 111–128. [Google Scholar] [CrossRef]
- Carboni, M.; Zeleny, D.; Acosta, A.T.R. Measuring ecological specialization along a natural stress gradient using a set of complementary niche breadth indices. J. Veg. Sci. 2016, 27, 892–903. [Google Scholar] [CrossRef]
- Shi, J.J.; Zhao, M.F.; Wang, Y.H.; Xue, F.; Kang, M.Y.; Jiang, Y. Community assembly of herbaceous layer of the planted forests in the central Loess Plateau, China. Chin. J. Plant Ecol. 2019, 43, 834–842. [Google Scholar]
- Liang, Z.; Wu, Z.; Yao, W.; Noori, M.; Yang, C.; Xiao, P.; Leng, Y.; Deng, L. Pisha sandstone: Causes, processes and erosion options for its control and prospects. Int. Soil Water Conserv. Res. 2019, 7, 1–8. [Google Scholar] [CrossRef]
- Zhao, X.X.; Rao, L.Y.; Shen, Z.Z. Heterogeneous characteristics of soil physical properties of different terrain locations in the Pisha sandstone area. Chin. J. Appl. Environ. Biol. 2020, 26, 1359–1368. [Google Scholar]
- Selzer, L.J.; Busso, C.A. Different canopy openings affect underground traits in herbaceous plants of a southern forest in Patagonia. J. Plant Ecol. 2016, 9, 542–552. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, T.; Guo, J.; Tan, Z.; Dong, W.; Wang, H. Changes in the understory diversity of secondary Pinus tabulaeformis forests are the result of stand density and soil properties. Glob. Ecol. Conserv. 2021, 28, e01628. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, C.; Guo, H.; Chen, W.; Yun, W.; Gao, L.; Wang, H. Analyzing Ecological Vulnerability and Vegetation Phenology Response Using NDVI Time Series Data and the BFAST Algorithm. Remote Sens. 2020, 12, 3371. [Google Scholar] [CrossRef]
- Haider, S.; Lembrechts, J.; McDougall, K.; Pauchard, A.; Alexander, J.M.; Barros, A.; Cavieres, L.; Rashid, I.; Rew, L.; Aleksanyan, A.; et al. Think globally, measure locally: The MIREN standardized protocol for monitoring plant species distributions along elevation gradients. Ecol. Evol. 2022, 12, e8590. [Google Scholar] [CrossRef]
- Wang, R.J.; Yan, F. Fractional vegetation cover and topographic effects in Pisha sandstone area of Northwest China in 2000–2018. J. Appl. Ecol. 2020, 31, 1194–1202. [Google Scholar]
Sample Number | Site Types | Slope Aspect | Altitude (m) | Slope (°) | CD (%) | ST (m) | |
---|---|---|---|---|---|---|---|
1 | Sunny side | Flat slope | ES | 1207 | 4 | 0.54 ± 0.07 | 0.21 ± 0.02 |
2 | Gentle slope | ES | 1228 | 11 | 0.48 ± 0.04 | 0.12 ± 0.01 | |
3 | Slope | WS | 1210 | 20 | 0.46 ± 0.10 | 0.06 ± 0.01 | |
4 | Shady side | Flat slope | N | 1205 | 3 | 0.49 ± 0.08 | 0.18 ± 0.02 |
5 | Gentle slope | EN | 1213 | 10 | 0.46 ± 0.11 | 0.12 ± 0.01 | |
6 | Slope | WN | 1221 | 21 | 0.42 ± 0.05 | 0.12 ± 0.02 |
Sample Number | Site Types | SWC (%) | PH | SOM (g·kg−1) | SAN (g·kg−1) | SAP (g·kg−1) | SAK (g·kg−1) | AS | |
---|---|---|---|---|---|---|---|---|---|
1 | Sunny side | Flat slope | 0.11 ± 0.03 | 7.52 ± 0.11 | 4.33 ± 0.21 | 4.55 ± 0.13 | 1.21 ± 0.08 | 44.05 ± 2.73 | 0.75 |
2 | Gentle slope | 0.08 ± 0.05 | 7.61 ± 0.06 | 3.77 ± 0.16 | 4.04 ± 0.12 | 1.09 ± 0.11 | 40.69 ± 1.68 | 0.37 | |
3 | Slope | 0.07 ± 0.02 | 7.48 ± 0.03 | 3.39 ± 0.11 | 3.78 ± 0.14 | 0.99 ± 0.13 | 38.51 ± 5.75 | 0.98 | |
4 | Shady side | Flat slope | 0.16 ± 0.06 | 7.51 ± 0.08 | 5.39 ± 0.31 | 4.75 ± 0.08 | 1.49 ± 0.21 | 48.56 ± 3.64 | 0.25 |
5 | Gentle slope | 0.15 ± 0.02 | 7.61 ± 0.12 | 4.82 ± 0.23 | 4.23 ± 0.14 | 1.38 ± 0.14 | 45.21 ± 2.78 | 0.02 | |
