Application of Biochar for Improving Physical, Chemical, and Hydrological Soil Properties: A Systematic Review
Abstract
:1. Introduction
2. Biochar Properties
3. The Impact of Biochar Application on the Physical and Hydrological Properties of Soil
3.1. Soil Bulk Density
3.2. Soil Porosity
Biochars | Temp. (°C) | Rates (t ha−1) | BD (g cm−3) | Porosity (cm3 cm−3) | SOC (g kg−1) | References |
---|---|---|---|---|---|---|
Corn | Control | 0 | 1.66 | 0.37 | 3 | |
350 | 4 | 1.3 | 0.51 | 30.5 | [45] | |
650 | 4 | 1.32 | 0.50 | 7.5 | ||
Corn cob | Control | 0 | 1.52 | 0.43 | 1.03 | |
500–550 | 10 | 1.49 | 0.44 | 1.39 | [46] | |
500–550 | 20 | 1.45 | 0.45 | 1.71 | ||
Birch | Control | 0 | 1.30 | 50.9 | 1.81 | [47] |
400 | 9 | 1.25 | 52.8 | 1.81 | ||
Straw | Control | 1.43 | - | - | [48] | |
525 | 1.17 | 84.3 | - | |||
Eucalyptus trees | Control | 0 | 1.58 | - | 4.1 | |
350 | 1 | 1.55 | - | 10.3 | [49] | |
350 | 2 | 1.50 | - | 18.1 | ||
350 | 4 | 1.34 | - | 25.4 |
3.3. Water-Holding Capacity of Soil (SWHC)
3.4. Soil Water Retention Curve or Soil Water Characteristic Curve (SWCC)
3.5. Soil Hydraulic Conductivity (K)
3.6. Plant-Available Water (PAW)
Location | Soil | Study Type | Study Duration | Biochar Feedstock | Biochar Rate | PAW (%) | References |
---|---|---|---|---|---|---|---|
Malaysia | Sand | P | 170 days | Rice husk | 0 | 0.047 b | [82] |
20g kg−1 | 0.062 a,b | ||||||
50g kg−1 | 0.082 a | ||||||
Iran | Sandy loam | I | 180 days | Rice husk and wood | 0, 20 g kg−1 | Increased | [83] |
China | Sand | I | 180 days | Straw, woodchips, and wastewater sludge | 20, 40, 60 g kg−1 | No effect | [84] |
USA | Silty clay loam | L | 2 weeks | Wood | 0 and 1% | Increased | [85] |
Zambia | Sandy loam | F | 1 year | Corn cob, rice husk | 0–40 g kg−1 | Increased | [86] |
China | loam | F | 1 year | Crop straw | 0–16 Mg ha−1 | No effect | [87] |
Brazil | Sandy loam | F | 3 years | Wood | 0, 8, 16, 32Mg ha−1 | Increased | [88] |
3.7. Infiltration
3.8. Water Repellency
Location | Soil | Type of Study | Duration of Study | Type of Feedstock | Biochar Rate | SWR (S = m/s) | References |
---|---|---|---|---|---|---|---|
Germany | Sandy | L and F | <6 months | Corn | 1, 2.5, 5% | No effect | [27] |
Italy | Sandy clay loam | P | Two years | Orchard pruning | 22, 44 Mg ha−1 | No effect | [105] |
New Zealand | Silt loam | G | 295 days | Corn stover at | 17.3, 11.3, 10.0 Mg ha−1 | No effect | [14] |
UK | Sandy loam | G | <10 weeks | Wood | 0% 1.5 2.5% 5% | 11 a 4.1 b 2 c | [25] |
Portland | Loamy sand | G | Three months | Miscanthus giganteus, winter wheat. | 0.5% 1% 2% 3% 4% | 1.02 1.03 1.15 1.62 | [75] |
3.9. Soil Temperature
3.10. Surface Albedo
3.11. Soil Color
4. Future Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saxena, J.; Rawat, J.; Kumar, R. Conversion of biomass waste into Biochar and the effect on mung bean crop production. CLEAN Soil Air Water 2017, 45, 1501020. [Google Scholar] [CrossRef]
- Stella Mary, G.; Sugumaran, P.; Niveditha, S.; Ramalakshmi, B.; Ravichandran, P.; Seshadri, S. Production, characterization and evaluation of Biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. Int. J. Recycl. Org. Waste Agric. 2016, 5, 43–53. [Google Scholar] [CrossRef]
