Quantification and Removal of Volatile Sulfur Compounds (VSCs) in Atmospheric Emissions in Large (Petro) Chemical Complexes in Different Countries of America and Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calibration
2.2. Calibration Curve
2.3. Sampling Points and Sample Collection
2.4. Chemical Analysis
2.5. Validation Method
2.6. Prototype Zeolite Column and Removal of VSCs
3. Results
3.1. Precision, Accuracy, and Linearity of the Chromatographic Method: Intra-Day and Inter-Day/Inter-Country Measures
3.2. Performance Evaluation of Zeolite Filled Column Prototype Using Multiple VSC Standards
3.3. Quantification and Removal of VSCs
3.3.1. Deethanizer Column
3.3.2. Splitter Column
3.4. Industrial Emission Profiles of VSC
3.5. VSCs Removal Efficiency
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kailasa, S.K.; Koduru, J.R.; Vikrant, K.; Tsang, Y.F.; Singhal, R.K.; Hussain, C.M.; Kim, K.-H. Recent progress on solution and materials chemistry for the removal of hydrogen sulfide from various gas plants. J. Mol. Liq. 2020, 297, 111886. [Google Scholar] [CrossRef]
- An, T.; Wan, S.; Li, G.; Sun, L.; Guo, B. Comparison of the removal of ethanethiol in twin-biotrickling filters inoculated with strain RG-1 and B350 mixed microorganisms. J. Hazard. Mater. 2010, 183, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Pavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Arrieta, M. Films Based on Thermoplastic Starch Blended with Pine Resin Derivatives for Food Packaging. Foods 2021, 10, 1171. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-M.; Lin, W.-Y.; Chan, C.-C. The impact of petrochemical industrialisation on life expectancy and per capita income in Taiwan: An 11-year longitudinal study. BMC Public Health 2014, 14, 247. [Google Scholar] [CrossRef]
- Broitman, D.; Portnov, B.A. Forecasting health effects potentially associated with the relocation of a major air pollution source. Environ. Res. 2020, 182, 109088. [Google Scholar] [CrossRef]
- Allison, E.; Mandler, B. Air Quality Impacts of Oil and Gas: Emissions from production, processing, refining, and use. In Petroleum and the Environment; American Geosciences Institute: Alexandria, VA, USA, 2018; Volume 18, pp. 1–18. [Google Scholar]
- Adebiyi, F.M. Air quality and management in petroleum refining industry: A review. Environ. Chem. Ecotoxicol. 2022, 4, 89–96. [Google Scholar] [CrossRef]
- Vellingiri, K.; Kim, K.-H.; Kwon, E.E.; Deep, A.; Jo, S.-H.; Szulejko, J.E. Insights into the adsorption capacity and breakthrough properties of a synthetic zeolite against a mixture of various sulfur species at low ppb levels. J. Environ. Manag. 2016, 166, 484–492. [Google Scholar] [CrossRef]
- Nagata, E.; Yoshio, Y. Measurement of odor threshold by triangle odor bag method. Odor Meas. Minist. Environ. Sci. 2003, 118, 118–127. [Google Scholar]
- ATSDR. Toxicological Profile for Hydrogen Sulfide; ATSDR: Atlanta, GA, USA, 2006. [Google Scholar]
- Bergmann, S.; Li, B.; Pilot, E.; Chen, R.; Wang, B.; Yang, J. Effect modification of the short-term effects of air pollution on morbidity by season: A systematic review and meta-analysis. Sci. Total Environ. 2020, 716, 136985. [Google Scholar] [CrossRef]