6 | Slope | 0.11 ± 0.07 | 7.47 ± 0.04 | 4.45 ± 0.16 | 3.98 ± 0.11 | 1.28 ± 0.12 | 43.02 ± 4.21 | 0.63 |
No. | Plant Species | Familia | Sunny Side | Shady Side | ||||
---|---|---|---|---|---|---|---|---|
Flat Slope | Gentle Slope | Slope | Flat Slope | Gentle Slope | Slope | |||
1 | Stipa capillata | Gramineae | 25% | 20% | 20% | 15% | 25% | - |
2 | Thymus mongolicus | Labiatae | 34% | 51% | 17% | - | - | - |
3 | Lespedeza daurica | Leguminosae | 20% | - | 5% | - | 17% | 5% |
4 | Cleistogenes squarrosa | Gramineae | - | 20% | - | 25% | - | 10% |
5 | Heteropappus altaicus | Compositae | - | 2% | - | 19% | 12% | 4% |
6 | Gypsophila licentiana | Caryophyllaceae | - | - | 10% | 15% | - | - |
7 | Astragalus adsurgens | Leguminosae | 2% | - | - | 7% | - | 7% |
8 | Artemisia argyi | Compositae | - | - | - | - | 6% | 14% |
9 | Hedysarum alpinum | Leguminosae | - | - | 5% | - | 10% | - |
10 | Artemisia gmelinii | Compositae | - | - | - | - | - | 30% |
11 | Pennisetum centrasiaticum | Gramineae | - | - | 20% | - | - | - |
12 | Astragalus melilotoides | Leguminosae | - | 1% | - | - | 14% | - |
13 | Stipa grandis | Gramineae | - | - | - | - | - | 17% |
14 | Juncus effusus | Juncaceae | - | - | 16% | - | - | - |
15 | Allium tenuissimum | Liliaceae | - | - | 5% | - | 4% | - |
16 | Echinops gmelini | Compositae | - | - | 2% | - | 6% | - |
17 | Polygala linarifolia | Polygalaceae | - | 1% | - | - | - | 7% |
18 | Gueldenstaedtia stenophylla | Leguminosae | 5% | 2% | - | - | - | - |
19 | Melilotus albus | Leguminosae | - | - | - | 10% | - | - |
20 | Stellera chamaejasme | Euphorbiaceae | - | - | - | 10% | - | - |
21 | Salsola collina | Compositae | 5% | 1% | - | - | - | - |
22 | Clematis aethusifolia | Ranunculaceae | - | - | - | - | - | 4% |
23 | Cynanchum thesioides | Asclepiadaceae | - | - | - | - | 4% | - |
24 | Setaria viridis | Gramineae | 1% | 1% | - | - | - | - |
25 | nneapogon borealis | Gramineae | 1% | - | - | - | - | - |
26 | Artemisia scoparia | Compositae | 2% | - | - | - | - | - |
27 | Eragrostis minor | Gramineae | 2% | - | - | - | - | - |
28 | Ixeris denticulata | Compositae | - | - | - | - | 2% | - |
29 | Corispermum chinganicum | Compositae | 2% | - | - | - | - | - |
30 | Artemisia eriopoda | Compositae | - | - | - | - | - | 2% |
31 | Tragus mongolorum | Gramineae | 1% | 1% | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Li, L.; Dong, X.; Qin, F.; Yang, Z. Variations and Factors Characterizing Ecological Niches of Understory Herbaceous Species in Plantation Forests. Sustainability 2022, 14, 10719. https://doi.org/10.3390/su141710719
Sun C, Li L, Dong X, Qin F, Yang Z. Variations and Factors Characterizing Ecological Niches of Understory Herbaceous Species in Plantation Forests. Sustainability. 2022; 14(17):10719. https://doi.org/10.3390/su141710719
Chicago/Turabian StyleSun, Cheng, Long Li, Xiaoyu Dong, Fucang Qin, and Zhenqi Yang. 2022. "Variations and Factors Characterizing Ecological Niches of Understory Herbaceous Species in Plantation Forests" Sustainability 14, no. 17: 10719. https://doi.org/10.3390/su141710719
APA StyleSun, C., Li, L., Dong, X., Qin, F., & Yang, Z. (2022). Variations and Factors Characterizing Ecological Niches of Understory Herbaceous Species in Plantation Forests. Sustainability, 14(17), 10719. https://doi.org/10.3390/su141710719