Bioconversion of Starch Base Food Waste into Bioethanol
Abstract
:1. Introduction
2. Bioethanol Production on Starch-Based Food Wastes
3. Pretreatment
4. Starch Hydrolysis
5. Fermentation
6. Methodologies for Enhanced Bioethanol Production
7. Separate Hydrolysis and Fermentation
8. Simultaneous Saccharification and Fermentation
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abinaya, S.; Mounika, D.S.; Suganya, A. Bioconversion of food waste into ethanol using enzymatic Hydrolyzation—Mini review. J. Emerg. Technol. Innov. Res. 2020, 7, 819–823. [Google Scholar]
- Mutreja, R.; Das, D.; Goyal, D.; Goyal, A. Bioconversion of agricultural waste to ethanol by SSF using recombinant cellulase from Clostridium thermocellum. Enzym. Res. 2011, 2011, 340279. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, G.; Woolley, E.; Rahimifard, S.; Colwill, J.; White, R.; Needham, L. A methodology for sustainable management of food waste. Waste Biomass Valorization 2017, 8, 2209–2227. [Google Scholar] [CrossRef] [PubMed]
- FAO. Towards the Future We Want: End Hunger and Make the Transition to Sustainable Agricultural and Food Systems; FAO: Rome, Italy, 2012. [Google Scholar]
- European Commission. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment. Available online: https://ec.europa.eu/research/bioeconomy/pdf/ec_bioeconomy_strategy_2018.pdf (accessed on 28 July 2021).
- Carmona-Cabello, M.; García, I.; Sáez-Bastante, J.; Pinzi, S.; Koutinas, A.; Dorado, M. Food waste from restaurant sector–Characterization for biorefinery approach. Bioresour. Technol. 2020, 301, 122779. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Hrůzová, K.; Rova, U.; Christakopoulos, P.; Matsakas, L. Sustainable biorefinery concept for biofuel production through holistic volarization of food waste. Bioresour. Technol. 2019, 294, 122247. [Google Scholar] [CrossRef]
- Bibra, M.; Rathinam, N.K.; Johnson, G.R.; Sani, R.K. Single pot biovalorization of food waste to ethanol by Geobacillus and Thermoanaerobacter spp. Renew. Energy 2020, 155, 1032–1041. [Google Scholar] [CrossRef]
- Ntaikou, I.; Menis, N.; Alexandropoulou, M.; Antonopoulou, G.; Lyberatos, G. Valorization of kitchen biowaste for ethanol production via simultaneous saccharification and fermentation using co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Bioresour. Technol. 2018, 263, 75–83. [Google Scholar] [CrossRef]
- Prasoulas, G.; Gentikis, A.; Konti, A.; Kalantzi, S.; Kekos, D.; Mamma, D. Bioethanol production from food waste applying the multienzyme system produced on-site by Fusarium oxysporum F3 and mixed microbial cultures. Fermentation 2020, 6, 39. [Google Scholar] [CrossRef]
- Rijal, M. Bioethanol from sago waste fermented by baker’s and tapai yeast as a renewable energy source. bioRxiv 2020. [Google Scholar] [CrossRef]
- Shang, Y.; Su, R.; Huang, R.; Yang, Y.; Qi, W.; Li, Q.; He, Z. Recycling cellulases by pH-triggered adsorption-desorption during the enzymatic hydrolysis of lignocellulosic biomass. Appl. Microbiol. Biotechnol. 2014, 98, 5765–5774. [Google Scholar] [CrossRef]
- Yan, L.; Greenwood, A.A.; Hossain, A.; Yang, B. A comprehensive mechanistic kinetic model for dilute acid hydrolysis of switchgrass cellulose to glucose, 5-HMF and levulinic acid. Rsc Adv. 2014, 4, 23492–23504. [Google Scholar] [CrossRef]
- Hafid, H.S.; Nor’Aini, A.R.; Mokhtar, M.N.; Talib, A.T.; Baharuddin, A.S.; Kalsom, M.S.U. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment. Waste Manag. 2017, 67, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Saono, S.; Gandjar, I.; Basuki, T. Indigenous fermented foods in which ethanol is a major product. In Handbook of Indigenous Fermented Foods; Steinkraus, K.H., Ed.; Marcel Dekker: New York, NY, USA, 1996; pp. 363–508. [Google Scholar]