- Bera, T.; Purakayastha, T.J.; Patra, A.K.; Datta, S.C. Comparative analysis of physicochemical, nutrient, and spectral properties of agricultural residue biochars as influenced by pyrolysis temperatures. J. Mater. Cycles Waste Manag. 2018, 20, 1115–1127. [Google Scholar] [CrossRef]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U. Organic and inorganic contaminants removal from water with Biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of Biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, J.; Baskar, C.; Kumar, A. A comprehensive review on biochar formation and its utilization for wastewater treatment. Pollut. Res. 2018, 37, S1–S18. [Google Scholar]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Vijayaraghavan, K. Recent advancements in biochar preparation, feedstocks, modification, characterization and future applications. Environ. Technol. Rev. 2019, 8, 47–64. [Google Scholar] [CrossRef]
- Kumar, A.; Shalini.; Sharma, G.; Naushad, M.; Kumar, A.; Kalia, S.; Guo, C.; Mola, G.T. Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on Biochar for solar photo-degradation of methyl paraben and pesticide removal from soil. J. Photochem. Photobiol. Chem. 2017, 337, 118–131. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Nguyen, T.B.; Chen, C.W.; Hung, C.M.; Chang, J.H.; Dong, C.D. Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of Biochar derived from spent coffee ground. Bioresour. Technol. 2019, 284, 197–203. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.W.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N.S.; Ok, Y.S. Engineered/designer biochar for contaminant removal/ immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 2016, 148, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Singh, A.; Khare, P.; Chanda, D.; Mishra, D.; Shanker, K.; Karak, T. Toxicity assessment of Bacopa monnieri L. grown in Biochar amended extremely acidic coal mine spoils. Ecol. Eng. 2017, 108, 211–219. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.; Ye, C.; Zhu, P.; Ba, Q.; Pang, J.; Shu, L. Effects of biochar application on the abundance and community composition of denitrifying bacteria in a reclaimed soil from coal mining subsidence area. Sci. Total Environ. 2018, 625, 1218–1224. [Google Scholar] [CrossRef]
- Herath, H.M.S.K.; Camps-Arbestain, M.; Hedley, M. Effect of Biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma 2013, 209, 188–197. [Google Scholar] [CrossRef]
- Herath Jones, B.E.H.; Haynes, R.J.; Phillips, I.R. Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties. J. Environ. Manag. 2010, 91, 2281–2288. [Google Scholar] [CrossRef]
- Singh, B.; Singh, B.P.; Cowie, A.L. Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res. 2010, 48, 516–525. [Google Scholar] [CrossRef]
- Villagra-Mendoza, K.; Horn, R. Effect of biochar addition on hydraulic functions of two textural soils. Geoderma 2018, 326, 88–89. [Google Scholar] [CrossRef]
- Abujabhah, I.S.; Bound, S.A.; Doyle, R.; Bowman, J.P. Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Appl. Soil Ecol. 2016, 98, 243–253. [Google Scholar] [CrossRef]
- Lehmann, J.; Pereira da Silva, J.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Ouyang, L.; Wang, F.; Tang, J.; Yu, L.; Zhang, R. Effects of biochar amendment on soil aggregates and hydraulic properties. J. Soil Sci. Plant Nutrit. 2013, 13, 991–1002. [Google Scholar] [CrossRef]
- Hillel, D.; Hatfield, J.L. (Eds.) Encyclopedia of Soils in the Environment; Elsevier: Amsterdam, The Netherlands, 2005; Volume 3. [Google Scholar]
- Jien, S.H.; Wang, C.S. Effects of Biochar on soil properties and erosion potential in a highly weathered soil. Catena 2013, 110, 225–233. [Google Scholar] [CrossRef]
- Devereux, R.C.; Sturrock, C.J.; Mooney, S.J. The effects of Biochar on soil physical properties and winter wheat growth. Earth Environ. Sci. Trans. R. Soc. Edinb. 2012, 103, 13–18. [Google Scholar] [CrossRef]
