Microbially Induced Calcite Precipitation (MICP) for Stabilization of Desert Sand against the Wind-induced Erosion: A Parametric Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Desert Sand
2.2. Biocementation
2.2.1. Cultivation of Bacteria
2.2.2. Cultivation of Bacteria
2.3. Sample Preparation and Microbial Treatment
- Initially, pre-weighed desert sand was loosely filled into the stainless-steel pan (24 × 17 × 4 cm) to attain a bulk density at 1.47 g/cm3;
- Further, the prepared bacteria, urea–calcium chloride solution and the desert sand were placed in a thermostatic curing box to reach the designed temperature;
- Thereafter, the bacterial suspension was mixed with the urea–calcium chloride solution (1:1 volume ratio) to obtain the biocement solution, which was sprayed evenly on the sand surface with 4 L/m2 at a rate of 3.33 mL/s;
- Then, the samples were placed in the thermostatic curing box for three days to ensure a maximum reaction for multiphase MICP-treated soils;
- After curing, the samples were oven-dried at 60 °C until no change in mass was observed.
2.4. Wind Tunnel Test and Surface Penetration Resistance Test
2.5. Calcium Carbonate Content Measurement
3. Results and Discussion
3.1. The Influence of the Treatment Factors
3.1.1. Effects of Treatment Temperature
3.1.2. Effects of the Biocement Solution Concentration
3.2. The Influence of Durability Factors
3.2.1. Effects of the Development of Time
3.2.2. Effects of Freezing and Thawing Cycles
3.2.3. Effects of Drying and Wetting Cycles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, L.L.; Jiapaer, G.; Bao, A.M.; Kurban, A.; Guo, H.; Zheng, G.X.; De Maeyer, P. Monitoring the long-term desertification process and assessing the relative roles of its drivers in Central Asia. Ecol. Indic. 2019, 104, 195–208. [Google Scholar] [CrossRef]
- Kheirabadi, H.; Mahmoodabadi, M.; Jalali, N.H. Sediment flux, wind erosion and net erosion influenced by soil bed length, wind velocity and aggregate size distribution. Geoderma 2018, 323, 22–30. [Google Scholar] [CrossRef]
- Shepherd, G.; Terradellas, E.; Baklanov, A.; Kang, U.; Cha, J. Global Assessment of Sand and Dust Storms; UN Environment Programme: Nairobi, Kenya, 2016. [Google Scholar]
- Lan, S.B.; Zhang, Q.Y.; Wu, L.; Liu, Y.D.; Zhang, D.L.; Hu, C.X. Artificially accelerating the reversal of desertification: Cyanobacterial inoculation facilitates the succession of vegetation communities. Environ. Sci. Technol. 2013, 48, 307–315. [Google Scholar] [CrossRef]
- Maleki, M.; Ebrahimi, S.; Asadzadeh, F.; Tabrizi, M.E. Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil. Int. J. Environ. Sci. Technol. 2016, 13, 937–944. [Google Scholar] [CrossRef]
- Ma, R.; Li, J.R.; Ma, Y.J.; Shan, L.S.; Li, X.L.; Wei, L.Y. A wind tunnel study of the airflow field and shelter efficiency of mixed windbreaks. Aeolian Res. 2019, 41, 100544. [Google Scholar] [CrossRef]
- Ma, G.F.; Ran, F.T.; Feng, E.K.; Dong, Z.B.; Lei, Z.Q. Effectiveness of an eco-friendly polymer composite sand-fixing agent on sand fixation. Water Air Soil Poll. 2015, 226, 221. [Google Scholar] [CrossRef]
- Indraratna, B.; Muttuvel, T.; Khabbaz, H.; Armstrong, R. Predicting the erosion rate of chemically treated soil using a process simulation apparatus for internal crack erosion. J. Geotech. Geoenviron. Eng. 2008, 134, 837–844. [Google Scholar] [CrossRef]
