Highly Concentrated Solar Flux of Large Fresnel Lens Using CCD Camera-Based Method
Abstract
:1. Introduction
2. System Configuration
2.1. Instruments
2.2. Method
3. Experiment and Discussions
3.1. Verification
3.2. Experiment
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ratismith, W.; Ali, D.; Briggs, J.S. A non-tracking semi-circular trough solar concentrator. Int. J. Energy Res. 2020, 45, 3185–3199. [Google Scholar] [CrossRef]
- Abdul Shukoor, P.; Reddy, K.S. Investigations on water–LiBr-based absorption refrigerator with solar parabolic dish in cogeneration mode. IET Renew. Power Gener. 2019, 13, 2310–2318. [Google Scholar] [CrossRef]
- Masood, F.; Nor, N.B.M.; Nallagownden, P.; Elamvazuthi, I.; Saidur, R.; Alam, M.A.; Akhter, J.; Yusuf, M.; Mehmood, M.; Ali, M. A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors. Sustainability 2022, 14, 5529. [Google Scholar] [CrossRef]
- Subramaniyan, C.; Subramani, J.; Kalidasan, B.; Anbuselvan, N.; Yuvaraj, T.; Prabaharan, N.; Senjyu, T. Investigation on the Optical Design and Performance of a Single-Axis-Tracking Solar Parabolic trough Collector with a Secondary Reflector. Sustainability 2021, 13, 9918. [Google Scholar] [CrossRef]
- López-Álvarez, J.A.; Larrañeta, M.; Pérez-Aparicio, E.; Silva-Pérez, M.A.; Lillo-Bravo, I. An Approach to the Operation Modes and Strategies for Integrated Hybrid Parabolic Trough and Photovoltaic Solar Systems. Sustainability 2021, 13, 4402. [Google Scholar] [CrossRef]
- Yan, H.; Wang, A.; Chong, D.; Liu, M.; Liu, J.; Yan, J. Review on Performance Analysis of the Power Block in Concentrated Solar Power Plants. Energy Technol. 2020, 9, 2000621. [Google Scholar]
- Arnaoutakis, G.E.; Katsaprakakis, D.A. Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration. Energies 2021, 14, 6229. [Google Scholar] [CrossRef]
- Song, J.; Wu, Z.; Wang, J.; Zhang, K.; Wang, K.; Liu, K.; Duan, L.; Hou, H. Application of highly concentrated sunlight transmission and daylighting indoor via plastic optical fibers with comprehensive cooling approaches. Renew. Energy 2021, 180, 1391–1404. [Google Scholar] [CrossRef]
- Jensen, A.R.; Sifnaios, I.; Caringal, G.P.; Furbo, S.; Dragsted, J. Thermal performance assessment of the world’s first solar thermal Fresnel lens collector field. Sol. Energy 2022, 237, 447–455. [Google Scholar] [CrossRef]
- Bachhav, C.Y.; Sonawwanay, P.D. Study on design and performance enhancement of Fresnel lens solar concentrator. Mater. Today Proc. 2022, 56, 2873–2879. [Google Scholar]
- Wang, H.; Huang, J.; Song, M.; Hu, Y.; Wang, Y.; Lu, Z. Simulation and Experimental Study on the Optical Performance of a Fixed-Focus Fresnel Lens Solar Concentrator Using Polar-Axis Tracking. Energies 2018, 11, 887. [Google Scholar] [CrossRef]
- Shanks, K.; Ferrer-Rodriguez, J.P.; Fernández, E.F.; Almonacid, F.; Pérez-Higueras, P.; Senthilarasu, S.; Mallick, T. A >3000 suns high concentrator photovoltaic design based on multiple Fresnel lens primaries focusing to one central solar cell. Sol. Energy 2018, 169, 457–467. [Google Scholar] [CrossRef]
- Zhuang, Z.; Yu, F. Optimization design of hybrid Fresnel-based concentrator for generating uniformity irradiance with the broad solar spectrum. Opt. Laser Technol. 2014, 60, 27–33. [Google Scholar] [CrossRef]
- Kumar, V.; Shrivastava, R.L.; Untawale, S.P. Fresnel lens: A promising alternative of reflectors in concentrated solar power. Renew. Sustain. Energy Rev. 2015, 44, 376–390. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Dey, S. Solar thermochemical splitting of water to generate hydrogen. Proc. Natl. Acad. Sci. USA 2017, 114, 13385–13393. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, L.; Wang, J.; Wang, W.; Song, J. Realization of high flux daylighting via optical fibers using large Fresnel lens. Sol. Energy 2019, 183, 204–211. [Google Scholar] [CrossRef]