- Li, Y.; Hu, S.; Chen, J.; Müller, K.; Li, Y.; Fu, W.; Lin, Z.; Wang, H. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: A review. J. Soils Sediments 2018, 18, 546–563. [Google Scholar] [CrossRef]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Zahoor, A.; Nishihara, E. Influence of biochar application on sandy soil hydraulic properties and nutrient retention. J. Food Agric. Environ. 2011, 9, 1137–1143. [Google Scholar]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of Biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 2013, 202–203, 183–191. [Google Scholar] [CrossRef]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Gonnermann, H.M. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE 2017, 12, 0179079. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.; Christie, P.; Zhang, M.; Luo, Y.; Teng, Y. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses. Sci. Total Environ. 2015, 523, 129–137. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009; pp. 1–12. [Google Scholar]
- Tan, Z.; Zou, J.; Zhang, L.; Huang, Q. Morphology, pore size distribution, an nutrient characteristics in biochars under different pyrolysis temperatures and atmospheres. J. Mater. Cycl. Waste 2018, 20, 1036–1049. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of Biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef]
- Yargicoglu, E.N.; Sadasivam, B.Y.; Reddy, K.R.; Spokas, K. Physical and chemical characterization of waste wood derived biochars. Waste Manag. 2015, 36, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Hina, K.; Bishop, P.; Arbestain, M.C.; Calvelo-Pereira, R.; Macia-Agullo, J.A.; Hindmarsh, J.; Hanly, J.A.; Macias, F.; Hedley, M.J. Producing biochars with enhanced surface activity through alkaline pre-treatment of feedstocks. Aust. J. Soil Res. 2010, 48, 606–617. [Google Scholar] [CrossRef]
- Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M.A.; Sonoki, T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 2014, 11, 6613–6621. [Google Scholar] [CrossRef]
- Downie, A.; Crosky, A.; Munroe, P. Physical properties of Biochar. In Biochar for Environmental Management: Science and Technology; Routledge: London, UK, 2009; pp. 13–32. [Google Scholar]
- Kim, W.K.; Shim, T.; Kim, Y.S.; Hyun, S.; Ryu, C.; Park, Y.K.; Jung, J. Characterization of cadmium removal from aqueous solution by Biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresour. Technol. 2013, 138, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.T.; Li, X.M.; Li, F.B. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with Biochar. J. Hazard. Mater. 2018, 344, 958–967. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; and Feng, Y. The effects of biochar addition on soil physicochemical properties: A review. Catena 2021, 202, 105284. [Google Scholar] [CrossRef]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; de Macêdo JL, V.; Blum, W.E.; Zech, W. Long-term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Abiodun, B.J.; Ajayi, A.E.; van de Giesen, N. Effects of charcoal production on soil physical properties in Ghana. J. Plant Nutrit. Soil Sci. 2008, 171, 591–596. [Google Scholar] [CrossRef]
- Qin, X.; Li, Y.; Wang, H.; Liu, C.; Li, J.; Wan, Y.; Gao, Q.; Fan, F.; Liao, Y. Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China. Sci. Total Environ. 2016, 569, 1390–1401. [Google Scholar] [CrossRef]
- Chen, B.L.; Yuan, M.X. Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with Biochar. J. Soils Sediments 2011, 11, 62–71. [Google Scholar] [CrossRef]
