Selection of Landfill Cover Materials Based on Data Envelopment Analysis (DEA)—A Case Study on Four Typical Covering Materials
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Integrated DEA Approach for Coverage Materials Selection
3.1.1. Evaluation Indicators
3.1.2. DEA Model with AHP Constrained Cone
3.2. An Illustrative Case Study
4. Results and Discussion
5. Conclusions and Further Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Themelis, N.J.; Ulloa, P.A. Methane generation in landfills. Renew. Energy 2007, 32, 1243–1257. [Google Scholar]
- Omar, H.; Rohani, S. Treatment of landfill waste, leachate and landfill gas: A review. Front. Chem. Sci. Eng. 2015, 9, 15–32. [Google Scholar] [CrossRef]
- IEA Global Methane Tracker 2022. Available online: https://www.iea.org/reports/global-methane-tracker-2022 (accessed on 23 February 2022).
- Guo, H.; Duan, Z.; Zhao, Y.; Liu, Y.; Mustafa, M.F.; Lu, W.; Wang, H. Characteristics of volatile compound emission and odor pollution from municipal solid waste treating/disposal facilities of a city in Eastern China. Environ. Sci. Pollut. Res. 2017, 24, 18383–18391. [Google Scholar]
- Parsaeifard, N.; Sattler, M.; Nasirian, B.; Chen, V.C. Enhancing anaerobic oxidation of methane in municipal solid waste landfill cover soil. Waste Manag. 2020, 106, 44–54. [Google Scholar] [CrossRef]
- Abichou, T.; Mahieu, K.; Yuan, L.; Chanton, J.; Hater, G. Effects of compost biocovers on gas flow and methane oxidation in a landfill cover. Waste Manag. 2009, 29, 1595–1601. [Google Scholar]
- Rachor, I.; Gebert, J.; Gröngröft, A.; Pfeiffer, E.M. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials. Waste Manag. 2011, 31, 833–842. [Google Scholar] [CrossRef]
- Majdinasab, A.; Yuan, Q. Performance of the biotic systems for reducing methane emissions from landfill sites: A review. Ecol. Eng. 2017, 104, 116–130. [Google Scholar] [CrossRef]
- Wu, C.; Liu, J.; Liu, S.; Li, W.; Yan, L.; Shu, M.; Zhao, P.; Zhou, P.; Cao, W. Assessment of the health risks and odor concentration of volatile compounds from a municipal solid waste landfill in China. Chemosphere 2018, 202, 1–8. [Google Scholar] [CrossRef]
- Khoshand, A.; Fall, M. Geotechnical characterization of peat-based landfill cover materials. J. Rock Mech. Geotech. Eng. 2016, 8, 596–604. [Google Scholar] [CrossRef]
- Widomski, M.K.; Stepniewski, W.; Horn, R.; Bieganowski, A.; Gazda, L.; Franus, M.; Pawlowska, M. Shrink-swell potential, hydraulic conductivity and geotechnical properties of clay materials for landfill liner construction. Int. Agrophys. 2015, 29, 365–375. [Google Scholar] [CrossRef]
- Widomski, M.K.; Stępniewski, W.; Musz-Pomorska, A. Clays of different plasticity as materials for landfill liners in rural systems of sustainable waste management. Sustainability 2018, 10, 2489. [Google Scholar] [CrossRef]
- Widomski, M.K.; Musz-Pomorska, A.; Franus, W. Hydraulic and Swell-Shrink Characteristics of Clay and Recycled Zeolite Mixtures for Liner Construction in Sustainable Waste Landfill. Sustainability 2021, 13, 7301. [Google Scholar] [CrossRef]
- Travar, I.; Andreas, L.; Kumpiene, J.; Lagerkvist, A. Development of drainage water quality from a landfill cover built with secondary construction materials. Waste Manag. 2015, 35, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Gebert, J.; Groengroeft, A.; Pfeiffer, E.M. Relevance of soil physical properties for the microbial oxidation of methane in landfill covers. Soil Biol. Biochem. 2011, 43, 1759–1767. [Google Scholar] [CrossRef]