- Perini, S.; Tonnellier, X.; King, P.; Sansom, C. Theoretical and experimental analysis of an innovative dual-axis tracking linear Fresnel lenses concentrated solar thermal collector. Sol. Energy 2017, 153, 679–690. [Google Scholar] [CrossRef]
- Baig, H.; Sarmah, N.; Heasman, K.C.; Mallick, T.K. Numerical modelling and experimental validation of a low concentrating photovoltaic system. Sol. Energy Mater. Sol. Cells 2013, 113, 201–219. [Google Scholar]
- Eck, M.; Steinmann, W.-D.; Rheinländer, J. Maximum temperature difference in horizontal and tilted absorber pipes with direct steam generation. Energy 2004, 29, 665–676. [Google Scholar] [CrossRef]
- Ballestrín, J.; Monterreal, R. Hybrid heat flux measurement system for solar central receiver evaluation. Energy 2004, 29, 915–924. [Google Scholar] [CrossRef]
- Du, B.; Zheng, Z.; He, Y.; Liang, Q.; Wang, K.; Qiu, Y. Non-uniform characteristics of solar flux distribution in the concentrating solar power systems and its corresponding solutions: A review. Chin. Sci. Bull. 2016, 61, 3208–3237. [Google Scholar] [CrossRef]
- Arnaoutakis, G.E.; Marques-Hueso, J.; Mallick, T.K.; Richards, B.S. Coupling of sunlight into optical fibres and spectral dependence for solar energy applications. Sol. Energy 2013, 93, 235–243. [Google Scholar] [CrossRef]
- Boretti, A.; Castelletto, S. Concentrated Solar Power Solar Tower with Oversized Solar Field and Molten Salt Thermal Energy Storage Working at an Annual Average Capacity Factor of 95% in NEOM City. Energy Technol. 2021, 9, 2001097. [Google Scholar] [CrossRef]
- Ulmer, S.; Lüpfert, E.; Pfänder, M.; Buck, R. Calibration corrections of solar tower flux density measurements. Energy 2004, 29, 925–933. [Google Scholar] [CrossRef]
- King, P.; Sansom, C.; Comley, P. Photogrammetry for Concentrating Solar Collector Form Measurement, Validated Using a Coordinate Measuring Machine. Sustainability 2019, 12, 196. [Google Scholar] [CrossRef]
- Villafanvidales, H.; Arancibiabulnes, C.; Dehesacarrasco, U.; Romeroparedes, H. Monte Carlo radiative transfer simulation of a cavity solar reactor for the reduction of cerium oxide. Int. J. Hydrogen Energy 2009, 34, 115–124. [Google Scholar] [CrossRef]
- He, Y.-L.; Xiao, J.; Cheng, Z.-D.; Tao, Y.-B. A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renew. Energy 2011, 36, 976–985. [Google Scholar] [CrossRef]
- Duan, X.; He, C.; Lin, X.; Zhao, Y.; Feng, J. Quasi-Monte Carlo ray tracing algorithm for radiative flux distribution simulation. Sol. Energy 2020, 211, 167–182. [Google Scholar] [CrossRef]
- Veach, E.; Guibas, L.J. Optimally combining sampling techniques for Monte Carlo rendering. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, Stanford, CA, USA, 15 September 1995; pp. 419–428. [Google Scholar]
- Jensen, H.W.; Christensen, N.J. Photon maps in bidirectional Monte Carlo ray tracing of complex objects. Comput. Graph. Scand. 1995, 19, 215–224. [Google Scholar] [CrossRef]
- Garcia, P.; Ferriere, A.; Bezian, J.-J. Codes for solar flux calculation dedicated to central receiver system applications: A comparative review. Sol. Energy 2008, 82, 189–197. [Google Scholar] [CrossRef]
- Song, J.; Wang, W.; Niu, Y.; Wang, J.; Yu, H. A note of optical error diagnosis of parabolic trough concentrator based on flux image. Sol. Energy 2020, 197, 359–362. [Google Scholar] [CrossRef]
- Ho, C.K.; Khalsa, S.S. A Photographic Flux Mapping Method for Concentrating Solar Collectors and Receivers. J. Sol. Energy Eng. 2012, 134, 041004. [Google Scholar] [CrossRef]
- Shuai, Y.; Xia, X.-L.; Tan, H.-P. Radiation performance of dish solar concentrator/cavity receiver systems. Sol. Energy 2008, 82, 13–21. [Google Scholar] [CrossRef]
- Chandel, R. Uncertainty Analysis of Photovoltaic Power Measurements using Solar Simulators. Energy Technol. 2013, 1, 763–769. [Google Scholar] [CrossRef]
