Opportunities and Challenges for Renewable Energy Utilization in Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scenario Resources
2.2. Modelling Tool
2.3. Scenario Building
3. Results and Discussion
3.1. BAU Scenario
3.2. RE Scenarios
3.2.1. SOL Scenarios
3.2.2. WIN Scenarios
3.2.3. BIO Scenarios
3.3. HYD Scenario
3.4. NUC Scenario
3.5. Green Solution Scenario
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asim, M.; Dewsbury, J.; Kanan, S. TRNSYS Simulation of a Solar Cooling System for the Hot Climate of Pakistan. Energy Procedia 2016, 91, 702–706. [Google Scholar] [CrossRef]
- Tahir, Z.; Asim, M. Surface measured solar radiation data and solar energy resource assessment of Pakistan: A review. Renew. Sustain. Energy Rev. 2018, 81, 2839–2861. [Google Scholar] [CrossRef]
- Tahir, Z.U.R.; Sarfraz, M.S.; Asim, M.; Kamran, M.S.; Imran, S.; Hayat, N. Evaluation of ERA-Interim and NCEP-CFSR Reanalysis Datasets against in-situ Measured Wind Speed Data for Keti Bandar Port, Pakistan. J. Physics Conf. Ser. 2018, 1102, 012001. [Google Scholar] [CrossRef]
- Tahir, Z.U.R.; Asim, M.; Jamil, S.; Shad, R.; Hayat, N.; Moaz, A.; Akram, M.T.; Safyan, M. Comparison of Reanalysis, Analysis and Forecast datasets with measured wind data for a Wind Power Project in Jhimpir, Pakistan. J. Physics Conf. Ser. 2018, 1102, 012004. [Google Scholar] [CrossRef]
- Asim, M.; Usman, M.; Abbasi, M.S.; Ahmad, S.; Mujtaba, M.A.; Soudagar, M.E.M.; Mohamed, A. Estimating the Long-Term Effects of National and International Sustainable Transport Policies on Energy Consumption and Emissions of Road Transport Sector of Pakistan. Sustainability 2022, 14, 5732. [Google Scholar] [CrossRef]
- Ahmad, S.; Abdullah, M.; Kanwal, A.; Tahir, Z.U.R.; Bin Saeed, U.; Manzoor, F.; Atif, M.; Abbas, S. Offshore wind resource assessment using reanalysis data. Wind Eng. 2022, 46, 1173–1186. [Google Scholar] [CrossRef]
- Azhar, M.; Blanc, P.; Asim, M.; Imran, S.; Hayat, N.; Shahid, H.; Ali, H. The evaluation of reanalysis and analysis products of solar radiation for Sindh province, Pakistan. Renew. Energy 2020, 145, 347–362. [Google Scholar]
- Paris Climate Agreement. The 21st conference of the parties of the UNFCCC (The United Nations Framework Convention on Climate Change); Paris Climate Agreement: Paris, France, 2015. [Google Scholar]
- Hong, S.-Y.; Pan, H.-L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Weather. Rev. 1996, 124, 2322–2339. [Google Scholar] [CrossRef]
- Şen, Z. Solar energy in progress and future research trends. Prog. Energy Combust. Sci. 2004, 30, 367–416. [Google Scholar] [CrossRef]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Fiorino, M. The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 2001, 82, 247–268. [Google Scholar] [CrossRef]
- Kamran, M. Current status and future success of renewable energy in Pakistan. Renew. Sustain. Energy Rev. 2018, 82, 609–617. [Google Scholar] [CrossRef]
- Sher, H.A.; Murtaza, A.F.; Addoweesh, K.E.; Chiaberge, M. Pakistan’s progress in solar PV based energy generation. Renew. Sustain. Energy Rev. 2015, 47, 213–217. [Google Scholar] [CrossRef]
