Features of Metallic Ion Distribution in Non-Traditional Water Agricultural Applications in Sandy Loam in an Arid Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Crops
2.2. Monitoring Items and Methods
2.3. Instruments and Reagents
2.4. Sample Determination Method
2.5. Experimental Data Analysis
3. Results
3.1. Heavy Metals Contents in Non-Traditional Water in the Sandy Loam Irrigation Area around the Metal Mines
3.2. Effects of Non-Traditional Water of Different Periods on the Heavy Metals Content in Sandy Loam
3.3. Effects of Different Volumes of Non-Traditional Water Agricultural Application on the Content of Heavy Metals in the Sandy Loam Irrigation Area around the Metal Mines
3.4. Distribution Characteristics of Heavy Metals in Balsam Pear under Non-Traditional Water Agricultural Application
3.5. Analysis of Heavy Metals Contents in Sandy Loam and Balsam Pear under Non-Traditional Water Agricultural Application
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tadayonnejad, M.; Mosaddeghi, M.R.; Dashtaki, S.G. Changing loam hydraulic properties and water repellency in a pomegranate orchard irrigated with saline water by applying polyacrylamide. Agric. Water Manag. 2017, 188, 12–20. [Google Scholar] [CrossRef]
- Badruzzaman, M.; Oppenheimer, J.A.; Jacangelo, J.G. Impact of environmental conditions on the suitability of microconstituents as markers for deterore nutrient loading from reclaimed water. Water Res. 2013, 46, 6198–6210. [Google Scholar] [CrossRef] [PubMed]
- Oron, G.; Armon, R.; Mandelbaum, R.; Manor, Y.; Campos, C.; Gillerman, L.; Saigot, M.; Gerba, C.; Klein, I.; Enriquez, C. Secondary wastewater disposal for crop irrigation with minimal risks. Water Sci. Technol. 1999, 43, 139–146. [Google Scholar] [CrossRef]
- Rivera-Aguilar, V.; Godínez-Alvarez, H.; Moreno-Torres, R.; Rodríguez-Zaragoza, S. Loam physico-chemical properties affecting the distribution of biological loam crusts along an environmental transect at Zapotitlán drylands, Mexico. J. Arid. Environ. 2009, 63, 1023–1028. [Google Scholar] [CrossRef]
- Wang, J.; Gardinali, P.R. Identification of phase II pharmaceutical metabolites in reclaimed water using high resolution benchtop Orbitrap mass spectrometry. Chemosphere 2014, 107, 65–73. [Google Scholar] [CrossRef]
- Moreno, F.; Cabrera, F.; Fernández-Bo, E.; Giron, I.F.; Fernandez, J.E.; Bellido, B. Irrigation with saline water in the reclaimed marsh loams of south-west Spain: Impact on loam properties and cotton and sugar beet crops. Agric. Water Manag. 2007, 48, 133–150. [Google Scholar] [CrossRef]
- Pedrero, F.; Maestre-Valero, J.F.; Mounzer, O.; Alarcón, J.J.; Nicolás, E. Physiological and agronomic mandarin trees performance under saline reclaimed water combined with regulated deficit irrigation. Agric. Water Manag. 2014, 146, 228–236. [Google Scholar] [CrossRef]
- Al Kuisi, M.; Aljazzar, T.; Rude, T.; Margane, A. Impact of the use of reclaimed water on the quality of groundwater resources in the Jordan Valley, Jordan. Clean Loam Air Water 2008, 36, 1001–1014. [Google Scholar] [CrossRef]
- Ichihara, M.; Yamamoto, A.; Takakura, K.I.; Kakutani, N.; Sudo, M. Distribution and pollutant load of hexabromocyclododecane (HBCD) in sewage treatment plants and water from Japanese Rivers. Chemosphere 2014, 110, 68–84. [Google Scholar] [CrossRef]