- Ganjian, E.; Claisse, P.; Tyrer, M.; Atkinson, A. Preliminary investigations into the use of secondary waste minerals as a novel cementitious landfill liner. Constr. Build. Mater. 2004, 18, 689–699. [Google Scholar] [CrossRef]
- Devarangadi, M.; Masilamani, U.S. Use of Sawdust Blended with Bentonite and Cement Mixtures to Retain Diesel Oil Contaminants as a Liner in a Landfill. Indian Geotech. J. 2020, 50, 485–504. [Google Scholar] [CrossRef]
- Rui, Z.; Neighbour, G.; Deutz, P.; McGuire, M. Materials selection for cleaner production: An environmental evaluation approach. Mater. Des. 2012, 37, 429–434. [Google Scholar]
- Mazínová, I.; Florian, P. Materials Selection in Mechanical Design. In Modern Methods of Construction Design. Lecture Notes in Mechanical Engineering; Ševĉik, L., Lepšík, P., Petrů, M., Mašín, I., Martonka, R., Eds.; Springer: Cham, Switzerland, 2014; pp. 145–153. [Google Scholar]
- Mollahassani-Pour, M.; Rashidinejad, M.; Abdollahi, A.; Forghani, M.A. Demand Response Resources’ Allocation in Security-Constrained Preventive Maintenance Scheduling via MODM Method. IEEE Syst. J. 2017, 11, 1196–1207. [Google Scholar] [CrossRef]
- Fan, S.; Shi, W.; Wang, N.; Liu, Y. MODM-Based evaluation model of service quality in the Internet of Things. Procedia Environ. Sci. 2011, 11, 63–69. [Google Scholar]
- Karsak, E.E.; Dursun, M. An integrated fuzzy MCDM approach for supplier evaluation and selection. Comput. Ind. Eng. 2015, 82, 82–93. [Google Scholar] [CrossRef]
- Vishnukumar, P.; Raj, M.E.; Sivaraman, G. A novel distance measure on interval valued intuitionistic fuzzy numbers based on improved accuracy function and its application. Math. Eng. Sci. Aerosp. 2021, 12, 305–315. [Google Scholar]
- Sivaraman, G.; Vishnukumar, P.; Raj, M.E. MCDM based on new membership and non-membership accuracy functions on trapezoidal-valued intuitionistic fuzzy numbers. Soft Comput. 2020, 24, 4283–4293. [Google Scholar]
- Jahan, A.; Ismail, M.Y.; Sapuan, S.M.; Mustapha, F. Material screening and choosing methods-a review. Mater. Des. 2010, 31, 696–705. [Google Scholar] [CrossRef]
- Chauhan, A.; Vaish, R. Magnetic material selection using multiple attribute decision making approach. Mater. Des. 2012, 36, 1–5. [Google Scholar] [CrossRef]
- Kumar, R.; Jagadish; Ray, A. Selection of Material for Optimal Design Using Multi-criteria Decision Making. Procedia Mater. Sci. 2014, 6, 590–596. [Google Scholar] [CrossRef]
- Zhao, R.; Su, H.; Chen, X.; Yu, Y. Commercially Available Materials Selection in Sustainable Design: An Integrated Multi-Attribute Decision Making Approach. Sustainability 2016, 8, 79. [Google Scholar] [CrossRef]
- Zhou, C.C.; Yin, G.F.; Hu, X.B. Multi-objective optimization of material selection for sustainable products: Artificial neural networks and genetic algorithm approach. Mater. Des. 2009, 30, 1209–1215. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Rao, R.V.; Patel, B.K. A subjective and objective integrated multiple attribute decision making method for material selection. Mater. Des. 2010, 31, 4738–4747. [Google Scholar]
- Roy, M.K.; Shivakoti, I.; Phipon, R.; Sharma, A. A Holistic Approach to Polymeric Material Selection for Laser Beam Machining using Methods of DEA and TOPSIS. Found. Comput. Decis. Sci. 2020, 45, 339–357. [Google Scholar] [CrossRef]
- Dickson, G.W. An analysis of vendor selection systems and decisions. J. Purch. 1966, 2, 5–17. [Google Scholar]
- Peng, C.; Feng, D.; Guo, S. Material Selection in Green Design: A Method Combining DEA and TOPSIS. Sustainability 2021, 13, 5497. [Google Scholar] [CrossRef]
