The Spatiotemporal Change of Xiao Qaidam Lake from 1990 to 2020 and Its Potential Hazards
Abstract
:1. Introduction
2. Research Area
3. Materials and Methods
3.1. Data
3.2. Methods
3.2.1. Extraction of Lake Water Area
3.2.2. Calculation of Lake Water Volume Change and Simulation of Inundation Range
3.2.3. Potential Evapotranspiration Calculation
3.2.4. Assumptions and Limitations
4. Results
4.1. Spatiotemporal Variation Characteristics of Xiao Qaidam Lake
4.2. Changes in Water Level and Volume of Xiao Qaidam Lake
4.3. Simulation of the Future Evolution of Xiao Qaidam Lake
5. Discussions
5.1. The Causes of Changes in Xiao Qaidam Lake
5.2. Potential Hazards and Prevention Measures
5.3. Similarities and Differences between Lakes
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.M.; Dou, H.S. Records of Chinese Lakes; Science Press: Beijing, China, 1998; pp. 44–67. [Google Scholar]
- Williamson, C.E.; Saros, J.E.; Vincent, W.F.; Smol, J.P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef]
- Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Mason, I.M.; Guzkowska, M.A.J.; Rapley, C.G.; Street-Perrot, F.A. The response of lake levels and areas to climatic change. Clim. Change 1994, 27, 161–197. [Google Scholar] [CrossRef]
- Shao, Z.; Meng, X.; Zhu, D.; Zheng, D.; Qiao, Z.; Yang, C.; Han, J.E.; Jia, Y.; Meng, Q.; Lü, R. Characteristics of the change of major lakes on the Qinghai-Tibet Plateau in the last 25 years. Front. Earth Sci. China 2008, 2, 364–377. [Google Scholar] [CrossRef]
- The Climate Change Center in China Meteorological Administration. Blue Book on Climate Change in China 2021; Science Press: Beijing, China, 2021. [Google Scholar]
- Li, L.; Li, H.M.; Shen, H.Y.; Liu, C.H.; Ma, Y.C.; Zhao, Y.C. The truth and inter-annual oscillation causes for climate change in the Qinghai-Tibet Plateau. J. Glaciol. Geocryol. 2018, 40, 1079–1089. [Google Scholar] [CrossRef]
- Yang, Y.X.; Hu, Z.Y.; Lu, F.Q.; Cai, Y.; Yu, H.P.; Guo, R.X.; Fu, C.W.; Fan, W.W.; Wu, D. Progress of recent 60 years’ climate change and its environmental impacts on the Qinghai-Xizang Plateau. Plateau Meteorol. 2022, 41, 1–10. [Google Scholar] [CrossRef]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, K.M.; Lettenmaier, D.; Mosbrugger, V. Recent Third Pole’ s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Wang, N.L.; Yao, T.D.; Xu, B.Q.; Chen, A.A.; Wang, W.C. Spatiotemporal pattern, trend, and influence of glacier change in Tibetan Plateau and surroundings under global warming. Bull. Chin. Acad. Sci. 2019, 34, 1220–1232. [Google Scholar] [CrossRef]
- Su, B.; Xiao, C.; Chen, D.; Huang, Y.; Che, Y.; Zhao, H.; Zou, M.; Guo, R.; Wang, X.; Li, X.; et al. Glacier change in China over past decades: Spatiotemporal patterns and influencing factors. Earth-Sci. Rev. 2022, 226, 103926. [Google Scholar] [CrossRef]
- Cheng, G.D.; Zhao, L.; Li, R.; Wu, X.D.; Sheng, Y.; Hu, G.J.; Zhou, D.F.; Jing, H.J.; Li, X.; Wu, Q.B. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chin. Sci. Bull. 2019, 64, 2783–2795. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Zhang, G.; Yang, Y.; Liu, C.; Yang, K.; Qiao, B.; Han, B. Lake variations on Tibetan Plateau of recent 40 years and future changing tendency. Bull. Chin. Acad. Sci. 2019, 34, 1254–1263. [Google Scholar] [CrossRef]
- Zhang, G.; Luo, W.; Chen, W.; Zheng, G. A robust but variable lake expansion on the Tibetan Plateau. Sci. Bull. 2019, 64, 1306–1309. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Wang, M.M.; Zhou, T.; Chen, W.F. Progress in remote sensing monitoring of lake area, water level, and volume changes on the Tibetan Plateau. Natl. Remote Sens. Bull. 2022, 26, 115–125. [Google Scholar] [CrossRef]