- Xie, M.; An, F.; Zhao, Y.; Wu, R.; Wu, J. Metagenomic analysis of bacterial community structure and functions during the fermentation of da-jiang, a Chinese traditional fermented food. Lwt 2020, 129, 109450. [Google Scholar] [CrossRef]
- United-Nations. General Assembly Resolution 70/1: Transforming our world: The 2030 Agenda for Sustainable Development. Seventieth United Nations Gen. Assem. New York 2015, 25, 86–97. [Google Scholar]
- Kiran, E.U.; Trzcinski, A.P.; Ng, W.J.; Liu, Y. Bioconversion of food waste to energy: A review. Fuel 2014, 134, 389–399. [Google Scholar] [CrossRef]
- Barampouti, E.M.; Mai, S.; Malamis, D.; Moustakas, K.; Loizidou, M. Liquid biofuels from the organic fraction of municipal solid waste: A review. Renew. Sustain. Energy Rev. 2019, 110, 298–314. [Google Scholar] [CrossRef]
- Padella, M.; O’Connell, A.; Prussi, M. What is still limiting the deployment of cellulosic ethanol? Analysis of the current status of the sector. Appl. Sci. 2019, 9, 4523. [Google Scholar] [CrossRef]
- Wan, Y.K.; Sadhukhan, J.; Ng, D.K. Techno-economic evaluations for feasibility of sago-based biorefinery, Part 2: Integrated bioethanol production and energy systems. Chem. Eng. Res. Des. 2016, 107, 102–116. [Google Scholar] [CrossRef]
- Lima, C.O.d.C.; Vaz, A.B.; De Castro, G.M.; Lobo, F.; Solar, R.; Rodrigues, C.; Pinto, L.R.M.; Vandenberghe, L.; Pereira, G.; da Costa, A.M. Integrating microbial metagenomics and physicochemical parameters and a new perspective on starter culture for fine cocoa fermentation. Food Microbiol. 2021, 93, 103608. [Google Scholar] [CrossRef]
- Song, Q.; Zhao, F.; Wang, B.; Han, Y.; Zhou, Z. Metagenomic insights into Chinese northeast suancai: Predominance and diversity of genes associated with nitrogen metabolism in traditional household suancai fermentation. Food Res. Int. 2021, 139, 109924. [Google Scholar] [CrossRef]
- Soyuçok, A.; Yurt, M.N.Z.; Altunbas, O.; Ozalp, V.C.; Sudagidan, M. Metagenomic and chemical analysis of Tarhana during traditional fermentation process. Food Biosci. 2021, 39, 100824. [Google Scholar] [CrossRef]
- Robak, K.; Balcerek, M. Review of second generation bioethanol production from residual biomass. Food Technol. Biotechnol. 2018, 56, 174. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Yang, Y.; Liu, C.-G.; Yang, S.; Bai, F.-W. Engineering Zymomonas mobilis for robust cellulosic ethanol production. Trends Biotechnol. 2019, 37, 960–972. [Google Scholar] [CrossRef]
- Cao, L.; Tang, X.; Zhang, X.; Zhang, J.; Tian, X.; Wang, J.; Xiong, M.; Xiao, W. Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose. Metab. Eng. 2014, 24, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Barbhuiya, R.I.; Singha, P.; Singh, S.K. A comprehensive review on impact of non-thermal processing on the structural changes of food components. Food Res. Int. 2021, 149, 110647. [Google Scholar] [CrossRef]
- Mojović, L.; Pejin, D.; Grujić, O.; Markov, S.; Pejin, J.; Rakin, M.; Vukašinović, M.; Nikolić, S.; Savić, D. Progress in the production of bioethanol on starch-based feedstocks. Chem. Ind. Chem. Eng. Q./CICEQ 2009, 15, 211–226. [Google Scholar] [CrossRef]
- Kolusheva, T.; Marinova, A. A study of the optimal conditions for starch hydrolysis through thermostable α-amylase. J. Univ. Chem. Technol. Metall. 2007, 42, 93–96. [Google Scholar]
- Sasmal, S.; Mohanty, K. Advance in Bioethanol Technology: Production and Characterization. In Liquid Biofuels: Fundamentals, Characterization, and Applications; Wiley: Hoboken, NJ, USA, 2021; pp. 215–230. [Google Scholar]