- Hemmati, M.; Dalghandi, S.A.; Nazari, H. Measuring relative performance of banking industry using a DEA and TOPSIS. Manag. Sci. Lett. 2013, 3, 499–504. [Google Scholar]
- Safa, M.; Shahi, A.; Haas, C.T.; Hipel, K.W. Supplier selection process in an integrated construction materials management model. Autom. Constr. 2014, 48, 64–73. [Google Scholar] [CrossRef]
- Lo Storto, C. Ecological Efficiency Based Ranking of Cities: A Combined DEA Cross-Efficiency and Shannon’s Entropy Method. Sustainability 2016, 8, 124. [Google Scholar] [CrossRef]
- Li, G.; Huang, D.; Li, Y. China’s Input-Output Efficiency of Water-Energy-Food Nexus Based on the Data Envelopment Analysis (DEA) Model. Sustainability 2016, 8, 927. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Wei, Q.L.; Huang, Z.M. Cone-Ratio Data Envelopment Analysis and Multi-Objective Programming. Int. J. Syst. Sci. 1989, 20, 1099–1118. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, L. A DEA Model with an AHP Restraint Cone. J. Syst. Sci. Inf. 2006, 4, 749–758. [Google Scholar]
- Hahn, J.S.; Kho, S.Y.; Choi, K.; Kim, D.K. Sustainability evaluation of rapid routes for buses with a network DEA model. Int. J. Sustain. Transp. 2017, 11, 659–669. [Google Scholar] [CrossRef]
- Dong, Y.; Hauschild, M.Z. Indicators for environmental sustainability. Procedia CIRP 2017, 61, 697–702. [Google Scholar] [CrossRef]
- Kono, J.; Ostermeyer, Y.; Wallbaum, H. Investigation of Regional Conditions and Sustainability Indicators for Sustainable Product Development of Building Materials. J. Clean Prod. 2018, 196, 1356–1364. [Google Scholar] [CrossRef]
- Ashby, M.F. Materials and the Environment: Eco-informed Material Choice, 2nd ed.; Butterworth-Heinemann: New York, NY, USA, 2009. [Google Scholar]
- Abushammala, M.F.; Basri, N.E.A.; Irwan, D.; Younes, M.K. Methane Oxidation in Landfill Cover Soils: A Review. Asian J. Atmos. Environ. 2014, 8, 1–14. [Google Scholar] [CrossRef]
- Pedersen, G.B.; Scheutz, C.; Kjeldsen, P. Availability and properties of materials for the Fakse Landfill biocover. Waste Manag. 2011, 31, 884–894. [Google Scholar] [CrossRef] [PubMed]
- Bouazza, A.; Vangpaisal, T. Laboratory investigation of gas leakage rate through a GM/GCL composite liner due to a circular defect in the geomembrane. Geotext. Geomembr. 2006, 24, 110–115. [Google Scholar] [CrossRef]
- Liu, H.; Luo, X.; Jiang, X.; Cui, C.; Huyan, Z. The Evaluation System of the Sustainable Development of Municipal Solid Waste Landfills and Its Application. Sustainability 2021, 13, 1150. [Google Scholar] [CrossRef]
- Chabuk, A.; Al-Ansari, N.; Alkaradaghi, K.; Al-Rawabdeh, A.M.M.; Laue, J.; Hussain, H.M.; Pusch, R.; Knutsson, S. Landfill Final Cover Systems Design for Arid Areas Using the HELP Model: A Case Study in the Babylon Governorate, Iraq. Sustainability 2018, 10, 4568. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Ali, S.S. Exploring the relationship between leadership, operational practices, institutional pressures and environmental performance: A framework for green supply chain. Int. J. Prod. Econ. 2015, 160, 120–132. [Google Scholar] [CrossRef]
- Giudice, F.; La Rosa, G.; Risitano, A. Materials selection in the Life-Cycle Design process: A method to integrate mechanical and environmental performances in optimal choice. Mater. Des. 2005, 26, 9–20. [Google Scholar] [CrossRef]
- Ouyang, Y.; Pedrycz, W. A new model for intuitionistic fuzzy multi-attributes decision making. Eur. J. Oper. Res. 2016, 249, 677–682. [Google Scholar] [CrossRef]