- Qi, M.M.; Yao, X.J.; Liu, S.Y.; Zhu, Y.; Gao, Y.P.; Liu, B.K. Dynamic change of Lake Qinghai shoreline from 1973 to 2018. J. Lake Sci. 2020, 32, 573–586. [Google Scholar] [CrossRef]
- Zhu, L.P.; Ju, J.T.; Qiao, B.J.; Yang, R.M.; Liu, C.; Han, B.P. Recent lake changes of the Asia Water Tower and their climate response: Progress, problems and prospects. Chin. Sci. Bull. 2019, 64, 2796–2806. [Google Scholar] [CrossRef]
- Duan, H.T.; Cao, Z.G.; Shen, M.; Ma, J.G.; Qi, T.C. Review of lake remote sensing research. Natl. Remote Sens. Bull. 2022, 26, 3–18. [Google Scholar] [CrossRef]
- Yao, X.; Sun, M.; Gong, P.; Liu, B.; Li, X.; Lina, A.N.; Yan, L. Overflow probability of the Salt Lake in Hoh Xil Region. J. Geogr. Sci. 2018, 28, 647–655. [Google Scholar] [CrossRef]
- Liu, B.K.; Li, L.; Du, Y.E.; Liang, T.G.; Duan, S.Q.; Hou, F.J.; Ren, J.Z. Causes of the outburst of Zonag Lake in Hoh Xil, Tibetan Plateau, and its impact on surrounding environment. J. Glaciol. Geocryol. 2016, 38, 305–311. [Google Scholar] [CrossRef]
- Liu, W.H.; Xie, C.W.; Wang, W.; Zhang, Y.X.; Yang, G.Q.; Liu, G.Y. Analysis on expansion trend and outburst risk of the Yanhu Lake in Hoh Xil region, Qinghai-Tibet Plateau. J. Glaciol. Geocryol. 2019, 41, 1467–1474. [Google Scholar] [CrossRef]
- Cai, B.; Tao, Y.Y.; Du, J.; Huang, P.; Wang, W. Hazard assessment of debris flow triggered by outburst of Jialong Glacial Lake in Nyalam County, Tibet. Earth Science 2020, 45, 4630–4639. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, C.H.; Liu, K.; Wu, J.S.; Fan, C.Y.; Xue, B.; Ma, R.H.; Song, C.Q. Potential impact of the dramatical expansion of Lake Qinghai on the habitat facilities and grassland since 2004. J. Lake Sci. 2021, 33, 922–934. [Google Scholar] [CrossRef]
- Liu, K.; Ke, L.H.; Wang, J.D.; Jiang, L.; Richards, K.S.; Sheng, Y.W.; Zhu, Y.Q.; Fan, C.Y.; Zhan, P.F.; Luo, S.X.; et al. Ongoing drainage reorganization driven by rapid lake growths on the Tibetan Plateau. Geophys. Res. Lett. 2021, 48. [Google Scholar] [CrossRef]
- Duan, S.Q. Lake evolution in the Qaidam Basin during 1976-2015 and their changes in response to climate and anthropogenic factors. J. Lake Sci. 2018, 30, 256–265. [Google Scholar] [CrossRef]
- Du, Y.E.; Liu, B.K.; He, W.G.; Zhou, J.P.; Duan, S.Q. Analysis on the variation and cause of the lake area in Qaidam Basin from 1976 to 2017. J. Glaciol. Geocryol. 2018, 40, 1275–1284. [Google Scholar] [CrossRef]
- Yan, L.J.; Zheng, M.P.; Yuan, Z.J. Influence of climate change on salt lakes in Qinghai Province and their mineral resources exploitation in the past forty years: A case study of Xiao Qaidam Lake. Miner. Depos. 2014, 33, 921–929. [Google Scholar] [CrossRef]
- Zhang, G.Q. The Lakes Larger than 1 km2 in Tibetan Plateau (V3.0) (1970s-2021); National Tibetan Plateau Data Center: Beijing, China, 2021. [Google Scholar] [CrossRef]
- Xu, H.J.; Yang, T.B. Climate factors change and its impact on lake area and vegetation growth in the Qaidam Basin during 1981–2010. Adv. Earth Sci. 2013, 32, 868–879. [Google Scholar] [CrossRef]
- Lu, N. Changes of lake area in Qaidam basin and the influence factors. J. Arid Land Resour. Environ. 2014, 28, 83–87. [Google Scholar] [CrossRef]
- Wei, S.R.; Jin, X.M.; Wang, K.L. Response of lake area variation to climate change in Qaidam Basin based on remote sensing. Earth Sci. Front. 2017, 24, 427–433. [Google Scholar] [CrossRef]
- Wang, Y.H.; Liu, Y.X.; Liu, H.H.; Liu, X.L.; Lu, Z.K.; Li, J. Chemical composition and heavy metal distribution in surface water of typical inland rivers in Qinghai. Chin. J. Ecol. 2018, 37, 734–742. [Google Scholar] [CrossRef]