- Chen, G.; Koros, W.J.; Jones, C.W. Hybrid Polymer/UiO-66(Zr) and Polymer/NaY Fiber Sorbents for Mercaptan Removal from Natural Gas. ACS Appl. Mater. Interfaces 2016, 8, 9700–9709. [Google Scholar] [CrossRef]
- Xu, X.; Cho, S.I.; Sammel, M.; You, L.; Cui, S.; Huang, Y.; Ma, G.; Padungtod, C.; Pothier, L.; Niu, T.; et al. Association of petrochemical exposure with spontaneous abortion. Occup. Environ. Med. 1998, 55, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Camargo, R.Y.A.; Tomimori, E.K.; Neves, S.C.; Knobel, M.; Medeiros-Neto, G. Prevalence of chronic autoimmune thyroiditis in the urban area neighboring a petrochemical complex and a control area in Sao Paulo, Brazil. Clinics 2006, 61, 307–312. [Google Scholar] [CrossRef]
- White, N.; teWaterNaude, J.; Van Der Walt, A.; Ravenscroft, G.; Roberts, W.; Ehrlich, R. Meteorologically estimated exposure but not distance predicts asthma symptoms in schoolchildren in the environs of a petrochemical refinery: A cross-sectional study. Environ. Health 2009, 8, 45. [Google Scholar] [CrossRef]
- De Moraes, A.C.L.; Ignotti, E.; Netto, P.A.; Jacobson, L.D.S.V.; Castro, H.; Hacon, S.D.S. Wheezing in children and adolescents living next to a petrochemical plant in Rio Grande do Norte, Brazil. J. Pediatr. 2010, 86, 337–344. [Google Scholar] [CrossRef]
- Rusconi, F.; Catelan, D.; Accetta, G.; Peluso, M.; Pistelli, R.; Barbone, F.; Di Felice, E.; Munnia, A.; Murgia, P.; Paladini, L.; et al. Asthma Symptoms, Lung Function, and Markers of Oxidative Stress and Inflammation in Children Exposed to Oil Refinery Pollution. J. Asthma 2011, 48, 84–90. [Google Scholar] [CrossRef]
- Rovira, E.; Cuadras, A.; Aguilar, X.; Esteban, L.; Borràs-Santos, A.; Zock, J.-P.; Sunyer, J. Asthma, respiratory symptoms and lung function in children living near a petrochemical site. Environ. Res. 2014, 133, 156–163. [Google Scholar] [CrossRef]
- Barbone, F.; Catelan, D.; Pistelli, R.; Accetta, G.; Grechi, D.; Rusconi, F.; Biggeri, A. A Panel Study on Lung Function and Bronchial Inflammation among Children Exposed to Ambient SO2 from an Oil Refinery. Int. J. Environ. Res. Public Health 2019, 16, 1057. [Google Scholar] [CrossRef]
- Chung, H.; Youn, K.; Kim, K.; Park, K. Carbon disulfide exposure estimate and prevalence of chronic diseases after carbon disulfide poisoning-related occupational diseases. Ann. Occup. Environ. Med. 2017, 29, 52. [Google Scholar] [CrossRef]
- Liu, S.; Ni, J.-Q.; Radcliffe, J.S.; Vonderohe, C. Hydrogen sulfide emissions from a swine building affected by dietary crude protein. J. Environ. Manag. 2017, 204, 136–143. [Google Scholar] [CrossRef]
- Patnaik, P. A Comprehensive Guide to the Hazardous Properties of Chemical Substances; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Sedighi, M.; Vahabzadeh, F.; Zamir, S.M.; Naderifar, A. Ethanethiol degradation by Ralstonia eutropha. Biotechnol. Bioprocess Eng. 2013, 18, 827–833. [Google Scholar] [CrossRef]
- Gholampour, F.; Yeganegi, S. Molecular simulation study on the adsorption and separation of acidic gases in a model nanoporous carbon. Chem. Eng. Sci. 2014, 117, 426–435. [Google Scholar] [CrossRef]