- Kumar, V.; Ahluwalia, V.; Saran, S.; Kumar, J.; Patel, A.K.; Singhania, R.R. Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresour. Technol. 2021, 323, 124566. [Google Scholar] [CrossRef]
- Kawai, M.; Nagao, N.; Tajima, N.; Niwa, C.; Matsuyama, T.; Toda, T. The effect of the labile organic fraction in food waste and the substrate/inoculum ratio on anaerobic digestion for a reliable methane yield. Bioresour. Technol. 2014, 157, 174–180. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Q.; Yu, M.; Zhang, X.; Song, N.; Chang, Q.; Gao, M.; Sonomoto, K. Effect of ethanol pre-fermentation and inoculum-to-substrate ratio on methane yield from food waste and distillers’ grains. Appl. Energy 2015, 155, 846–853. [Google Scholar] [CrossRef]
- Gomes, D.; Cruz, M.; de Resende, M.; Ribeiro, E.; Teixeira, J.; Domingues, L. Very high gravity bioethanol revisited: Main challenges and advances. Fermentation 2021, 7, 38. [Google Scholar] [CrossRef]
- Anwar Saeed, M.; Ma, H.; Yue, S.; Wang, Q.; Tu, M. Concise review on ethanol production from food waste: Development and sustainability. Environ. Sci. Pollut. Res. 2018, 25, 28851–28863. [Google Scholar] [CrossRef]
- Bai, F.; Anderson, W.; Moo-Young, M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv. 2008, 26, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Faria-Oliveira, F.; Diniz, R.H.; Godoy-Santos, F.; Piló, F.B.; Mezadri, H.; Castro, I.M.; Brandão, R.L. The role of yeast and lactic acid bacteria in the production of fermented beverages in South America. Food Prod. Ind. 2015, 107–135. [Google Scholar] [CrossRef]
- Pretorius, I.S. Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast 2000, 16, 675–729. [Google Scholar] [CrossRef]
- Yadav, S.; Singh, D.; Mohanty, P.; Sarangi, P.K. Biochemical and thermochemical routes of H2 production from food waste: A comparative review. Chem. Eng. Technol. 2021. [Google Scholar] [CrossRef]
- Mohammadipanah, F.; Kazemi Shariat Panahi, H.; Imanparast, F.; Hamedi, J. Development of a reversed-phase liquid chromatographic assay for the quantification of total persipeptides in fermentation broth. Chromatographia 2016, 79, 1325–1332. [Google Scholar] [CrossRef]
- Panahi, H.K.S.; Mohammadipanah, F.; Dehhaghi, M. Optimization of Extraction Conditions for Liquidliquid Extraction of Persipeptides from Streptomyces Zagrosensis Fermentation Broth. Eur. Chem. Bull. 2016, 5, 408–415. [Google Scholar]
- Sajedi, H.; Mohammadipanah, F.; Shariat Panahi, H.K. An image analysis-aided method for redundancy reduction in differentiation of identical Actinobacterial strains. Future Microbiol. 2018, 13, 313–329. [Google Scholar] [CrossRef]
- Singh, V.; Haque, S.; Niwas, R.; Srivastava, A.; Pasupuleti, M.; Tripathi, C. Strategies for fermentation medium optimization: An in-depth review. Front. Microbiol. 2017, 7, 2087. [Google Scholar] [CrossRef]
- Thenmozhi, R.; Victoria, J. Optimization and improvement of ethanol production by the incorporation of organic wastes. Pelagia Res. Libr. 2013, 4, 119–123. [Google Scholar]
- Panahi, H.K.S.; Dehhaghi, M.; Dehhaghi, S.; Guillemin, G.J.; Lam, S.S.; Aghbashlo, M.; Tabatabaei, M. Engineered bacteria for valorizing lignocellulosic biomass into bioethanol. Bioresour. Technol. 2022, 344, 126212. [Google Scholar] [CrossRef] [PubMed]
- Joshi, J.; Dhungana, P.; Prajapati, B.; Maharjan, R.; Poudyal, P.; Yadav, M.; Mainali, M.; Yadav, A.P.; Bhattarai, T.; Sreerama, L. Enhancement of ethanol production in electrochemical cell by Saccharomyces cerevisiae (CDBT2) and Wickerhamomyces anomalus (CDBT7). Front. Energy Res. 2019, 7, 70. [Google Scholar] [CrossRef]