- Mahmood, A.; Javaid, N.; Zafar, A.; Riaz, R.A.; Ahmed, S.; Razzaq, S. Pakistan’s overall energy potential assessment, comparison of LNG, TAPI and IPI gas projects. Renew. Sustain. Energy Rev. 2014, 31, 182–193. [Google Scholar] [CrossRef]
- Berry, T.; Jaccard, M. The renewable portfolio standard:: Design considerations and an implementation survey. Energy Policy 2001, 29, 263–277. [Google Scholar] [CrossRef]
- Zameer, H.; Wang, Y. Energy production system optimization: Evidence from Pakistan. Renew. Sustain. Energy Rev. 2018, 82, 886–893. [Google Scholar] [CrossRef]
- Raza, W.; Hammad, S.; Shams, U.; Maryam, A.; Mahmood, S.; Nadeem, R. Renewable energy resources current status and barriers in their adaptation for Pakistan. J. Bioprocess. Chem. Eng. 2015, 3, 1–9. [Google Scholar]
- Zecca, A.; Chiari, L. Fossil-fuel constraints on global warming. Energy Policy 2010, 38, 1–3. [Google Scholar] [CrossRef]
- Rafique, M.M.; Rehman, S. National energy scenario of Pakistan—Current status, future alternatives, and institutional infrastructure: An overview. Renew. Sustain. Energy Rev. 2017, 69, 156–167. [Google Scholar] [CrossRef]
- Tahir, Z.U.R.; Azhar, M.; Mumtaz, M.; Asim, M.; Moeenuddin, G.; Sharif, H.; Hassan, S. Evaluation of the reanalysis surface solar radiation from NCEP, ECMWF, NASA, and JMA using surface observations for Balochistan, Pakistan. J. Renew. Sustain. Energy 2020, 12, 023703. [Google Scholar] [CrossRef]
- Asim, M.; Usman, M.; Hussain, J.; Farooq, M.; Naseer, M.I.; Mujtaba, M.A.; Fouad, Y. Experimental Validation of a Numerical Model to Predict the Performance of Solar PV Cells. Front. Energy Res. 2022, 10, 735. [Google Scholar] [CrossRef]
- Ahmed, S.; Mahmood, A.; Hasan, A.; Sidhu, G.A.S.; Butt, M.F.U. A comparative review of China, India and Pakistan renewable energy sectors and sharing opportunities. Renew. Sustain. Energy Rev. 2016, 57, 216–225. [Google Scholar] [CrossRef]
- Tahir, Z.U.R.; Asim, M.; Azhar, M.; Moeenuddin, G.; Farooq, M. Correcting solar radiation from reanalysis and analysis datasets with systematic and seasonal variations. Case Stud. Therm. Eng. 2021, 25, 100933. [Google Scholar] [CrossRef]
- Perwez, U.; Sohail, A. Forecasting of Pakistan’s Net Electricity Energy Consumption on the Basis of Energy Pathway Scenarios. Energy Procedia 2014, 61, 2403–2411. [Google Scholar] [CrossRef]
- Hafeez, S.; Asim, M.; Amjad, M.; Farooq, M.; Azhar, M.; Amjad, G.M. Estimation of daily diffuse solar radiation from clearness index, sunshine duration and meteorological parameters for different climatic conditions. Sustain. Energy Technol. Assess. 2021, 47, 101544. [Google Scholar]
- Amjad, M.; Asim, M.; Azhar, M.; Farooq, M.; Ali, M.J.; Ahmad, S.U.; Hussain, A. Improving the accuracy of solar radiation estimation from reanalysis datasets using surface measurements. Sustain. Energy Technol. Assess. 2021, 47, 101485. [Google Scholar]