- Mehmood, S.; Ahmed, W.; Alatalo, J.M.; Mahmood, M.; Imtiaz, M.; Ditta, A.; Allah, D.; Esmat, F.A.; Hamada, A.; Michal, S.; et al. Herbal plants- and rice straw-derived biochars reduced metal mobilization in fishpond sediments and improved their potential as fertilizers. Sci. Total Environ. 2022, 826, 154043. [Google Scholar] [CrossRef]
- Puchongkawarin, C.; Gomez-Mont, C.; Stuckey, D.C.; Chachuat, B. Optimization-based methodology for the development of wastewater facilities for energy and nutrient recovery. Chemosphere 2015, 140, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.N.; Jung, H.Y.; Park, J.H. Subcritical water treatment of explosive and heavy metals co-contaminated loam: Removal of the explosive, and immobilization and risk assessment of heavy metals. J. Environ. Manag. 2015, 163, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Noor, S.A.M.; Zainura, Z.N.; Mohd, A.A.H.; Gustaf, O. Application of membrane bioreactor technology in treating high strength industrial wastewater: A performance review. Desalination 2012, 305, 1–11. [Google Scholar]
- Pei, L.; Xiao, J.A.; Sun, L.Y. The effects of reclaimed water irrigation on the loam characteristics and microbial populations of plant rhizosphere. Environ. Sci. Pollut. Res. 2021, 29, 17570–17579. [Google Scholar]
- Koupaie, E.H.; Eskicioglu, C. Health risk assessment of heavy metals through the consumption of food crops fertilized by biosolids: A probabilistic-based analysis. J. Hazard. Mater. 2015, 300, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Li, F.P.; Wang, Y.; Mao, L.C.; Tao, H.; Chen, M. Molybdenum background and pollution levels in the Taipu River, China. Environ. Chem. Lett. 2022, 20, 1009–1015. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Yu, W.; Li, J.; Kong, D. Ecotoxicological risk ranking of 19 metals in the lower Yangtze River of China based on their threats to aquatic wildlife. Sci. Total Environ. 2021, 812, 152370. [Google Scholar] [CrossRef]
- Von Hoffen, L.P.; Säumel, I. Orchards for edible cities: Cadmium and lead content in nuts, berries, pome and stone fruits harvested within the inner city neighbourhoods in Berlin, Germany. Ecotoxicol. Environ. Saf. 2014, 101, 233–239. [Google Scholar] [CrossRef]
- Yang, J.; Min, Q.L. A passive and active microwave-vector radiative transfer (PAM-VRT) model. J. Quant. Spectrosc. Radiat. Transf. 2015, 165, 123–133. [Google Scholar] [CrossRef]
- Chen, L.J.; Feng, Q.; Li, C.S.; Song, Y.X.; Liu, W.; Si, J.H.; Zhang, B.G. Spatial Variations of Loam Microbial Activities in Saline Groundwater-Irrigated Loam Ecosystem. Environ. Manag. 2016, 57, 1054–1061. [Google Scholar] [CrossRef]
- Guan, Q.Y.; Wang, L.; Pan, B.T.; Guan, W.Q.; Sun, X.Z.; Cai, A. Distribution features and controls of heavy metals in surface sediments from the riverbed of the Ningxia-Inner Mongolian reaches, Yellow River, China. Chemosphere 2016, 144, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Huguet, M.; Marshall, W.D. Scaling up a treatment to simultaneously remove persistent organic pollutants and heavy metals from contaminated loams. Chemosphere 2011, 83, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Adrien, F.; Marie-Anne, P.; Battle, K.i.; Hélène, C.; Aubry, E.; HAussy, C.; Gasparini, J.; Castrec-Rouelle, M. Contrasting levels of heavy metals in the feathers of urban pigeons from close habitats suggest limited movements at a restricted scale. Environ. Pollut. 2012, 168, 23–28. [Google Scholar]