- Ma, K.; Ruan, Z.; Shui, Z.; Wang, Y.; Hu, G.; He, M. Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis. Bioresour. Technol. 2016, 203, 295–302. [Google Scholar] [CrossRef]
- Matsakas, L.; Christakopoulos, P. Ethanol production from enzymatically treated dried food waste using enzymes produced on-site. Sustainability 2015, 7, 1446–1458. [Google Scholar] [CrossRef] [Green Version]
- Kiran, E.U.; Liu, Y. Bioethanol production from mixed food waste by an effective enzymatic pretreatment. Fuel 2015, 159, 463–469. [Google Scholar] [CrossRef]
- Cekmecelioglu, D.; Uncu, O.N. Kinetic modeling of enzymatic hydrolysis of pretreated kitchen wastes for enhancing bioethanol production. Waste Manag. 2013, 33, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.; Vadlani, P.; Madl, R.; Ugorowski, P.; Hohn, K.L. Ethanol fermentation from food processing waste. Environ. Prog. Sustain. Energy 2013, 32, 1280–1283. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.C.; Pak, D. Feasibility of producing ethanol from food waste. Waste Manag. 2011, 31, 2121–2125. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, H.; Xu, W.; Gong, L.; Zhang, W.; Zou, D. Ethanol production from kitchen garbage using response surface methodology. Biochem. Eng. J. 2008, 39, 604–610. [Google Scholar] [CrossRef]
- Ishizaki, H.; Hasumi, K.; Tojo, S.; Hirasawa, T. Research approaches to sustainable biomass systems. In Ethanol Production from Biomass; Academic Press: Cambridge, MA, USA, 2014; pp. 243–258. [Google Scholar]
- Marulanda, V.A.; Gutierrez, C.D.B.; Alzate, C.A.C. Thermochemical, biological, biochemical, and hybrid conversion methods of bio-derived molecules into renewable fuels. In Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts; Elsevier: Amsterdam, The Netherlands, 2019; pp. 59–81. [Google Scholar]
- Diong, K.C.; Ngoh, G.C.; Chua, A.S.M. Transformation of starchy lignocellulosic biomass to ethanol using ragi tapai synergized with microwave irradiation pretreatment. BioResources 2016, 11, 1991–2006. [Google Scholar] [CrossRef]
- Berlowska, J.; Cieciura-Włoch, W.; Kalinowska, H.; Kregiel, D.; Borowski, S.; Pawlikowska, E.; Binczarski, M.; Witonska, I. Enzymatic conversion of sugar beet pulp: A comparison of simultaneous saccharification and fermentation and separate hydrolysis and fermentation for lactic acid production. Food Technol. Biotechnol. 2018, 56, 188. [Google Scholar] [CrossRef] [PubMed]
- Valles, A.; Álvarez-Hornos, F.J.; Martínez-Soria, V.; Marzal, P.; Gabaldón, C. Comparison of simultaneous saccharification and fermentation and separate hydrolysis and fermentation processes for butanol production from rice straw. Fuel 2020, 282, 118831. [Google Scholar] [CrossRef]
Method | Microorganism | Enzyme Used | Process Parameters | Ethanol (g/L) | Reference |
---|---|---|---|---|---|
Simultaneous saccharification and fermentation | S. cerevisiae—Fusarium oxysporum | on-site produced enzymes glucoamylase | Ratio I:FW = 1/10 w/w Ci = 30% w/v pH = 6.0 T = 30 ± 1 °C t = 94 h Agitation = 80 rpm Mode = Batch | 30.8 | [10] |
Open fermentative production | Zymomonas mobilis | Ratio I:FW = 10% v/v Ci = 200 g glucose/L Initial pH = 4 T = 30 °C t = 44–48 h Agitation = 100 rpm Mode = Batch | 99.78 | [48] | |
Separate hydrolysis and fermentation | S. cerevisiae (dry baker’s yeast) | on-site produced enzymes | Ratio I:FW = 15 mg/g solids Ci = 25 g hydrolyzed FW/100 mL pH = 4.5 T = 30 °C t = 48 h Agitation = 100 rpm Mode = N/A | 19.27 | [49] |
Separate hydrolysis and fermentation | S. cerevisiae (dry baker’s yeast) | on-site produced enzymes | Ratio I:FW = 10% v/v Ci = 116 g/L pH = 4.5 T = 30 °C t = 72 h Agitation = 100 rpm | 58.0 | [50] |