- Lv, S.C.; E, C.Y.; Sun, Y.J.; Zhang, J.; Zhao, Y.J.; Yang, L. Grain size distribution characteristics of surface sediments in Xiao Qaidam Lake. J. Earth Environ. 2017, 8, 427–438. [Google Scholar] [CrossRef]
- Xu, F.L.; Zhang, G.Q. Lake-Level over the Tibetan Plateau Using Multi-Sensor Satellite Altimetry Data (2010–2020); National Tibetan Plateau Data Center: Beijing, China, 2021. [Google Scholar] [CrossRef]
- Liao, J.J.; Xue, H.; Chen, J.M. Monitoring lake level changes on the Tibetan Plateau from 2000 to 2018 using satellite altimetry data. J. Remote Sens. 2020, 24, 1534–1547. [Google Scholar] [CrossRef]
- Kleinherenbrink, M.; Ditmar, P.G.; Lindenbergh, R.C. Retracking Cryosat data in the SARIn mode and robust lake level extraction. Remote Sens. Environ. 2014, 152, 38–50. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, G.; Yi, S.; Chen, W. Seasonal trends and cycles of lake-level variations over the Tibetan Plateau using multi-sensor altimetry data. J. Hydrol. 2022, 604, 127251. [Google Scholar] [CrossRef]
- Mcfeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H.Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI). J. Remote Sens. 2005, 9, 589–595. [Google Scholar]
- Yan, P.; Zhang, Y.J.; Zhang, Y. A study on information extraction of water system in semi-arid regions with the enhanced water index (EWI) and GIS based noise remove techniques. Remote Sens. Inf. 2007, 6, 62–67. [Google Scholar]
- Ding, F. A new method for fast information extraction of water bodies using remotely sensed data. Remote Sens. Technol. Appl. 2009, 24, 167–171. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Xie, H.J.; Yao, T.D.; Kang, S.C. Water balance estimates of ten greatest lakes in China using ICESat and Landsat data. Chin. Sci. Bull. 2013, 58, 2664–2678. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Shum, C.K.; Yi, S.; Yang, K.; Xie, H.; Feng, W.; Bolch, T.; Wang, L.; Ali, B.; et al. Lake volume and groundwater storage variations in Tibetan Plateau’ s endorheic basin. Geophys. Res. Lett. 2017, 44, 5550–5560. [Google Scholar] [CrossRef]
- Yang, R.; Zhu, L.; Wang, J.; Ju, J.; Ma, Q.; Turner, F.; Guo, Y. Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013. Clim. Change 2017, 140, 621–633. [Google Scholar] [CrossRef]
- Cook, S.J.; Quincey, D.J. Estimating the volume of Alpine glacial lakes. Earth Surf. Dynam. 2015, 3, 909–940. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998. [Google Scholar]
- Zhu, L.P.; Xie, M.P.; Wu, Y.H. Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co Basin of the Tibetan Plateau. Chin. Sci. Bull. 2010, 55, 1789–1798. [Google Scholar] [CrossRef]
- Li, W.C.; Li, S.J.; Pu, P.M. Estimates of plateau lake evaporation: A case study of Zige Tangco. J. Lake Sci. 2001, 13, 227–232. [Google Scholar] [CrossRef]
- Dong, S.Y.; Xue, X.; You, Q.G.; Peng, F. Remote sensing monitoring of the lake area changes in the Qinghai-Tibet Plateau in recent 40 years. J. Lake Sci. 2014, 26, 535–544. [Google Scholar] [CrossRef]
- Zhou, T.J.; Zhang, W.X.; Long, C.X.; Zhang, L.X.; Zhou, L.W.; Man, W.M. The near-term, mid-term and long-term projections of temperature and precipitation changes over the Tibetan Plateau and the sources of uncertainties. J. Meteorol. Sci. 2020, 40, 697–710. [Google Scholar] [CrossRef]
- Lun, Y.; Liu, L.; Cheng, L.; Li, X.; Li, H.; Xu, Z. Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. Int. J. Climatol. 2021, 41, 3994–4018. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Lun, Y.R.; Liu, L.; Liu, Y.X.; Li, X.; Xu, Z.X. CMIP6 evaluation and projection of climate change in Tibetan Plateau. J. Beijing Norm. Univ. Nat. Sci. 2022, 58, 77–89. [Google Scholar] [CrossRef]