- Salazar, M.J.; Hebelen, J.R.; Nieto, G.L.; Pignata, M.L. Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural loams near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill]. J. Hazard. Mater. 2012, 233–234, 244–253. [Google Scholar] [CrossRef]
- Kasra-Kermanshahi, R.; Tajer-Mohammad-Ghazvini, P.; Bahrami-Bavani, M. A biotechnological strategy for molybdenum extraction using acidithiobacillus-ferrooxidans. Appl. Biochem. Biotechnol. 2020, 193, 884–895. [Google Scholar] [CrossRef]
- Gołdyn, B.; Chudzińska, M.; Barałkiewicz, D.; Celewicz-Gołdyn, S. Heavy metal contents in the sediments of astatic ponds: Influence of geomorphology, hydroperiod, water chemistry and vegetation. Ecotoxicol. Environ. Saf. 2015, 118, 103–111. [Google Scholar] [CrossRef]
- Muhid, P.; Davis, T.W.; Bunn, S.E.; Burford, M.A. Effects of inorganic nutrients in recycled water on freshwater phytoplankton biomass and composition. Water Res. 2013, 46, 384–394. [Google Scholar] [CrossRef]
- Rosabal, A.; Morillo, E.; Undabeytia, T.; Maqueda, C.; Justo, A.; Herencia, J.F. Long-term impacts of wastewater irrigation on Cuban loams. Loam Sci. Plant. Nutr. 2007, 71, 1292–1298. [Google Scholar]
- Dziubanek, G.; Piekut, A.; Rusin, M.; Baranowska, R.; Hajok, I. Contamination of food crops grown on loams with elevated heavy metals content. Ecotoxicol. Environ. Saf. 2015, 118, 183–189. [Google Scholar] [CrossRef]
- Fierens, T.; Cornelis, C.; Standaert, A.; Sioen, I.; De Henauw, S.; Van Holderbeke, M. Modelling the environmental transfer of phthalates and polychlorinated dibenzo-p-dioxins and dibenzofurans intoagricultural products: The EN-forc model. Environ. Res. 2014, 133, 282–293. [Google Scholar] [CrossRef]
- Liu, C.; Tang, X.Y.; Kim, J.; Korshin, G.V. Formation of aldehydes and carboxylic acids in ozonated surface water and wastewater: A clear relationship with fluorescence changes. Chemosphere 2015, 125, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.E.M.; Farias, D.F.; Carvalho, A.F.U.; Oliveira, J.T.A.; Pereira, M.L.; Grangeiro, T.B.; Freire, J.E.C.; Viana, D.A.; Vasconcelos, I.M. Food safety assessment of an antifungal protein from Moringa oleifera seeds in an agricultural biotechnology perspective. Food Chem. Toxicol. 2015, 83, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.F.; Jiang, Y.; Shu, Y.; Hu, X.; Liu, L.M.; Luo, F. Effects of ore wastewater discharges on heavy metal pollution and loam enzyme activity of the paddy fields. J. Geochem. Explor. 2014, 146, 139–150. [Google Scholar] [CrossRef]
Water Quality | As /mg·L−1 | Cr /mg·L−1 | Cd /μg·L−1 | Cu /μg·L−1 | Pb /mg·L−1 | Zn /mg·L−1 |
---|---|---|---|---|---|---|
Underground water | 0.0031 | 0.0194 | 0.041 | 0.062 | 0.0119 | 0.0312 |
Non-traditional water | 0.0062 | 0.0343 | 0.075 | 0.292 | 0.0121 | 0.1190 |
Agricultural application water quality standard | 0.05 | 0.1 | 0.5 | 1 | 0.1 | 2 |
Index | Depth/cm | Background Values | Irrigation Periods | Loam Quality Standard GB15618-2008 | ||||
---|---|---|---|---|---|---|---|---|
12 Months | 18 Months | 24 Months | First Grade | Second Grade | Third Grade | |||
As /mg·kg−1 | 0~30 | 8.1 ± 1.82 a | 9.3 ± 0.32 a | 6.7 ± 0.89 a | 9.3 ± 1.19 b | ≤15 ≤25 ≤40 | ||
30~60 | 8.2 ± 2.29 ab | 8.6 ± 1.11 a | 6.4 ± 1.33 b | 8.3 ± 0.77 a | ||||
60~90 | 6.3 ± 3.43 d | 8.2 ± 3.86 d | 6.7 ± 2.80 ab | 6.7 ± 2.02 cd | ||||
Cd /μg·kg−1 | 0~30 | 58 ± 2.32 a | 64 ± 1.03 a | 63 ± 5.38 c | 54 ± 4.91 ef | ≤200 ≤1000 ≤infinite | ||
30~60 | 50 ± 6.17 c | 58 ± 1.12 a | 49 ± 1.76 a | 52 ± 2.02 d | ||||