Simultaneous saccharification and fermentation | S. cerevisiae (dry baker’s yeast) | Cellulase | Ratio I:FW = 10% v/v Ci = 64.8 ± 1.8 g/L pH = 4.5 T = 30 °C t = 48 h Agitation = 150 rpm | 23.3 | [51] |
Separate hydrolysis and fermentation | S. cerevisiae | Glucoamylase, amylase | Ratio I:FW = 1 mL to 50 mL Ci = 5.4 mg/mL pH = 6 T = 30 °C t = 24 h Agitation = 150 rpm | 8.0 | [52] |
Simultaneous saccharification and fermentation | S. cerevisiae | Carbohydrase, glucoamylase, amylase | Ratio I:FW = N/A Ci = 30 g/L pH = 4.5 T = 35 °C t = 14 days Agitation = N/A | 44 | [53] |
Simultaneous saccharification | S. cerevisiae | Glucoamylase | Mode = Continuous Ratio I:FW = N/A Ci = N/A pH = 4.18 T = 35 °C t = 67.6 h Agitation = N/A Mode = open batch fermentation | 33.05 | [54] |
Food Waste | Pretreatment Method | Fermentation Method | Mixed Culture Name | Main Types of Microorganism | Outcome | Reference |
---|---|---|---|---|---|---|
Food waste, South Dakota, USA | Co-culture of thermophilic microbes in serum bottles, 1 L DASGIP reactor and sequential cultivation | G. thermoglucosidasius (ATCC 43742) and T. ethanolicus (ATCC 31938) | α-amylase and amyloglucosidase activities higher in 1 L DASGIP than serum bottles. Sequential cultivation improved the ethanol yield to 16.1 g/L in 1 L bioreactor with 20% (w/v) of food waste. Scaling up to 40 L gave 18.4 g/L ethanol. 92% recovery of substrate and complete utilisation of sugars. | [8] | ||
Household food waste, Halandri, Greece | 1 g H2SO4/100 g dry food waste | Simultaneous saccharification and fermentation | S. cerevisiae—Fusarium oxysporum | Mixed culture increased bioethanol volumetric productivity compared to monoculture from food waste. Food waste contained 4.96% w/w dry basis of total reducing sugars. Ethanol yield was 20.6 g/L after 42 h. | [10] | |
Coarse fibres of wet solid and dry solid sago waste | Delignification using NaOH and hydrolysis with HCl | Simultaneous saccharification and fermentation | Tapai | High bioethanol content (45.7021% v/v) was produced for wet sago waste with Tapai. | [11] | |
Kitchen food waste, Halandri, Greece | Heat drying (92 °C), shredding, and enzyme treatment (cellulolytic and amylolytic) | Simultaneous saccharification and fermentation | Saccharomyces cerevisiae (CECT 1332) and Pichia stipites (CECT 1922) | The co-culture produced maximum valorisation of the carbohydrates (~40 g/L) from the food waste. The maximum ethanol yield was 0.13 g/g of waste. | [9] | |
Sago waste, Johor, Malaysia | Microwave irradiation (with H2SO4), conventional heating and without pretreatment | Simultaneous saccharification and fermentation | Ragi Tapai | Various strains of fungus, yeast, and bacteria | Simultaneous fermentation converted the unhydrolysed starch into reducing sugar and produced 7.24 g ethanol/100 g sago waste. | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onyeaka, H.; Mansa, R.F.; Wong, C.M.V.L.; Miri, T. Bioconversion of Starch Base Food Waste into Bioethanol. Sustainability 2022, 14, 11401. https://doi.org/10.3390/su141811401
Onyeaka H, Mansa RF, Wong CMVL, Miri T. Bioconversion of Starch Base Food Waste into Bioethanol. Sustainability. 2022; 14(18):11401. https://doi.org/10.3390/su141811401
Chicago/Turabian StyleOnyeaka, Helen, Rachel Fran Mansa, Clemente Michael Vui Ling Wong, and Taghi Miri. 2022. "Bioconversion of Starch Base Food Waste into Bioethanol" Sustainability 14, no. 18: 11401. https://doi.org/10.3390/su141811401
APA StyleOnyeaka, H., Mansa, R. F., Wong, C. M. V. L., & Miri, T. (2022). Bioconversion of Starch Base Food Waste into Bioethanol. Sustainability, 14(18), 11401. https://doi.org/10.3390/su141811401