- Saffari, N.; Hajabbasi, M.A.; Shirani, H.; Mosaddeghi, M.R.; Owens, G. Influence of corn residue biochar on water retention and penetration resistance in a calcareous sandy loam soil. Geoderma 2021, 38, 114734. [Google Scholar] [CrossRef]
- Amoakwah, E.; Frimpong, K.A.; Okae-Anti, D.; Arthur, E. Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam. Geofis. Int. 2017, 307, 189–197. [Google Scholar] [CrossRef]
- Karhu, K.; Mattila, T.; Bergstrom, I.; Regina, K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—Results from a short-term pilot field study. Agric. Ecosyst. Environ. 2011, 140, 309–313. [Google Scholar] [CrossRef]
- Burrell, L.D.; Zehetner, F.; Rampazzo, N.; Wimmer, B.; Soja, G. Long term effects of Biochar on soil physical properties. Geoderma 2016, 282, 96–102. [Google Scholar] [CrossRef]
- Butnan, S.; Deenik, J.L.; Toomsan, B.; Vityakon, P. Biochar properties affecting carbon stability in soils contrasting in texture and mineralogy. Agric. Nat. Resour. 2018, 51, 492–498. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Dokoohaki, H.; Miguez, F.E.; Laird, D.; Horton, R.; Basso, A.S. Assessing the Biochar Effects on Selected Physical Properties of a Sandy Soil: An Analytical Approach. Commun. Soil Sci. Plant Anal. 2017, 48, 1387–1398. [Google Scholar] [CrossRef]
- Rasa, K.; Heikkinen, J.; Hannula, M.; Arstila, K.; Kulju, S.; Hyväluoma, J. How and why does willow biochar increase a clay soil water retention capacity? Biomass Bioenergy 2018, 119, 346–353. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Zhang, K. Heavy Metal Pollution in Soil and Agricultural Products on Roadside of Highway in Seasonally Frozen Soil Area. Rev. Fac. Agron. Univ. Zulia 2019, 36, 754–763. [Google Scholar]
- Sun, F.F.; Lu, S.G. Biochars improve aggregate stability, water retention, and pore space properties of clayey soil. J. Plant Nutr. Soil Sci. 2014, 177, 26–33. [Google Scholar] [CrossRef]
- Fu, Q.; Zhao, H.; Li, T.; Hou, R.; Liu, D.; Ji, Y.; Zhou, Z.; Yang, L. Effects of biochar addition on soil hydraulic properties before and after freezing-thawing. Catena 2019, 176, 112–124. [Google Scholar] [CrossRef]
- Carrick, S.; Buchan, G.; Almond, P.; Smith, N. A typical early-time infiltration into a structured soil near field capacity: The dynamic interplay between sorptivity, hydrophobicity, and air encapsulation. Geoderma 2011, 160, 579–589. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Nutrient Leaching in a Colombian Savanna Oxisol Amended with Biochar. J. Environ. Qual. 2012, 41, 1076–1086. [Google Scholar] [CrossRef]
- Abrol, V.; Ben-Hur, M.; Verheijen, F.G.A.; Keizer, J.J.; Martins, M.A.S.; Tenaw, H.; Tchehansky, L.; Graber, E.R. Biochar effects on soil water infiltration and erosion under seal formation conditions: Rainfall simulation experiment. J. Soils Sediments 2016, 16, 2709–2719. [Google Scholar] [CrossRef]
- Cheng, C.H.; Lehmann, J.; Thies, J.E.; Burton, S.D.; Engelhard, M.H. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 2006, 37, 1477–1488. [Google Scholar] [CrossRef]
- Verheijen, F.G.; Zhuravel, A.; Silva, F.C.; Amaro, A.; Ben-Hur, M.; Keizer, J.J. The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma 2019, 347, 194–202. [Google Scholar] [CrossRef]
- Brockhoff, S.R.; Christians, N.E.; Killorn, R.J.; Horton, R.; Davis, D.D. Physical and Mineral-Nutrition Properties of Sand-Based Turfgrass Root Zones Amended with Biochar. Agron. J. 2010, 102, 1627–1631. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, S.; Zhao, Y.; Jing, M.; Xu, Y.; Chen, J. A Field Experiment on Enhancement of Crop Yield by Rice Straw and Corn Stalk-Derived Biochar in Northern China. Sustainability 2015, 7, 13713–13725. [Google Scholar] [CrossRef]