- Tang, Q.; Shi, P.X.; Zhang, Y.; Liu, W.; Chen, L. Strength and deformation properties of fiber and cement reinforced heavy metal-contaminated synthetic soils. Adv. Mater. Sci. Eng. 2019, 2019, 5746315. [Google Scholar] [CrossRef]
- Tang, Q.; Zhang, Y.; Gao, Y.F.; Gu, F. Use of cement-chelated solidified MSWI fly ash for pavement material: Mechanical and environmental evaluations. Can. Geotech. J. 2017, 54, 1553–1566. [Google Scholar] [CrossRef]
- Wu, X.; Zou, X.; Zhou, N.; Zhang, C.; Shi, S. Deceleration efficiencies of shrub windbreaks in a wind tunnel. Aeolian Res. 2015, 16, 11–23. [Google Scholar] [CrossRef]
- Lo, C.Y.; Tirkolaei, H.K.; Hua, M.; De Rosa, I.M.; Carlson, L.; Kavazanjian, E.; He, X. Durable and ductile double-network material for dust control. Geoderma 2020, 361, 114090. [Google Scholar] [CrossRef]
- Van Paassen, L.A.; Ghose, R.; van der Linden, T.J.; van der Star, W.R.; van Loosdrecht, M.C. Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment. J. Geotech. Geoenviron. Eng. 2010, 136, 1721–1728. [Google Scholar] [CrossRef]
- DeJong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C. Bio-mediated soil improvement. Ecol. Eng. 2010, 36, 197–210. [Google Scholar] [CrossRef]
- Chu, J.; Stabnikov, V.; Ivanov, V. Microbially induced calcium carbonate precipitation on surface or in the bulk of soil. Geomicrobiol. J. 2012, 29, 544–549. [Google Scholar] [CrossRef]
- Gao, Y.F.; Hang, L.; He, J.; Chu, J. Mechanical behaviour of biocemented sands at various treatment levels and relative densities. Acta Geotech. 2019, 14, 697–707. [Google Scholar] [CrossRef]
- Cardoso, R.; Pedreira, R.; Duarte, S.; Monteiro, G.A. About calcium carbonate precipitation on sand biocementation. Eng. Geol. 2020, 271, 105612. [Google Scholar] [CrossRef]
- Cui, M.J.; Lai, H.J.; Hoang, T.; Chu, J. One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement. Acta Geotech. 2020, 9, 481–489. [Google Scholar] [CrossRef]
- Whiffin, V.S.; Van Paassen, L.A.; Harkes, M.P. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 2007, 24, 417–423. [Google Scholar] [CrossRef]
- Chu, J.; Ivanov, V.; Naeimi, M.; Stabnikov, V.; Liu, H.L. Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotech. 2014, 9, 277–285. [Google Scholar] [CrossRef]
- Salifu, E.; MacLachlan, E.; Iyer, K.R.; Knapp, C.W.; Tarantino, A. Application of microbially induced calcite precipitation in erosion mitigation and stabilization of sandy soil foreshore slopes: A preliminary investigation. Eng. Geol. 2016, 201, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Hang, L.; Gao, Y.F.; He, J.; Chu, J. Mechanical behavior of biocemented sand under triaxial consolidated undrained or constant shear drained conditions. Geomech. Eng. 2019, 17, 497–505. [Google Scholar]
- Wu, C.; Chu, J.; Wu, S.; Hong, Y. 3D characterization of microbially induced carbonate precipitation in rock fracture and the resulted permeability reduction. Eng. Geol. 2019, 249, 23–30. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, C.; Tang, C.S.; Xie, Y.H.; Yin, L.Y.; Cheng, Q.; Shi, B. Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP). Eng. Geol. 2020, 264, 105389. [Google Scholar] [CrossRef]