- Fellah, M.F. Adsorption of hydrogen sulfide as initial step of H2S removal: A DFT study on metal exchanged ZSM-12 clusters. Fuel Process. Technol. 2016, 144, 191–196. [Google Scholar] [CrossRef]
- Feng, Z.; Song, X.; Yu, Z. Seasonal and spatial distribution of matrix-bound phosphine and its relationship with the environment in the Changjiang River Estuary, China. Mar. Pollut. Bull. 2008, 56, 1630–1636. [Google Scholar] [CrossRef]
- Berrouk, A.S.; Ochieng, R. Improved performance of the natural-gas-sweetening Benfield-HiPure process using process simulation. Fuel Process. Technol. 2014, 127, 20–25. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Wang, R. Study on the desulfurization performance of hydramine/ionic liquid solutions at room temperature and atmospheric pressure. Fuel Process. Technol. 2017, 167, 382–387. [Google Scholar] [CrossRef]
- Rufford, T.; Smart, S.; Watson, G.; Graham, B.; Boxall, J.; da Costa, J.D.; May, E. The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. J. Pet. Sci. Eng. 2012, 94–95, 123–154. [Google Scholar] [CrossRef]
- Satokawa, S.; Kobayashi, Y.; Fujiki, H. Adsorptive removal of dimethylsulfide and t-butylmercaptan from pipeline natural gas fuel on Ag zeolites under ambient conditions. Appl. Catal. B Environ. 2005, 56, 51–56. [Google Scholar] [CrossRef]
- Wakita, H.; Tachibana, Y.; Hosaka, M. Removal of dimethyl sulfide and t-butylmercaptan from city gas by adsorption on zeolites. Microporous Mesoporous Mater. 2001, 46, 237–247. [Google Scholar] [CrossRef]
- Zhu, L.; Lv, X.; Tong, S.; Zhang, T.; Song, Y.; Wang, Y.; Hao, Z.; Huang, C.; Xia, D. Modification of zeolite by metal and adsorption desulfurization of organic sulfide in natural gas. J. Nat. Gas Sci. Eng. 2019, 69, 102941. [Google Scholar] [CrossRef]
- Hernández-Fernández, J. Quantification of arsine and phosphine in industrial atmospheric emissions in Spain and Colombia. Implementation of modified zeolites to reduce the environmental impact of emissions. Atmospheric Pollut. Res. 2021, 12, 167–176. [Google Scholar] [CrossRef]
- Joaquin, H.-F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2020, 1614, 460736. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, J.; López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052. [Google Scholar] [CrossRef]
- Hernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478. [Google Scholar] [CrossRef] [PubMed]
- Alladio, E.; Amante, E.; Bozzolino, C.; Seganti, F.; Salomone, A.; Vincenti, M.; Desharnais, B. Effective validation of chromatographic analytical methods: The illustrative case of androgenic steroids. Talanta 2020, 215, 120867. [Google Scholar] [CrossRef]
- Sedighi, M.; Zamir, S.M.; Vahabzadeh, F. Cometabolic degradation of ethyl mercaptan by phenol-utilizing Ralstonia eutropha in suspended growth and gas-recycling trickle-bed reactor. J. Environ. Manag. 2016, 165, 53–61. [Google Scholar] [CrossRef]
- Rubright, S.L.M.; Pearce, L.L.; Peterson, J. Environmental toxicology of hydrogen sulfide. Nitric Oxide 2017, 71, 1–13. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Hydrogen Sulfide and Carbonyl Sulfide; ATSDR: Atlanta, GA, USA, 2016. [Google Scholar]