- Vitkova, J.; Kondrlova, E.; Rodny, M.; Surda, P.; Horak, J. Analysis of soil water content and crop yield after biochar application in field conditions. Plant Soil Environ. 2017, 63, 569–573. [Google Scholar]
- Bayat, H.; Mazaheri, B.; Mohanty, B.P. Estimating soil water characteristic curve using landscape features and soil thermal properties. Soil Tillage Res. 2019, 189, 1–14. [Google Scholar] [CrossRef]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.M.; Dallmeyer, I.; Garcia-Pérez, M. The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci. Total Environ. 2017, 574, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Chen, X.; Ng, C.; Guo, H. Effects of Biochar on water retention and matric suction of vegetated soil. Géotech. Lett. 2018, 18, 124–129. [Google Scholar] [CrossRef]
- Bordoloi, S.; Garg, A.; Sreedeep, S.; Lin, P.; Mei, G. Investigation of cracking and water availability of soil-biochar composite synthesized from invasive weed water hyacinth. Bioresour. Technol. 2018, 263, 665–677. [Google Scholar] [CrossRef]
- Wong, J.T.F.; Chen, Z.; Chen, X.; Ng, C.W.W.; Wong, M.H. Soil-water retention behavior of compacted biochar-amended clay: A novel landfill final cover material. Int. J. Soil Sediments 2017, 17, 590–598. [Google Scholar] [CrossRef]
- Moragues-Saitua, L.; Arias-González, A.; Gartzia-Bengoetxea, N. Effects of biochar and wood ash on soil hydraulic properties: A field experiment involving contrasting temperate soils. Geoderma 2017, 305, 144–152. [Google Scholar] [CrossRef]
- Lim, T.J.; Spokas, K.A.; Feyereisen, G.; Novak, J.M. Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere 2016, 142, 136–144. [Google Scholar] [CrossRef]
- Asai, H.; Samson, B.K.; Stephan, H.M.; Songyikhangsuthor, K.; Homma, K.; Kiyono, Y.; Inoue, Y.; Shiraiwa, T.; Horie, T. Biochar amendment techniques for upland rice production in northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res. 2009, 111, 81–84. [Google Scholar] [CrossRef]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does Biochar influence soil physical properties and soil water availability? Plant Soil 2014, 376, 347–361. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. Pyrolysis temperature induced changes in characteristics and chemical composition of Biochar produced from conocarpus waste. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Ok, Y.S.; Niazi, N.K.; Rizwan, M.; Al-Wabel, M.I.; Usman, A.R.A.; Moon, D.H.; Lee, S.S. Effect of corn residue Biochar on the hydraulic properties of sandy loam soil. Sustainability 2017, 9, 266–276. [Google Scholar] [CrossRef]
- Głąb, T.; Palmowska, J.; Zaleski, T.; Gondek, K. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 2016, 281, 11–20. [Google Scholar] [CrossRef]
- Lu, S.; Sun, F.; Zong, Y. Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (vertisol). Catena 2014, 114, 37–44. [Google Scholar] [CrossRef]
- Mubarak, I.; Mailhol, J.C.; Angulo-Jaramillo, R.; Ruelle, P.; Boivin, P.; Khaledian, M. Temporal variability in soil hydraulic properties under drip irrigation. Geoderma 2009, 150, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.L.; Zhu, H.; Zhang, X.; Li, Y.; Shen, Y.F.; Li, S. Soil amendment with Biochar increases maize yields in a semi-arid region by improving soil quality and root growth. Crop Pasture Sci. 2016, 67, 495–507. [Google Scholar] [CrossRef]