- Kanwal, A.; Tahir, Z.U.R.; Asim, M.; Hayat, N.; Farooq, M.; Abdullah, M.; Azhar, M. Evaluation of Reanalysis and Analysis Datasets against Measured Wind Data for Wind Resource Assessment. Energy Environ. 2022, 0958305X221084078. [Google Scholar] [CrossRef]
- Tahir, Z.U.R.; Asim, M.; Azhar, M.; Amjad, G.M.; Ali, M.J. Hourly global horizontal irradiance data of three stations in Punjab, Pakistan. Data Brief 2021, 38, 107371. [Google Scholar] [CrossRef]
- Farooqui, S.Z. Prospects of renewables penetration in the energy mix of Pakistan. Renew. Sustain. Energy Rev. 2014, 29, 693–700. [Google Scholar] [CrossRef]
- Mirza, U.K.; Ahmad, N.; Harijan, K.; Majeed, T. Identifying and addressing barriers to renewable energy development in Pakistan. Renew. Sustain. Energy Rev. 2009, 13, 927–931. [Google Scholar] [CrossRef]
- Peidong, Z.; Yanli, Y.; Jin, S.; Yonghong, Z.; Lisheng, W.; Xinrong, L. Opportunities and challenges for renewable energy policy in China. Renew. Sustain. Energy Rev. 2009, 13, 439–449. [Google Scholar] [CrossRef]
- Hansen, K.; Breyer, C.; Lund, H. Status and perspectives on 100% renewable energy systems. Energy 2019, 175, 471–480. [Google Scholar]
- Kanan, S.; Dewsbury, J.; Lane-Serff, G.F.; Asim, M. The Effect of Ground Conditions under a Solar Pond on the Performance of a Solar Air-conditioning System. Energy Procedia 2016, 91, 777–784. [Google Scholar]
- Rehman, S.; Halawani, T.; Husain, T. Weibull parameters for wind speed distribution in Saudi Arabia. Sol. Energy 1994, 53, 473–479. [Google Scholar] [CrossRef]
- Chou, M.-D.; Lee, K.-T. Parameterizations for the Absorption of Solar Radiation by Water Vapor and Ozone. J. Atmospheric Sci. 1996, 53, 1203–1208. [Google Scholar]
- Parrish, D.F.; Derber, J.C. The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Weather. Rev. 1992, 120, 1747–1763. [Google Scholar] [CrossRef]
- Mirza, I.A.; Khalil, M.S.; Amer, M.; Daim, T.U. Assessment of wind potential in Kalar Kahar region by comparing on-site data with NREL wind resource map of Pakistan. In Policies and Programs for Sustainable Energy Innovations; Springer: Cham, Switzerland, 2015; pp. 55–81. [Google Scholar]
- Amjad, M.; Zafar, Q.; Khan, F.; Sheikh, M.M. Evaluation of weather research and forecasting model for the assessment of wind resource over Gharo, Pakistan. Int. J. Clim. 2015, 35, 1821–1832. [Google Scholar] [CrossRef]
- Mabel, M.C.; Fernandez, E. Analysis of wind power generation and prediction using ANN: A case study. Renew. Energy 2008, 33, 986–992. [Google Scholar] [CrossRef]
- Tahir, Z.U.R.; Kanwal, A.; Afzal, S.; Ali, S.; Hayat, N.; Abdullah, M.; Bin Saeed, U. Wind Energy Potential and Economic Assessment of Southeast of Pakistan. Int. J. Green Energy 2021, 18, 1–16. [Google Scholar] [CrossRef]
- Costs, R.P.G. IRENA, Renewable Power Generation Costs in 2020; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- Emodi, N.V.; Emodi, C.C.; Murthy, G.P.; Emodi, A.S.A. Energy policy for low carbon development in Nigeria: A LEAP model application. Renew. Sustain. Energy Rev. 2017, 68, 247–261. [Google Scholar] [CrossRef]