60~90 | 41 ± 3.13 bc | 46 ± 0.82 a | 40 ± 1.99 b | 48 ± 1.31 ab | ||||
Cu /mg·kg−1 | 0~30 | 23 ± 1.12 b | 76 ± 1.23 a | 64 ± 1.71 b | 70 ± 1.15 a | ≤35 ≤100 ≤400 | ||
30~60 | 22 ± 0.32 a | 71 ± 2.89 b | 66 ± 4.82 b | 67 ± 5.02 bc | ||||
60~90 | 20 ± 2.11 bc | 67 ± 1.33 b | 63 ± 3.44 e | 70 ± 3.99 c | ||||
Cr /mg·kg−1 | 0~30 | 34 ± 1.21 b | 10 ± 1.95 de | 9 ± 1.03 b | 9 ± 1.73 b | ≤90 ≤250 ≤300 | ||
30~60 | 34 ± 2.02 b | 10 ± 0.32 a | 9 ± 0.02 a | 9 ± 1.89 bc | ||||
60~90 | 35 ± 1.82 | 9 ± 1.82 de | 7 ± 1.82 f | 8 ± 1.82 ± 1.62 de | ||||
Zn /mg·kg−1 | 0~30 | 28 ± 1.14 b | 28 ± 0.09 a | 33 ± 3.02 b | 26 ± 2.81 cd | ≤100 ≤300 ≤500 | ||
30~60 | 33 ± 0.72 a | 27 ± 1.13 ab | 34 ± 1.19 ab | 24 ± 1.41 b | ||||
60~90 | 36 ± 1.02 bc | 26 ± 1.77 b | 26 ± 2.86 bc | 24 ± 0.12 a |
Index | Depth/cm | Local Value | Underground Water | Half-Non-Traditional Water | Non-Traditional Water |
---|---|---|---|---|---|
As /mg·kg−1 | 0~30 | 8.9 ± 0.29 b | 8.8 ± 0.32 a | 9.3 ± 1.19 c | 9.8 ± 1.79 d |
30~60 | 8.1 ± 0.04 a | 8.0 ± 0.88 b | 8.3 ± 0.12 a | 11.2 ± 1.33 c | |
60~90 | 6.5 ± 0.43 b | 8.1 ± 0.55 ab | 6.8 ± 0.76 ab | 8.2 ± 0.23 a | |
Cd /μg·kg−1 | 0~30 | 62 ± 2.26 b | 50 ± 3.27 b | 58 ± 4.19 b | 53 ± 5.11 ac |
30~60 | 51 ± 3.14 b | 47 ± 3.59 b | 64 ± 3.22 b | 51 ± 3.52 b | |
60~90 | 46 ± 1.45 b | 47 ± 1.48 a | 48 ± 1.19 a | 44 ± 0.17 a | |
Cu /mg·kg−1 | 0~30 | 23 ± 1.02 b | 16 ± 1.00 c | 21 ± 1.11 b | 22 ± 0.21 a |
30~60 | 22 ± 1.24 b | 18 ± 0.28 a | 20 ± 0.22 a | 25 ± 0.33 a | |
60~90 | 19 ± 0.51 a | 16 ± 0.99 b | 18 ± 1.93 ab | 23 ± 0.55 ab | |
Cr /mg·kg−1 | 0~30 | 36 ± 2.01 b | 27 ± 0.12 a | 28 ± 2.03 ab | 75 ± 1.98 ad |
30~60 | 34 ± 1.76 a | 26 ± 0.66 b | 23 ± 1.21 ab | 32 ± 1.22 a | |
60~90 | 33 ± 1.56 a | 25 ± 0.69 a | 27 ± 0.82 a | 30 ± 3.01 c | |
Pb /mg·kg−1 | 0~30 | 63 ± 0.98 a | 14 ± 0.87 a | 18 ± 1.09 c | 22 ± 0.27 a |
30~60 | 64 ± 1.99 b | 17 ± 2.54 c | 18 ± 0.28 a | 21 ± 0.36 a | |
60~90 | 61 ± 3.24 b | 14 ± 0.79 a | 15 ± 0.71 b | 19 ± 0.15 b | |
Zn /mg·kg−1 | 0~30 | 7.3 ± 2.53 c | 49 ± 0.66 a | 58 ± 5.19 d | 60 ± 3.77 ab |
30~60 | 7.9 ± 5.07 ab | 40 ± 3.31 b | 52 ± 0.89 a | 62 ± 3.91 b | |
60~90 | 7.1 ± 6.12 c | 48 ± 1.12 a | 50 ± 2.11 c | 54 ± 1.24 a |
Water Quality | As | Cd | Cr | Cu | Pb | Zn |
---|---|---|---|---|---|---|
Underground water | 0.0026 | 0.021 | 0.062 | 0.019 | 0.055 | No detected |
Half- non-traditional water | 0.0040 | 0.044 | 0.068 | 0.022 | 0.079 | No detected |
Non-traditional water | 0.0033 | 0.060 | 0.092 | 0.0099 | 0.083 | No detected |
National standard | 0.5 | 0.05 | 0.5 | 0.5 | 0.2 | No detected |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, L. Features of Metallic Ion Distribution in Non-Traditional Water Agricultural Applications in Sandy Loam in an Arid Area. Sustainability 2022, 14, 11080. https://doi.org/10.3390/su141711080
Pei L. Features of Metallic Ion Distribution in Non-Traditional Water Agricultural Applications in Sandy Loam in an Arid Area. Sustainability. 2022; 14(17):11080. https://doi.org/10.3390/su141711080
Chicago/Turabian StylePei, Liang. 2022. "Features of Metallic Ion Distribution in Non-Traditional Water Agricultural Applications in Sandy Loam in an Arid Area" Sustainability 14, no. 17: 11080. https://doi.org/10.3390/su141711080
APA StylePei, L. (2022). Features of Metallic Ion Distribution in Non-Traditional Water Agricultural Applications in Sandy Loam in an Arid Area. Sustainability, 14(17), 11080. https://doi.org/10.3390/su141711080