- Kameyama, K.; Miyamoto, T.; Shiono, T.; and Shinogi, Y. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. J. Environ. Qual. 2012, 41, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Castellinia, M.; Giglio, L.; Niedda, M.; Palumbo, A.D.; Ventrella, D. Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil Tillage Res. 2015, 154, 1–13. [Google Scholar] [CrossRef]
- Bayabil, H.K.; Stoof, C.R.; Lehmann, J.C.; Yitaferu, B.; Steenhuis, T.S. Assessing the potential of Biochar and charcoal to improve soil hydraulic properties in the humid Ethiopian Highlands: The Anjeni watershed. Geoderma 2015, 243–244, 115–123. [Google Scholar] [CrossRef]
- Manickam, T.; Cornelissen, G.; Bachmann, R.T.; Ibrahim, I.Z.; Mulder, J.; Hale, S.E. Biochar application in Malaysian sandy and acid sulfate soils: Soil amelioration effects and improved crop production over two cropping seasons. Sustainability 2015, 7, 16756–16770. [Google Scholar] [CrossRef]
- Esmaeelnejad, L.; Shorafa, M.; Gorji, M.; Hosseini, S.M. Enhancement of physical and hydrological properties of a sandy loam soil via application of different biochar particle sizes during incubation period. Span. J. Agric. Res. 2016, 14, 1103. [Google Scholar] [CrossRef]
- Zong, Y.; Xiao, Q.; Lu, S. Acidity, water retention, and mechanical physical quality of a strongly acidic Ultisol amended with biochars derived from different feedstocks. J. Soils Sediments 2016, 16, 177–190. [Google Scholar] [CrossRef]
- Koide, R.T.; Nguyen, B.T.; Skinner, R.H.; Dell, C.J.; Peoples, M.S.; Adler, P.R.; Drohan, P.J. Biochar amendment of soil improves resilience to climate change. GCB Bioenergy 2015, 7, 1084–1091. [Google Scholar] [CrossRef]
- Obia, A.; Mulder, J.; Martinsen, V.; Cornelissen, G.; Børresen, T. In situ effects of Biochar on aggregation, water retention and `porosity in light-textured tropical soils. Soil Tillage Res. 2016, 155, 35–44. [Google Scholar] [CrossRef]
- Liu, C.; Tang, H.L.X.; Guan, Z.; Reid, B.J.; Upamali, A.; Yong, R.; Ok, S.; Sun, H. Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China. Environ. Sci. Pollut. Res. 2016, 23, 995–1006. [Google Scholar] [CrossRef] [PubMed]
- De Melo Carvalho, M.T.; de Holanda Nunes Maia, A.; Madari, B.E.; Bastiaans, L.; van Oort, P.A.J.; Heinemann, A.B.; da Silva, M.A.S.; Petter, F.A.; Marimon, B.H., Jr.; Meinke, H. Biochar increases plant available water in a sandy soil under an aerobic rice cropping system. Solid Earth 2014, 6, 887–917. [Google Scholar] [CrossRef]
- Novak, J.; Sigua, G.; Watts, D.; Cantrell, K.; Shumaker, P.; Szogi, A.; Johnson, M.G.; Spokas, K. Biochars impact on water infiltration and water quality through a compacted subsoil layer. Chemosphere 2016, 142, 160–167. [Google Scholar] [CrossRef]
- Prober, S.M.; Stol, J.; Piper, M.; Gupta, V.; Cunningham, S.A. Enhancing soil biophysical condition for climate-resilient restoration in Mesic woodlands. Ecol. Eng. 2014, 71, 246–255. [Google Scholar] [CrossRef]
- Githinji, L. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch. Agron. Soil Sci. 2014, 60, 457–470. [Google Scholar] [CrossRef]
- Busscher, W.J.; Novak, J.M.; Evans, D.E.; Watts, D.W.; Niandou, M.A.S.; Ahmedna, M. Influence of pecan biochar on physical properties of a Norfolk loamy sand. Soil Sci. 2010, 175, 10–14. [Google Scholar] [CrossRef]
- Aharoni, C. The solid–liquid interface in capillary condensation. Sorption of water by active carbons. Langmuir 1997, 13, 1270–1273. [Google Scholar] [CrossRef]
- Verheijen, F.G.; Jeffery, S.; Bastos, A.C.; van der Velde, M.; Diafas, I. Biochar Application to Soils. EUR 24099 EN.; Office for the Official Publications of the European Communities: Luxembourg, 2010. [Google Scholar] [CrossRef]