- Azam, M.; Othman, J.; Begum, R.A.; Abdullah, S.M.S.; Nor, N.G. Energy consumption and emission projection for the road transport sector in Malaysia: An application of the LEAP model. Environ. Dev. Sustain. 2016, 18, 1027–1047. [Google Scholar] [CrossRef]
- Irfan, M.; Zhao, Z.Y.; Mukeshimana, M.C.; Ahmad, M. Wind Energy Development in South Asia: Status, Potential and Policies. In Proceedings of the 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 30–31 January 2019. [Google Scholar]
- Shami, S.H.; Ahmad, J.; Zafar, R.; Haris, M.; Bashir, S. Evaluating wind energy potential in Pakistan’s three provinces, with proposal for integration into national power grid. Renew. Sustain. Energy Rev. 2016, 53, 408–421. [Google Scholar] [CrossRef]
- Ishaq, S.; Naveed, S.; Khan, S.M.; Najam-Ul-Islam, M. Techno-Economic Analysis of a Hybrid Grid-Connected/PV/Wind System in Pakistan. Int. J. Renew. Energy Res. 2016, 6, 1318–1327. [Google Scholar]
- Khan, S.; Nisar, A.; Wu, B.; Zhu, Q.-L.; Wang, Y.-W.; Hu, G.-Q.; He, M.-X. Bioenergy production in Pakistan: Potential, progress, and prospect. Sci. Total Environ. 2022, 814, 152872. [Google Scholar] [CrossRef]
- Saghir, M.; Zafar, S.; Tahir, A.; Ouadi, M.; Siddique, B.; Hornung, A. Unlocking the Potential of Biomass Energy in Pakistan. Front. Energy Res. 2019, 7, 24. [Google Scholar] [CrossRef]
- Asim, M.; Muhammad, S.; Amjad, M.; Abdullah, M.; Mujtaba, M.A.; Kalam, M.A.; Mousa, M.; Soudagar, M.E.M. Design and Parametric Optimization of the High-Speed Pico Waterwheel for Rural Electrification of Pakistan. Sustainability 2022, 14, 6930. [Google Scholar] [CrossRef]
- Masoomi, M.; Panahi, M.; Samadi, R. Scenarios evaluation on the greenhouse gases emission reduction potential in Iran’s thermal power plants based on the LEAP model. Environ. Monit. Assess. 2020, 192, 235. [Google Scholar] [CrossRef] [PubMed]
- Ouedraogo, N.S. Energy Futures Modelling for African Countries: LEAP Model Application; WIDER Working Paper; The United Nations University World Institute for Development Economics Research (UNU-WIDER): Helsinki, Finland, 2017. [Google Scholar]
- Ates, S.A. Energy efficiency and CO2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system. Energy 2015, 90, 417–428. [Google Scholar]
- Craig, P.P.; Gadgil, A.; Koomey, J.G. What Can History Teach Us? A Retrospective Examination of Long-Term Energy Forecasts for the United States. Annu. Rev. Energy Environ. 2002, 27, 83–118. [Google Scholar] [CrossRef]
- Ghanadan, R.; Koomey, J.G. Using energy scenarios to explore alternative energy pathways in California. Energy Policy 2005, 33, 1117–1142. [Google Scholar] [CrossRef]
- Mirza, U.K.; Ahmad, N.; Majeed, T.; Harijan, K. Wind energy development in Pakistan. Renew. Sustain. Energy Rev. 2007, 11, 2179–2190. [Google Scholar] [CrossRef]
- Uddin, R.; Shaikh, A.; Khan, H.; Shirazi, M.; Rashid, A.; Qazi, S. Renewable Energy Perspectives of Pakistan and Turkey: Current Analysis and Policy Recommendations. Sustainability 2021, 13, 3349. [Google Scholar] [CrossRef]