- Wang, C.H.; Zhang, S.N.; Zhang, F.M.; Li, K.C.; Yang, K. On the increase of precipitation in the Northwestern China under the global warming. Adv. Earth Sci. 2021, 36, 980–989. [Google Scholar] [CrossRef]
- Li, M.; Sun, H.; Su, Z. Research progress in dry/wet climate variation in Northwest China. Geogr. Res. 2021, 40, 1180–1194. [Google Scholar] [CrossRef]
- Ran, Y.H.; Li, X.; Cheng, G.D.; Nan, Z.T.; Che, J.X.; Sheng, Y.; Wu, Q.B.; Jin, H.J.; Luo, D.L.; Tang, Z.G.; et al. Mapping the permafrost stability on the Tibetan Plateau for 2005–2015. Sci. China Earth Sci. 2021, 64, 62–79. [Google Scholar] [CrossRef]
- Li, H.R. Glacier Variation in Tergun Daba Qilian Mountains in the Past 30 Years. Master’s Thesis, Lanzhou University, Lanzhou, China, 2018. [Google Scholar]
- Wang, Y.Z.; Li, J.; Wu, L.X.; Guo, L.; Li, J.J. Using remote sensing images to monitor the glacier changes in Qilian Mountains during 1987–2018 and analyzing the impact factors. J. Glaciol. Geocryol. 2020, 42, 344–356. [Google Scholar] [CrossRef]
- Chen, D.D.; Zhao, J. Spatial–temporal variations of lake area in arid region of Northwest China. Remote Sens. Technol. Appl. 2017, 32, 1114–1125. [Google Scholar] [CrossRef]
- Yao, X.J.; Liu, S.Y.; Li, L.; Sun, M.P.; Luo, J.; Feng, Y.Y. Spatial-temporal variations of lake area in Hoh Xil region in the past 40 years. Acta Geogr. Sin. 2013, 68, 886–896. [Google Scholar]
- Duan, H.; Yao, X.; Zhang, D.; Jin, H.; Wei, Q. Long-Term temporal and spatial monitoring of Cladophora blooms in Qinghai Lake based on multi-source remote sensing images. Remote Sens. 2022, 14, 853. [Google Scholar] [CrossRef]
Image Type | Date | Area/km2 | Image Type | Date | Area/km2 | Area Error (%) |
---|---|---|---|---|---|---|
GF1 | 2013/10/29(29 October 2013) | 93.83 | LC8 | 14 October 2013 | 92.18 | 1.79 |
GF1 | 4 March 2014 | 92.2 | LC8 | 23 March 2014 | 91.46 | 0.81 |
GF1 | 25 September 2014 | 87.31 | LE7 | 7 September 2014 | 85.55 | 2.06 |
GF1 | 5 November 2014 | 85.07 | LC8 | 2 November 2014 | 84.00 | 1.27 |
GF1 | 29 September 2015 | 88.81 | LC8 | 18 September 2015 | 88.43 | 0.43 |
GF1 | 30 January 2016 | 86.26 | LC8 | 24 January 2016 | 86.36 | −0.12 |
GF1 | 11 March 2016 | 86.36 | LC8 | 28 March 2016 | 83.61 | 3.29 |
GF1 | 27 December 2017 | 105.03 | LC8 | 12 December 2017 | 105.00 | 0.03 |
GF1 | 4 January 2018 | 105.45 | LC8 | 13 January 2018 | 104.16 | 1.24 |
GF1 | 10 February 2019 | 125.05 | LE7 | 25 February 2019 | 124.88 | 0.14 |
GF6 | 12 October 2019 | 132.47 | LE7 | 7 October 2019 | 130.72 | 1.34 |
GF6 | 26 November 2019 | 132.06 | LE7 | 24 November 2019 | 130.63 | 1.09 |
GF6 | 19 October 2020 | 128.5 | LC8 | 17 October 2020 | 128.37 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yao, X.; Hu, N.; Sha, T.; Chu, X. The Spatiotemporal Change of Xiao Qaidam Lake from 1990 to 2020 and Its Potential Hazards. Sustainability 2022, 14, 11372. https://doi.org/10.3390/su141811372
Wang Y, Yao X, Hu N, Sha T, Chu X. The Spatiotemporal Change of Xiao Qaidam Lake from 1990 to 2020 and Its Potential Hazards. Sustainability. 2022; 14(18):11372. https://doi.org/10.3390/su141811372
Chicago/Turabian StyleWang, Yu, Xiaojun Yao, Na Hu, Te Sha, and Xinde Chu. 2022. "The Spatiotemporal Change of Xiao Qaidam Lake from 1990 to 2020 and Its Potential Hazards" Sustainability 14, no. 18: 11372. https://doi.org/10.3390/su141811372
APA StyleWang, Y., Yao, X., Hu, N., Sha, T., & Chu, X. (2022). The Spatiotemporal Change of Xiao Qaidam Lake from 1990 to 2020 and Its Potential Hazards. Sustainability, 14(18), 11372. https://doi.org/10.3390/su141811372