- Malone, S. Cyanide and Hydrogen Sulfide: A Review of Two Blood Gases, Their Environmental Sources, and Potential Risks; University of Pittsburgh: Pittsburgh, PA, USA, 2016. [Google Scholar]
- Yang, D.; Chen, G.; Zhang, R. Estimated Public Health Exposure to H2S Emissions from a Sour Gas Well Blowout in Kaixian County, China. Aerosol Air Qual. Res. 2006, 6, 430–443. [Google Scholar] [CrossRef]
- Montzka, S.A.; Calvert, P.; Hall, B.D.; Elkins, J.W.; Conway, T.J.; Tans, P.P.; Sweeney, C. On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef]
- Sciare, J.; Mihalopoulos, N.; Nguyen, B. Spatial and temporal variability of dissolved sulfur compounds in European estuaries. Biogeochemistry 2002, 59, 121–141. [Google Scholar] [CrossRef]
- Mallik, C.; Chandra, N.; Venkataramani, S.; Lal, S. Variability of atmospheric carbonyl sulfide at a semi-arid urban site in western India. Sci. Total Environ. 2016, 551–552, 725–737. [Google Scholar] [CrossRef]
- Göen, T.; Schramm, A.; Baumeister, T.; Uter, W.; Drexler, H. Current and historical individual data about exposure of workers in the rayon industry to carbon disulfide and their validity in calculating the cumulative dose. Int. Arch. Occup. Environ. Health 2014, 87, 675–683. [Google Scholar] [CrossRef]
- Vanhoorne, M.H.; Ceulemans, L.; De Bacquer, D.A.; De Smet, F.P. An Epidemiologic Study of the Effects of Carbon Disulfide on the Peripheral Nerves. Int. J. Occup. Environ. Health 1995, 1, 295–302. [Google Scholar] [CrossRef]
- Beauchamp, R.O.; Bus, J.S.; Popp, J.A.; Boreiko, C.J.; Goldberg, L.; McKenna, M.J. A Critical Review of the Literature on Carbon Disulfide Toxicity. CRC Crit. Rev. Toxicol. 1983, 11, 169–278. [Google Scholar] [CrossRef]
- Newhook, R.; Meek, M.E. Carbon Disulfide; WHO: Geneva, Switzerland, 2002. [Google Scholar]
- Llorens, J. Toxic neurofilamentous axonopathies—Accumulation of neurofilaments and axonal degeneration. J. Intern. Med. 2013, 273, 478–489. [Google Scholar] [CrossRef]
- Takebayashi, T.; Omae, K.; Ishizuka, C.; Nomiyama, T.; Sakurai, H. Cross sectional observation of the effects of carbon disulphide on the nervous system, endocrine system, and subjective symptoms in rayon manufacturing workers. Occup. Environ. Med. 1998, 55, 473–479. [Google Scholar] [CrossRef]
- Johnson, B.L.; Boyd, J.; Burg, J.R.; Lee, S.T.; Xintaras, C.; Albright, B.E. Effects on the peripheral nervous system of workers’ exposure to carbon disulfide. Neurotoxicology 1983, 4, 53–65. [Google Scholar]
- Hirata, M.; Ogawa, Y.; Goto, S. A cross-sectional study on nerve conduction velocities among workers exposed to carbon disulphide. La Medicina del Lavoro 1996, 87, 29–34. [Google Scholar]
- Kotseva, K.; Braeckman, L.; De Bacquer, D.; Bulat, P.; Vanhoorne, M. Cardiovascular Effects in Viscose Rayon Workers Exposed to Carbon Disulfide. Int. J. Occup. Environ. Health 2001, 7, 7–13. [Google Scholar] [CrossRef]
- Hernberg, S.; Partanen, T.; Nordman, C.-H.; Sumari, P. Coronary heart disease among workers exposed to carbon disulphide. Occup. Environ. Med. 1970, 27, 313–325. [Google Scholar] [CrossRef]