- Spengler, T.; Stolting, W. Life cycle costing for strategic evaluation of remanufacturing systems. Prog. Ind. Ecol. 2008, 5, 65–81. [Google Scholar] [CrossRef]
- Jayakrishna, K.; Vinodh, S. Application of grey relational analysis for material and end of life strategy selection with multiple criteria. Int. J. Mater. Eng. Innov. 2017, 8, 250–272. [Google Scholar] [CrossRef]
- Scalia IV, J.; Benson, C.H. Hydraulic Conductivity of Geosynthetic Clay Liners Exhumed from Landfill Final Covers with Composite Barriers. J. Geotech. Geoenviron. 2011, 137, 1–13. [Google Scholar] [CrossRef]
- Scalia IV, J.; Benson, C.H. Preferential flow in geosynthetic clay liners exhumed from final covers with composite barriers. Can. Geotech. J. 2010, 47, 1101–1111. [Google Scholar] [CrossRef]
- Shahkolahi, A.; Crase, J.; Chow, R. New developments in landfill sealing systems using coated GCLs. In Proceedings of the 7th International Congress on Environmental Geotechnics: iceg2014, Melbourne, Australia, 10–14 November 2014; pp. 777–784. [Google Scholar]
- Buckley, J.; Gates, W.P.; Gibbs, D.T. Forensic examination of field GCL performance in landfill capping and mining containment applications. Geotext. Geomembr. 2012, 33, 7–14. [Google Scholar] [CrossRef]
- Reddy, K.; Stark, T.; Marella, A. Clogging potential of tire-shred drainage layer in landfill cover systems. Int. J. Geotech. Eng. 2008, 2, 407–418. [Google Scholar] [CrossRef]
- Reddy, K.R.; Stark, T.D.; Marella, A. Beneficial Use of Shredded Tires as Drainage Material in Cover Systems for Abandoned Landfills. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 2010, 14, 47–60. [Google Scholar] [CrossRef] [Green Version]
Attributes | Indicators | Measurements |
---|---|---|
Functional | Permeability coefficient | Obtained from the material manual [44]. |
Tensile strength | Obtained from the material manual [44]. | |
Service life | Obtained from market research. | |
Landfill compatibility | Combined with on-site investigation and expert scoring, the subjective value assignment method was adopted. The value range is 0–1, with values 0.2, 0.4, 0.6, 0.8, and 1 used to indicate poor, weak, moderate, good, and excellent compatibility, respectively. | |
Economic | Direct cost | , where is the price per unit mass of cover materials (CNY/m2), and is the amount of material purchased (m2). |
Construction cost | , where is the number of operation processes of material construction, is the construction cost per unit material in the construction operation (CNY/m2), and is the construction area of the material (m2). | |
Usage | The amount of cover material used is determined by the working area of the on-site investigation and is characterized by the thickness of the material. | |
Recycling cost | , where represents the recycling cost per unit mass of the cover material (CNY/kg), and is the recycled mass of the material (kg). | |
Environmental | Energy consumption | Amount of electric energy used per unit of material produced. |
Ecological index | The assessment value of the environmental impact, i.e., the ecological index, is obtained from the life cycle assessment method of Eco-indicator 99 (Pt/kg). | |
Recycling rate | , where is the amount of recycled material, and is the material used. |
Material | Legend | Composition |
---|---|---|
Clay | Aluminum silicate particles with particle size < 2 µm (mSiO2 · n Al2O3 · xH2O) | |
HDPE geomembrane | 97.5% HDPE, 2.5% carbon black, antioxidant, and heat stabilizer | |