- Spokas, K.A.; Novak, J.M.; Masiello, C.A.; Johnson, M.G.; Colosky, E.C.; Ippolito, J.A.; Trigo, C. Physical disintegration of Biochar: An overlooked process. Environ. Sci. Technol. Lett. 2014, 1, 326–333. [Google Scholar] [CrossRef]
- Joseph, S.; Graber, E.R.; Chia, C.; Munroe, P.; Donne, S.; Thomas, T.; Nielsen, S.; Marjo, C.; Rutlidge, H.; Pan, G.X.; et al. Shifting paradigms: Development of high-efficiency biochar-based fertilizers based on nano-structures and soluble components. Carbon Manag. 2013, 4, 323–343. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Briggs, C.; Breiner, J.M.; Graham, R.C. Physical and chemical properties of Pinus ponderosa charcoal: Implications for soil modification. Soil Sci. 2012, 177, 263–268. [Google Scholar] [CrossRef]
- DeBano, L. The role of fire and soil heating on water repellency in wildland environments: A review. J. Hydrol. 2000, 231–232, 195–206. [Google Scholar] [CrossRef]
- Kinney, T.J.; Masiello, C.A.; Dugan, B.; Hockaday, W.C.; Dean, M.R.; Zygourakis, K.; Barnes, R.T. Hydrologic properties of biochars produced at different temperatures. Biomass Bioenergy 2012, 41, 34–43. [Google Scholar] [CrossRef]
- Gray, M.; Johnson, M.G.; Dragila, M.I.; Kleber, M. Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass Bioenergy 2014, 61, 196–205. [Google Scholar] [CrossRef]
- Dekker, L.W.; Jungerius, P.D. Water repellency in the dunes with special reference to the Netherlands. Catena 1990, 18, 173–183. [Google Scholar]
- Page-Dumroese, D.; Robichaud, P.R.; Brown, R.E.; Tirocke, J.M. Water repellency of two forest soils after biochar addition. Trans. ASABE 2015, 58, 335–342. [Google Scholar]
- Hussain, R.; Ravi, K.; Garg, A. Influence of Biochar on the soil water retention characteristics (SWRC): Potential application in geotechnical engineering structures. Soil Tillage Res. 2020, 204, 104713. [Google Scholar] [CrossRef]
- Baronti, S.; Vaccari, F.P.; Miglietta, F.; Calzolari, C.; Lugato, E.; Orlandini, S.; Pini, R.; Zulian, C.; Genesio, L. Impact of biochar application on plant water relations in Vitis vinifera (L.). Eur. J. Agron. 2014, 53, 38–44. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Wu, Y.; Wang, X.; Du, Z.; Liu, X.; Song, J. Effects of biochar amendment on soil thermal conductivity, reflectance, and temperature. Soil Sci. Soc. Am. J. 2013, 77, 1478–1487. [Google Scholar] [CrossRef]
- Usowicz, B.; Lipiec, J.; Lukowski, M.; Marczewski, W.; Usowicz, J. The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow. Soil Tillage Res. 2016, 164, 45–51. [Google Scholar] [CrossRef]
- Ventura, F.; Salvatorelli, F.; Piana, S.; Pieri, L.; Pisa, P.R. The effects of Biochar on the physical properties of bare soil. Earth Environ. Sci. Trans. R. Soc. Edinb. 2012, 103, 5–11. [Google Scholar] [CrossRef]
- Verheijen, F.G.; Jeffery, S.; van der Velde, M.; Penížek, V.; Beland, M.; Bastos, A.C.; Keizer, J.J. Reductions in soil surface albedo as a function of biochar application rate: Implications for global radiative forcing. Environ. Res. Lett. 2013, 8, 044008. [Google Scholar] [CrossRef] [Green Version]
- Gopinath, A.; Divyapriya, G.; Srivastava, V.; Laiju, A.R.; Nidheesh, P.V.; Kumar, M.S. Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment. Environ. Res. 2021, 194, 110656. [Google Scholar] [CrossRef]
- Alghamdi, A.G. Biochar as a potential soil additive for improving soil physical properties—A review. Arab. J. Geosci. 2018, 11, 1–16. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Fosu, M.; Ajayi, A.E.; van de Giesen, N. Effects of charcoal production on yield, chemical properties and texture of soil. Biol. Fertil. Soils 2004, 39, 295–299. [Google Scholar] [CrossRef]