- Sulsky, S.I.; Hooven, F.H.; Burch, M.T.; Mundt, K.A. Critical review of the epidemiological literature on the potential cardiovascular effects of occupational carbon disulfide exposure. Int. Arch. Occup. Environ. Health 2002, 75, 365–380. [Google Scholar] [CrossRef]
- Leonardos, G.; Kendall, D.; Barnard, N. Odor Threshold Determinations of 53 Odorant Chemicals. J. Air Pollut. Control Assoc. 1969, 19, 91–95. [Google Scholar] [CrossRef]
- Wilby, F.V. Variation in Recognition Odor Threshold of a Panel. J. Air Pollut. Control Assoc. 1969, 19, 96–100. [Google Scholar] [CrossRef]
- ACGIH. TLVs and BEIs: Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices; ACGIH: Cincinnati, OH, USA, 2015; p. 42. Available online: http://www.acgih.org/forms/store/ProductFormPublic/2015-tlvs-and-beis (accessed on 28 February 2022).
- Fang, J.-J.; Yang, N.; Cen, D.-Y.; Shao, L.-M.; He, P.-J. Odor compounds from different sources of landfill: Characterization and source identification. Waste Manag. 2012, 32, 1401–1410. [Google Scholar] [CrossRef]
- Fang, J.; Xu, X.; Jiang, L.; Qiao, J.; Zhou, H.; Li, K. Preliminary results of toxicity studies in rats following low-dose and short-term exposure to methyl mercaptan. Toxicol. Rep. 2019, 6, 431–438. [Google Scholar] [CrossRef]
- Shults, W.T.; Fountain, E.N.; Lynch, E.C. Methanethiol Poisoning. JAMA 1970, 211, 2153–2154. [Google Scholar] [CrossRef]
- Zieve, L.; Doizaki, W.M.; Zieve, J. Synergism between mercaptans and ammonia or fatty acids in the production of coma: A possible role for mercaptans in the pathogenesis of hepatic coma. J. Lab. Clin. Med. 1974, 83, 16–28. [Google Scholar]
Compounds | Concentration (ppm) | |||||
---|---|---|---|---|---|---|
Name | Formula | 1 | 2 | 3 | 4 | 5 |
Butyl mercaptan | CH3(CH2)3SH | 0.1 | 2.238 | 5 | 10 | 20 |
Carbon disulfide | CS2 | 0.1 | 1.929 | 5 | 10 | 20 |
Carbonyl sulfide | COS | 0.1 | 1.477 | 5 | 10 | 20 |
Dimethyl sulfide | (CH3)2S | 0.1 | 1.556 | 5 | 10 | 20 |
Ethyl mercaptan | CH3CH2SH | 0.1 | 1.595 | 5 | 10 | 20 |
Hydrogen sulfide | H2S | 0.1 | 0.847 | 5 | 10 | 20 |
Methyl mercaptan | CH3SH | 0.1 | 1.223 | 5 | 10 | 20 |
Propyl mercaptan | CH3(CH2)2SH | 0.1 | 1.88 | 5 | 10 | 20 |
Column | Specifications | Dimension | Functions |
---|---|---|---|
A | HP-1 | 3 m × 0.1 mm | |
1 | HP-PLOT Q | 15 m × 0.53 mm × 40 μm | Used for the retention of GLP and those compounds with the same boiling point or higher |
2 | HP-PLOT Q | 15 m × 0.53 mm × 50 μm | Had the function of separating CO2 and VSCs |
3 | HP-PLOT Q | 15 m × 0.53 mm × 40 μm | Was used to retain the CO2 and VSCs |
4 | HP-PLOT Mole Sieve | 30 m × 0.53 mm × 50 μm | Had the required resolution to separate the molecules CO2, H2, Ar/O2, N2, CH4, and CO in the same sequence, but left the VSCs mixed |
5 | DB-1, 100% dimethylpolysiloxane | 60 m × 320 μm × 0.25 μm | Where the VSCs were separated |
Intra-Day | Inter-Day/Inter-Country | |||||||
---|---|---|---|---|---|---|---|---|
Theoretical (ppm) | Found a ± SD (ppm) | RSD | Er (%) | Theoretical (ppm) | Found b ± SD (ppm) | RSD | Er (%) | |
H2S | 0.100 | 0.099 ± 0.001 | 0.98 | 0.17 | 0.100 | 0.100 ± 0.001 | 1.26 | 0.00 |