PVC geomembrane | 100% PVC film | |
GCL waterproof blanket | A mixture of highly expansive N–bentonite particles, composite geotextiles, nonwoven fabrics, and admixtures |
Index Parameter | Clay | HDPE | PVC | GCL |
---|---|---|---|---|
Permeability coefficient | 1.0 × 10−7 | 1.0 × 10−12 | 1.2 × 10−12 | 1.0 × 10−11 |
Tensile strength (MPa) | 0.015 | 30 | 55 | 15 |
Service life (years) | 15 | 50 | 50 | 100 |
Landfill compatibility | 0.6 | 1 | 1 | 0.8 |
Direct cost (CNY/m2) | 28 | 70 | 70 | 45 |
Construction cost (CNY/m2) | 9 | 32 | 32 | 16 |
Usage (mm) | 200 | 1.5 | 1.0 | 15 |
Recycling cost (CNY/kg) | 5.24 | 2.7 | 4.90 | 5.38 |
Energy consumption (MJ/kg) | 0.06 | 28.7 | 19.5 | 2.92 |
Ecological index (millipoint/kg) | 11 | 287 | 170 | 3 |
Recycling rate (%) | 0.1 | 8.6 | 1.7 | 1.5 |
Index Number | Clay | HDPE | PVC | GCL | |||
---|---|---|---|---|---|---|---|
Output indicator (Y) | Basic performance | 1 | Permeability coefficient | 100 | 0.001 | 0.001 | 0.01 |
2 | Tensile strength | 0.015 | 30 | 55 | 15 | ||
3 | Service life | 15 | 50 | 50 | 100 | ||
4 | Landfill compatibility | 0.6 | 1 | 1 | 0.8 | ||
Input indicator (X) | Economic performance | 5 | Direct cost | 28 | 70 | 70 | 45 |
6 | Construction cost | 9 | 32 | 32 | 16 | ||
7 | Recycling cost | 5.24 | 2.7 | 4.9 | 5.38 | ||
8 | Usage | 200 | 1.5 | 1.0 | 15 | ||
Environmental performance | 9 | Energy consumption | 0.06 | 28.7 | 19.5 | 2.92 | |
10 | Ecological index | 11 | 287 | 170 | 3 | ||
11 | Recycling rate | 0.1 | 8.6 | 1.7 | 1.5 |
Value | Statement of Relative Importance |
---|---|
1 | Two elements are equally important |
3 | One element is slightly more important than the other |
5 | One element is significantly more important than the other |
7 | One element is more strongly important than the other |
9 | One element is extremely more important than the other |
2, 4, 6, 8 | Consider in compromise |
Cover Material | Clay | HDPE | PVC | GCL |
---|---|---|---|---|
E | 0.2600 | 0.5757 | 0.7815 | 1.0000 |
W | 0.0325 | 0.0140 | 0.0105 | 0.0152 |
0.0000 | 0.0000 | 0.0000 | 0.0087 | |
0.0117 | 0.0000 | 0.0000 | 0.0092 | |
0.0000 | 0.0018 | 0.0032 | 0.0064 | |
0.0017 | 0.0006 | 0.0006 | 0.0018 | |
0.0026 | 0.0000 | 0.0009 | 0.0023 | |
0.0000 | 0.0004 | 0.0004 | 0.0013 | |
μ | 0.0189 | 0.0128 | 0.0214 | 0.0289 |
0.0565 | 0.0260 | 0.0272 | 0.0293 | |
0.0000 | 0.0097 | 0.0101 | 0.0009 | |
0.0151 | 0.0049 | 0.0035 | 0.0096 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, Y.; Min, X.; Jiang, Q.; Su, W. Selection of Landfill Cover Materials Based on Data Envelopment Analysis (DEA)—A Case Study on Four Typical Covering Materials. Sustainability 2022, 14, 10888. https://doi.org/10.3390/su141710888
Zhang Y, Liu Y, Min X, Jiang Q, Su W. Selection of Landfill Cover Materials Based on Data Envelopment Analysis (DEA)—A Case Study on Four Typical Covering Materials. Sustainability. 2022; 14(17):10888. https://doi.org/10.3390/su141710888
Chicago/Turabian StyleZhang, Yibo, Yan Liu, Xuefeng Min, Qifan Jiang, and Weizhou Su. 2022. "Selection of Landfill Cover Materials Based on Data Envelopment Analysis (DEA)—A Case Study on Four Typical Covering Materials" Sustainability 14, no. 17: 10888. https://doi.org/10.3390/su141710888
APA StyleZhang, Y., Liu, Y., Min, X., Jiang, Q., & Su, W. (2022). Selection of Landfill Cover Materials Based on Data Envelopment Analysis (DEA)—A Case Study on Four Typical Covering Materials. Sustainability, 14(17), 10888. https://doi.org/10.3390/su141710888