- Mahmood, A.; Wang, X.; Shahzad, A.; Fiaz, S.; Ali, H.; Naqve, M.; Javaid, M.; Mumtaz, S.; Naseer, M.; Dong, R. Perspectives on Bioenergy Feedstock Development in Pakistan: Challenges and Opportunities. Sustainability 2021, 13, 8438. [Google Scholar] [CrossRef]
- Subramaniam, Y.; Masron, T.A.; Azman, N.H.N. The impact of biofuels on food security. Int. Econ. 2019, 160, 72–83. [Google Scholar] [CrossRef]
Metrological Stations | Annual Mean Daily Insolation (kWh/m2) | Solar Potential (GW) |
---|---|---|
Islamabad | 5.30 | 175,800 |
Karachi | 5.30 | 175,800 |
Lahore | 5.30 | 175,800 |
Multan | 5.30 | 175,800 |
Peshawar | 5.30 | 175,800 |
Quetta | 5.30 | 175,800 |
Province | Windy Land Area (km2) | Windy Area (%) of Total Area | Potential Installable Capacity (MW) |
---|---|---|---|
Sindh | 17,692 | 12.55 | 88,460 |
KPK | 11,709 | 15.71 | 58,545 |
Balochistan | 29,229 | 8.41 | 146,145 |
Total wind assessment of Pakistan | 69,863 | 9.06 | 349,315 |
Types of Residues | Energy Potential of Residues GWh/year | Description |
---|---|---|
Cotton stalk | 205,854 | - |
Wheat straw | 138,324 | Theoretical potential of |
Rice straw | 58,174 | crop processing residues |
Sugarcane trash | 27,409 | - |
Maize stalk | 19,229 | - |
Total | 448,990 | - |
Bagasse | 40,785 | - |
Rice husk | 12,566 | The theoretical potential of crop harvesting residues |
Maize cob | 5468 | |
Maize husk | 3019 | |
Total | 61,838 | - |
Province | Projects in Operation (MW) | Projects with Raw Sites (MW) | Solicited Sites Projects (with Feasibility Studies) (MW) | Projects under Implementation | Total Hydropower Potential (MW) | ||
---|---|---|---|---|---|---|---|
Public Sector | Private Sector | ||||||
Province Level | Federal Level | ||||||
KPK | 3849 | 8930 | 77 | 9482 | 377 | 2370 | 24,736 |
Gilgit-Baltistan | 133 | 8542 | 534 | 11876 | 40 | 0 | 21,125 |
Punjab | 1699 | 238 | 3606 | 720 | 308 | 720 | 7291 |
FATA | 13 | 19 | 0 | 0 | |||
AJK | 1039 | 915 | 1 | 1231 | 92 | 3172 | 6450 |
Sindh | - | 126 | 67 | - | - | - | 193 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asim, M.; Qamar, A.; Kanwal, A.; Uddin, G.M.; Abbas, M.M.; Farooq, M.; Kalam, M.A.; Mousa, M.; Shahapurkar, K. Opportunities and Challenges for Renewable Energy Utilization in Pakistan. Sustainability 2022, 14, 10947. https://doi.org/10.3390/su141710947
Asim M, Qamar A, Kanwal A, Uddin GM, Abbas MM, Farooq M, Kalam MA, Mousa M, Shahapurkar K. Opportunities and Challenges for Renewable Energy Utilization in Pakistan. Sustainability. 2022; 14(17):10947. https://doi.org/10.3390/su141710947
Chicago/Turabian StyleAsim, Muhammad, Adnan Qamar, Ammara Kanwal, Ghulam Moeen Uddin, Muhammad Mujtaba Abbas, Muhammad Farooq, M. A. Kalam, Mohamed Mousa, and Kiran Shahapurkar. 2022. "Opportunities and Challenges for Renewable Energy Utilization in Pakistan" Sustainability 14, no. 17: 10947. https://doi.org/10.3390/su141710947
APA StyleAsim, M., Qamar, A., Kanwal, A., Uddin, G. M., Abbas, M. M., Farooq, M., Kalam, M. A., Mousa, M., & Shahapurkar, K. (2022). Opportunities and Challenges for Renewable Energy Utilization in Pakistan. Sustainability, 14(17), 10947. https://doi.org/10.3390/su141710947