0.847 | 0.845 ± 0.014 | 1.72 | 0.14 | 0.847 | 0.842 ± 0.017 | 1.99 | 0.65 | |
5.000 | 5.015 ± 0.013 | 0.26 | −0.30 | 5.000 | 5.027 ± 0.018 | 0.36 | −0.54 | |
10.000 | 10.053 ± 0.101 | 1.01 | −0.53 | 10.000 | 10.080 ± 0.108 | 1.07 | −0.80 | |
20.000 | 20.060 ± 0.055 | 0.28 | −0.30 | 20.000 | 20.089 ± 0.064 | 0.32 | −0.44 | |
50.000 | 50.051 ± 0.044 | 0.09 | −0.10 | 50.000 | 50.078 ± 0.057 | 0.11 | −0.16 | |
COS | 0.100 | 0.100 ± 0.001 | 1.21 | −0.33 | 0.100 | 0.099 ± 0.002 | 2.06 | 1.17 |
1.477 | 1.460 ± 0.025 | 1.72 | −0.92 | 1.477 | 1.470 ± 0.033 | 2.22 | −1.55 | |
5.000 | 5.014 ± 0.017 | 0.35 | −0.29 | 5.000 | 5.015 ± 0.020 | 0.41 | −0.29 | |
10.000 | 10.031 ± 0.124 | 1.24 | −0.31 | 10.000 | 10.001 ± 0.119 | 1.19 | −0.01 | |
20.000 | 20.055 ± 0.062 | 0.31 | −0.28 | 20.000 | 20.050 ± 0.098 | 0.49 | −0.25 | |
50.000 | 50.001 ± 0.063 | 0.13 | −0.003 | 50.000 | 50.039 ± 0.091 | 0.18 | −0.08 | |
CS2 | 0.100 | 0.099 ± 0.001 | 1.43 | 1.00 | 0.100 | 0.099 ± 0.002 | 1.79 | 0.75 |
1.929 | 1.920 ± 0.028 | 1.44 | 0.48 | 1.929 | 1.923 ± 0.031 | 1.62 | 0.31 | |
5.000 | 4.994 ± 0.051 | 1.02 | 0.11 | 5.000 | 4.989 ± 0.059 | 1.19 | 0.23 | |
10.000 | 10.002 ± 0.014 | 1.4 | −0.02 | 10.000 | 10.061 ± 0.145 | 1.44 | −0.61 | |
20.000 | 20.073 ± 0.107 | 0.53 | −0.37 | 20.000 | 20.033 ± 0.134 | 0.67 | −0.61 | |
50.000 | 54.945 ± 0.194 | 0.39 | 0.11 | 50.000 | 50.062 ± 0.233 | 0.47 | −0.12 | |
(CH3)2S | 0.100 | 0.099 ± 0.001 | 1.66 | 1.33 | 0.100 | 0.101 ± 0.002 | 2.21 | −0.75 |
1.556 | 1.539 ± 0.037 | 2.42 | 1.07 | 1.556 | 1.542 ± 0.043 | 2.77 | 0.89 | |
5.000 | 5.011 ± 0.737 | 1.47 | −0.22 | 5.000 | 4.979 ± 0.103 | 2.06 | 0.43 | |
10.000 | 10.085 ± 0.157 | 1.56 | −0.85 | 10.000 | 10.011 ± 0.168 | 1.68 | −0.11 | |
20.000 | 20.102 ± 0.152 | 0.76 | −0.51 | 20.000 | 20.005 ± 0.161 | 0.8 | −0.02 | |
50.000 | 49.961 ± 0.206 | 0.41 | 0.08 | 50.000 | 50.010 ± 0.256 | 0.51 | −0.02 | |
CH3SH | 0.100 | 0.099 ± 0.001 | 0.83 | 0.32 | 0.100 | 0.100 ± 0.001 | 0.92 | −0.08 |
1.223 | 1.228 ± 0.010 | 0.83 | −0.41 | 1.223 | 1.229 ± 0.013 | 1.02 | −0.5 | |
5.000 | 5.007 ± 0.021 | 0.42 | −0.15 | 5.000 | 5.007 ± 0.034 | 0.68 | −0.14 | |
10.000 | 10.057 ± 0.067 | 0.67 | −0.57 | 10.000 | 10.038 ± 0.076 | 0.76 | −0.38 | |
20.000 | 20.102 ± 0.152 | 0.76 | −0.51 | 20.000 | 20.111 ± 0.170 | 0.85 | −0.55 | |
50.000 | 49.961 ± 0.206 | 0.41 | 0.07 | 50.000 | 49.981 ± 0.277 | 0.55 | 0.04 | |
CH3CH2SH | 0.100 | 0.099 ± 0.001 | 0.76 | 1.17 | 0.100 | 0.100 ± 0.001 | 0.8 | 0.083 |
1.595 | 1.568 ± 0.030 | 1.67 | 1.66 | 1.595 | 1.568 ± 0.027 | 1.72 | 1.6 | |
5.000 | 5.027 ± 0.027 | 0.54 | −0.54 | 5.000 | 5.009 ± 0.029 | 0.58 | −0.18 | |
10.000 | 10.053 ± 0.07 | 0.69 | −0.53 | 10.000 | 10.049 ± 0.093 | 0.92 | −0.48 | |
20.000 | 20.070 ± 0.137 | 0.68 | −0.33 | 20.000 | 20.111 ± 0.173 | 0.86 | −0.55 | |
50.000 | 50.034 ± 0.099 | 0.20 | −0.07 | 50.000 | 49.984 ± 0.260 | 0.52 | 0.03 | |
CH3(CH2) 2SH | 0.100 | 0.099 ± 0.001 | 1.05 | 1.33 | 0.100 | 0.010 ± 0.001 | 1.43 | 0.42 |
1.880 | 1.855 ± 0.024 | 1.30 | 1.3 | 1.880 | 1.855 ± 0.036 | 1.93 | 1.34 | |
5.000 | 5.010 ± 0.044 | 0.89 | −0.2 | 5.000 | 5.020 ± 0.043 | 0.85 | −0.40 | |