- Song, J.; Wang, J.; Niu, Y.; Wang, W.; Tong, K.; Yu, H.; Yang, Y. Flexible high flux solar simulator based on optical fiber bundles. Sol. Energy 2019, 193, 576–583. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Y.; Peng, J.; Song, M.; Li, H. Effects of Receiver Parameters on Solar Flux Distribution for Triangle Cavity Receiver in the Fixed Linear-Focus Fresnel Lens Solar Concentrator. Sustainability 2021, 13, 6139. [Google Scholar] [CrossRef]
- Chen, Q.; Burhan, M.; Oh, S.J. A Brief Review of Solar Indoor Lighting System Integrated with Optofluidic Technologies. Energy Technol. 2021, 9, 2001099. [Google Scholar] [CrossRef]
- Minaeian, A.; Alemrajabi, A.; Chavoshi, M.; Mostafaeipour, A.; Seifi, Z. Effect of secondary reflector on solar flux intensity and uniformity of a Fresnel concentrator. J. Renew. Sustain. Energy 2020, 12, 033703. [Google Scholar] [CrossRef]
- Lee, H.; Chai, K.; Kim, J.; Lee, S.; Yoon, H.; Yu, C.; Kang, Y. Optical performance evaluation of a solar furnace by measuring the highly concentrated solar flux. Energy 2014, 66, 63–69. [Google Scholar] [CrossRef]
- Xu, J.; Li, S.; Ruan, Z.; Cheng, X.; Hou, X.; Chen, S. Intensive Flux Analysis in Concentrative Solar Power Applications Using Commercial Camera. IEEE Trans. Instrum. Meas. 2020, 69, 501–508. [Google Scholar] [CrossRef]
- Ulmer, S.; Reinalter, W.; Heller, P.; Lu¨pfert, E. Beam characterization and improvement with a flux mapping system for dish concentrators. J. Sol. Energy Eng. 2002, 124, 182–188. [Google Scholar] [CrossRef]
- Healey, G.E.; Kondepudy, R. Radiometric CCD Camera Calibration and Noise Estimation. IEEE Trans. Paltern Anal. Mach. Intell. 1994, 16, 267–276. [Google Scholar] [CrossRef]
- Grossberg, M.D.; Nayar, S.K. Modeling the Space of Camera Response Functions. IEEE Trans. Paltern Anal. Mach. Intell. 2004, 26, 1272–1282. [Google Scholar] [CrossRef] [PubMed]
- Buie, D.; Monger, A.G.; Dey, C.J. Sunshape distributions for terrestrial solar simulations. Sol. Energy 2003, 74, 113–122. [Google Scholar] [CrossRef]
Parameters | Units | Values |
---|---|---|
Lens aperture | mm | 968 |
Focal length | mm | 1300 |
Lens ring distance | mm | 0.5 |
Lens thickness | mm | 5 |
Lens transmittance | % | 89 |
Size of homogenizer | mm | Φ20 × 200 |
Transmittance of homogenizer | % | 90 |
Diameter of heat flow meter | mm | 20 |
Range of heat flow meter | MW/m2 | 0–3.14 |
Maximum operating temperature of heat flow meter | °C | 1600 |
Size of Lambertian target | mm | 100 × 100 × 3 |
Parameters | Unit | Value |
---|---|---|
Model | Z-10 | |
manufacturer | Ever fine | |
Test range | lx | 0.01–300,000 |
Spectral range | nm | 380–760 |
Area Ratio | Energy of the Focus Flux (W) | ||
---|---|---|---|
Theoretical | Heat Flow Meter | CCD Image | |
1/4 | 117 | 114 | 112 |
1/2 | 233 | 229 | 233 |
Reference [12] | This Manuscript | |
---|---|---|
Concentration ratio | 5831 | 4164.5 |
Half acceptance angle (deg) | 0.4 | 0.33 |
f−number | 0.74 | |
Maximum concentrated level | 14k suns | 6k suns |
Flux distribution map |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Su, Y.; Wang, H.; Wang, Q.; Wang, K.; Niu, Y.; Song, J. Highly Concentrated Solar Flux of Large Fresnel Lens Using CCD Camera-Based Method. Sustainability 2022, 14, 11062. https://doi.org/10.3390/su141711062
Zhang K, Su Y, Wang H, Wang Q, Wang K, Niu Y, Song J. Highly Concentrated Solar Flux of Large Fresnel Lens Using CCD Camera-Based Method. Sustainability. 2022; 14(17):11062. https://doi.org/10.3390/su141711062
Chicago/Turabian StyleZhang, Kexin, Ying Su, Haiyu Wang, Qian Wang, Kai Wang, Yisen Niu, and Jifeng Song. 2022. "Highly Concentrated Solar Flux of Large Fresnel Lens Using CCD Camera-Based Method" Sustainability 14, no. 17: 11062. https://doi.org/10.3390/su141711062
APA StyleZhang, K., Su, Y., Wang, H., Wang, Q., Wang, K., Niu, Y., & Song, J. (2022). Highly Concentrated Solar Flux of Large Fresnel Lens Using CCD Camera-Based Method. Sustainability, 14(17), 11062. https://doi.org/10.3390/su141711062