Soil Texture | Pyrolysis Temp °C | Biochar Feedstock | Soil Water Retention (SWRC) | References |
---|---|---|---|---|
Sand | 350,600 | Pinewood, Pine bark | Increased | [65] |
Silty sand | 500 | Peanut-shell | Increased | [66] |
Sandy Clay | 300−350 | Water hyacinth | Increased | [67] |
Kaolin clay | 500 | Peanut-shell | Increased | [68] |
Sandy clay loam, Loam | 450 | Miscanthus sp. | Increased | [69] |
Sand | 400 | Mesquite | Increased | [28] |
Soil Textural | Type of Study | Duration of Study | Type of Feedstock | Biochar Application Rate | K (cm h−1) | References |
---|---|---|---|---|---|---|
Silty clay soil | I | 105 days | Leucaena leuco cephala | 0% | 16.7 a | [24] |
2.5% | 30.0 b | |||||
5% | 33.1 c | |||||
0 | 0.59 b | [71] | ||||
4 Mg ha−1 | 0.89 b | |||||
Clay loam soil | F | 1 year | Wood | 8 Mg ha−1 | 0.77 b | [72] |
16 Mg ha−1 | 1.63 a | |||||
Sandy loam soil | F | 30 months | Acacia green waste | 0% | 4.85 a | [73] |
0.50% | 4.80 a | |||||
Sandy loam | C | 5 weeks | Conocarpus wastes | 1% | 4.47 b | |
1.5% | 4.31 c | |||||
2% | 4.12 d | |||||
Loamy soil | F | 30 months | Miscanthus sp. | 0, 3.5, and 10 Mg ha−1 | Ns | [69] |
Sandy loam soil. | 15 months | 0, 10, and 20 Mg ha−1 | Ns |
Soil Texture | Type of Study | Duration of Study | Type of Feedstock | Biochar Application Rate | Water Infiltration (mL min−1) | References |
---|---|---|---|---|---|---|
Clay loam | P | Two years | Plant residues | 0 and 20 Mg ha−1 | Increased | [90] |
Sandy loamy | I | 128 days | Pine chips and poultry litter (50:50) and (80:20) 100% poultry litter 100% pine chips | 0% | 0.086 b | [89] |
2% | 0.0168 a | |||||
2% | 0.110 b | |||||
2% | 0.047 b | |||||
2% | 0.119 b | |||||
Loamy sand | I | 96 days | Pecan | 0, 11, 22, and 44 Mg ha−1 | Not significant | [92] |
Sandy loamy | P | 5 weeks | Wood | 0% | 0.763 a | [73] |
0.5% | 0.761 a | |||||
1% | 0.548 c | |||||
1.5% | 0.564 b | |||||
2% | 0.534 d | |||||
Sandy loamy | G | <2 months | Peanut hulls | 0, 25, 50, 75, and 100% by volume | Decreased | [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad Bhat, S.; Kuriqi, A.; Dar, M.U.D.; Bhat, O.; Sammen, S.S.; Towfiqul Islam, A.R.M.; Elbeltagi, A.; Shah, O.; AI-Ansari, N.; Ali, R.; et al. Application of Biochar for Improving Physical, Chemical, and Hydrological Soil Properties: A Systematic Review. Sustainability 2022, 14, 11104. https://doi.org/10.3390/su141711104
Ahmad Bhat S, Kuriqi A, Dar MUD, Bhat O, Sammen SS, Towfiqul Islam ARM, Elbeltagi A, Shah O, AI-Ansari N, Ali R, et al. Application of Biochar for Improving Physical, Chemical, and Hydrological Soil Properties: A Systematic Review. Sustainability. 2022; 14(17):11104. https://doi.org/10.3390/su141711104
Chicago/Turabian StyleAhmad Bhat, Shakeel, Alban Kuriqi, Mehraj U. Din Dar, Owais Bhat, Saad Sh. Sammen, Abu Reza Md. Towfiqul Islam, Ahmed Elbeltagi, Owais Shah, Nadhir AI-Ansari, Rawshan Ali, and et al. 2022. "Application of Biochar for Improving Physical, Chemical, and Hydrological Soil Properties: A Systematic Review" Sustainability 14, no. 17: 11104. https://doi.org/10.3390/su141711104
APA StyleAhmad Bhat, S., Kuriqi, A., Dar, M. U. D., Bhat, O., Sammen, S. S., Towfiqul Islam, A. R. M., Elbeltagi, A., Shah, O., AI-Ansari, N., Ali, R., & Heddam, S. (2022). Application of Biochar for Improving Physical, Chemical, and Hydrological Soil Properties: A Systematic Review. Sustainability, 14(17), 11104. https://doi.org/10.3390/su141711104