10.000 | 10.020 ± 0.10 | 1.01 | −0.2 | 10.000 | 10.093 ± 0.118 | 1.17 | −0.93 | |
20.000 | 20.041 ± 0.158 | 0.79 | −0.21 | 20.000 | 20.111 ± 0.179 | 0.89 | −0.55 | |
50.000 | 50.077 ± 0.149 | 0.30 | −0.15 | 50.000 | 50.009 ± 0.276 | 0.55 | −0.02 | |
CH3(CH2) 3SH | 0.100 | 0.099 ± 0.001 | 1.37 | 0.33 | 0.100 | 0.102 ± 0.001 | 1.41 | −1.58 |
2.238 | 2.215 ± 0.032 | 1.47 | 1.03 | 2.238 | 2.211 ± 0.041 | 1.85 | 1.20 | |
5.000 | 5.054 ± 0.057 | 1.14 | −1.1 | 5.000 | 5.073 ± 0.092 | 1.81 | −1.47 | |
10.000 | 9.964 ± 0.153 | 1.54 | 0.357 | 10.000 | 9.994 ± 0.166 | 1.66 | 0.06 | |
20.000 | 20.088 ± 0.154 | 0.77 | −0.44 | 20.000 | 20.111 ± 0.163 | 0.81 | −0.55 | |
50.000 | 50.129 ± 0.204 | 0.41 | −0.26 | 50.000 | 50.254 ± 0.238 | 0.47 | −0.51 |
Theoretical (ppm) | Mean Measured (Spain, the USA, Italy, Brazil, and Colombia) a (ppm) | RSD (Spain, the USA, Italy, Brazil, and Colombia) b (ppm) | Mean Removal (Spain, the USA, Italy, Brazil, and Colombia) c (%) | |
---|---|---|---|---|
H2S | 0.100 | 0.085–0.083 | 1.02–1.05 | 85–83 |
0.847 | 0.756–0.735 | 1.24–1.34 | 89–87 | |
5.000 | 4.38–4.29 | 2.42–2.86 | 88–86 | |
10.000 | 8.79–8.67 | 3.25–3.45 | 88–87 | |
20.000 | 17.77–17.21 | 3.75–3.98 | 89–86 | |
50.000 | 43.876–42.875 | 5.14–5.24 | 88–86 | |
COS | 0.100 | 0.082–0.08 | 0.97–1.24 | 82–80 |
1.477 | 1.292–1.263 | 1.24–1.45 | 87–86 | |
5.000 | 4.466–4.388 | 2.36–2.59 | 89–88 | |
10.000 | 8.279–8.058 | 2.89–2.97 | 83–81 | |
20.000 | 17.159–17.032 | 4.15–4.48 | 86–85 | |
50.000 | 42.848–42.39 | 5.53–6.01 | 86–85 | |
CS2 | 0.100 | 0.082–0.0081 | 2.12–2.34 | 82–81 |
1.929 | 1.575–1.541 | 2.85–4.23 | 82–80 | |
5.000 | 4.236–4.188 | 4.02–4.96 | 85–84 | |
10.000 | 8.249–8.062 | 4.85–5.12 | 82–81 | |
20.000 | 16.855–16.171 | 5.24–5.48 | 84–81 | |
50.000 | 42.842–42.791 | 5.56–5.59 | 86 | |
(CH3)2S | 0.100 | 0.088–0.085 | 2.45–2.97 | 88–85 |
1.556 | 1.337–1.357 | 2.88–3.28 | 86–87 | |
5.000 | 4.314–4.346 | 3.46–4.33 | 86–87 | |
10.000 | 8.411–8.476 | 4.56–5.49 | 84–85 | |
20.000 | 17.316–17.0226 | 5.36–5.58 | 87–85 | |
50.000 | 41.82–41.65 | 5.76–5.58 | 84–83 | |
CH3SH | 0.100 | 0.087–0.085 | 1.23–1.12 | 87–85 |
1.223 | 1.028–1.01 | 2.85–3.01 | 84–83 | |
5.000 | 4.313–4.285 | 3.91–4.12 | 86 | |
10.000 | 8.703–8.718 | 4.18–4.26 | 87 | |
20.000 | 17.14–17.076 | 4.96–5.08 | 86–85 | |
50.000 | 42.91–43.001 | 5.53–5.47 | 86 | |
CH3CH2SH | 0.100 | 0.084–0.082 | 2.48–2.39 | 84–82 |
1.595 | 1.401–1.394 | 3.19–3.29 | 88–87 | |
5.000 | 4.279–4.215 | 4.26–4.16 | 86–84 | |
10.000 | 8.505–8.499 | 8.505–8.499 | 85 | |
20.000 | 17.366–17.303 | 17.366–17.303 | 87 | |
50.000 | 43.62–43.703 | 43.62–43.703 | 87 | |
CH3(CH2)2SH | 0.100 | 0.083–0.085 | 2.56–2.49 | 83–85 |
1.880 | 1.599–1.564 | 3.45–3.52 | 85–83 | |
5.000 | 4.327–4.301 | 4.82–4.97 | 87–86 | |
10.000 | 8.17–8.201 | 5.67–5.77 | 82 | |
20.000 | 17.24–17.181 | 6.73–6.98 | 86 | |
50.000 | 42.82–42.676 | 8.43–8.12 | 86–85 | |
CH3(CH2)3SH | 0.100 | 0.082–0.084 | 3.40–3.37 | 82–84 |
2.238 | 1.811–1.787 | 4.33–4.28 | 81–80 | |
5.000 | 4.086–4.175 | 5.91–6.12 | 82–84 | |
10.000 | 8.346–8.266 | 6.67–6.77 | 83 | |
20.000 | 16.33–16.501 | 7.55–7.41 | 82–83 | |
50.000 | 41.66–41.754 | 8.79–8.68 | 83–84 |
Technologies for Separation of VSCs | |||||||
---|---|---|---|---|---|---|---|
Dethanizer | Splitter | ||||||
Afluents (n = 3) | Total VSCs | Efluents Zeolite (n = 3) | Total VSCs | Afluents (n = 3) | Total VSCs | Efluents Zeolite (n = 3) | Total VSCs |
DS25 | 9.45 (4.25–22.31) | ZDS25 | 1.30 (0.51–3.21) | ES25 | 2.11 (1.01–3.48) | ZES25 | 0.21 (0.07–0.35) |
DS35 | 14.12 (6.19–32.24) | ZDS35 | 1.96 (0.84–4.52) | ES35 | 2.71 (1.75–3.97) | ZES35 | 0.27 (0.09–0.42) |
DS45 | 23.32 (10.73–41.21) | ZDS45 | 3.30 (1.33–6.07) | ES45 | 3.57 (2.83–4.25) | ZES45 | 0.35 (0.23–0.45) |
DU25 | 13.17 (6.25–26.45) | ZDU25 | 2.27 (0.99–4.56) | EU25 | 2.21 (0.88–3.89) | ZEU25 | 0.21 (0.09–0.39) |
DU35 | 17.30 (8.15–34.26) | ZDU35 | 3.64 (1.95–5.78) | EU35 | 2.66 (1.33–4.21) | ZEU35 | 0.31 (0.14–0.42) |
DU45 | 28.57 (14.25–46.52) | ZDU45 | 3.90 (1.01–7.48) | EU45 | 3.61 (2.45–4.45) | ZEU45 | 0.26 (0.18–0.39) |
DB25 | 13.52 (7.35–26.63) | ZDB25 | 1.43 (0.55–3.78) | EB25 | 2.17 (1.19–3.21) | ZEB25 | 0.24 (0.07–0.42) |
DB35 | 19.10 (10.32–38.45) | ZDB35 | 1.98 (0.55–5.01) | EB35 | 2.81 (1.75–4.15) | ZEB35 | 0.24 (0.15–0.42) |
DB45 | 28.41 (15.35–43.45) | ZDB45 | 3.30 (1.25–5.55) | EB45 | 3.50 (2.83–4.02) | ZEB45 | 0.36 (0.21–0.47) |
DI25 | 15.27 (7.89–29.45) | ZDI25 | 1.30 (0.42–3.52) | EI25 | 2.32 (0.95–4.12) | ZEI25 | 0.23 (0.12–0.42) |
DI35 | 20.47 (10.65–38.82) | ZDI35 | 1.98 (0.55–5.01) | EI35 | 2.67 (1.36–4.21) | ZEI35 | 0.23 (0.12–0.46) |
DI45 | 29.62 (15.62–46.52) | ZDI45 | 3.36 (1.20–6.23) | EI45 | 3.65 (3.18–4.35) | ZEI45 | 0.36 (0.18–0.46) |
DC25 | 15.29 (10.24–25.48) | ZDC25 | 1.26 (0.24–3.19) | EC25 | 2.19 (0.86–3.62) | ZEC25 | 0.22 (0.08–0.42) |
DC35 | 19.61 (11.31–37.45) | ZDC35 | 2.15 (0.95–4.75) | EC35 | 2.54 (1.23–3.55) | ZEC35 | 0.28 (0.15–0.43) |
DC45 | 26.03 (15.36–40.12) | ZDC45 | 3.23 (1.25–5.45) | EC45 | 3.42 (2.35–4.12) | ZEC45 | 0.39 (0.22–0.51) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Fernández, J.; Cano, H.; Rodríguez-Couto, S. Quantification and Removal of Volatile Sulfur Compounds (VSCs) in Atmospheric Emissions in Large (Petro) Chemical Complexes in Different Countries of America and Europe. Sustainability 2022, 14, 11402. https://doi.org/10.3390/su141811402
Hernández-Fernández J, Cano H, Rodríguez-Couto S. Quantification and Removal of Volatile Sulfur Compounds (VSCs) in Atmospheric Emissions in Large (Petro) Chemical Complexes in Different Countries of America and Europe. Sustainability. 2022; 14(18):11402. https://doi.org/10.3390/su141811402
Chicago/Turabian StyleHernández-Fernández, Joaquín, Heidi Cano, and Susana Rodríguez-Couto. 2022. "Quantification and Removal of Volatile Sulfur Compounds (VSCs) in Atmospheric Emissions in Large (Petro) Chemical Complexes in Different Countries of America and Europe" Sustainability 14, no. 18: 11402. https://doi.org/10.3390/su141811402
APA StyleHernández-Fernández, J., Cano, H., & Rodríguez-Couto, S. (2022). Quantification and Removal of Volatile Sulfur Compounds (VSCs) in Atmospheric Emissions in Large (Petro) Chemical Complexes in Different Countries of America and Europe. Sustainability, 14(18), 11402. https://doi.org/10.3390/su141811402