- Tang, Q.; Gu, F.; Zhang, Y.; Zhang, Y.Q.; Mo, J.L. Impact of biological clogging on the barrier performance of landfill liners. J. Environ. Manag. 2018, 222, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; El Naggar, M.H.; Zhang, N.; Wang, Z. Rigorous solution for kinematic response of floating piles subjected to vertical P-wave. Appl. Math. Model. 2022, 106, 114–125. [Google Scholar] [CrossRef]
- He, R.; Wang, H.; Zheng, J. Influence of MICP reinforcement on static properties of monopiles of offshore wind turbine. J. Hohai Univ. 2022, 50, 65–73. [Google Scholar]
- Anderson, J.; Bang, S.; Bang, S.S.; Lee, S.J.; Choi, S.R.; Dho, N.Y. Reduction of wind erosion potential using microbial calcite and soil fibers. In Proceedings of the Geo-Congress 2014: Geo-characterization and Modeling for Sustainability, Atlanta, Georgia, 23–26 February 2014. [Google Scholar]
- Nikseresht, F.; Landi, A.; Sayyad, G.; Ghezelbash, G.; Schulin, R. Sugarecane molasse and vinasse added as microbial growth substrates increase calcium carbonate content, surface stability and resistance against wind erosion of desert soils. J. Environ. Manag. 2020, 268, 110639. [Google Scholar] [CrossRef]
- Woolley, M.A.; van Paassen, L.A.; Kavazanjian, E. Impact on surface hydraulic conductivity of EICP treatment for fugitive dust mitigation. In Proceedings of the Geo-Congress, Minneapolis, MN, USA, 25–28 February 2020. [Google Scholar]
- Whiffin, V.S. Microbial CaCO3 precipitation for the production of biocement. Ph.D. Dissertation, Murdoch University, Perth, Australia, 2004. [Google Scholar]
- Van Paassen, L.A. Biogrout Ground Improvement by Microbially Induce Carbonate Precipitation. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2009. [Google Scholar]
- Chen, R.; Lee, I.; Zhang, L. Biopolymer stabilization of mine tailings for dust control. J. Geotech. Geoenviron. Eng. 2014, 141, 04014100. [Google Scholar] [CrossRef]
- Fattahi, S.M.; Soroush, A.; Huang, N. Biocementation control of sand against wind erosion. J. Geotech. Geoenviron. Eng. 2020, 146, 04020045. [Google Scholar] [CrossRef]
- MOEE. Water Quality-Determination of Calcium -EDTA Titrimetrlc Method. China, GB 7476-87, 1987. Available online: https://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D7B379D3A7E05397BE0A0AB82A (accessed on 5 September 2022).
- Bang, S.C.; Min, S.H.; Bang, S.S. Application of microbiologically induced soil stabilization technique for dust suppression. Int. J. Geo-Eng. 2011, 3, 27–37. [Google Scholar]
Property | Value |
Specific Gravity, Gs | 2.64 |
Uniformity coefficient, Cu | 1.93 |
Coefficient of curvature, Cc | 0.84 |
Maximum void ratio, emax | 0.942 |
Minimum void ratio, emin | 0.436 |
Test no. | Tempereture, (°C) | Biocement Solution Concentration, (mol/L) | Initial Penetration Resistance, (kPa) | Final Penetration Resistance, (kPa) | Initial Wind Erosion, (g) | Finial Wind Erosion, (g) | Calcite Content, (g/m2) |
---|---|---|---|---|---|---|---|
R-0 | 30 | 0 | 0 | - | - | - | 0 |
T-1 | 10 | 0.2 | 115 | 65 | 0 | 0 | 28 |
T-2 | 20 | 0.2 | 215 | 152 | 0 | 0 | 49 |
T-3 | 30 | 0.2 | 246 | 168 | 0 | 0 | 59 |
T-4 | 40 | 0.2 | 271 | 183 | 0 | 0 | 64 |
T-5 | 30 | 0.1 | 162 | 141 | 0 | 0 | 32 |
T-6 | 30 | 0.4 | 398 | 291 | 0 | 0 | 99 |
DW-1 | 10 | 0.2 | 166 | 96 | 0 | 14 | 32 |
DW-2 | 20 | 0.2 | 216 | 131 | 0 | 9 | 50 |
DW-3 | 30 | 0.2 | 250 | 165 | 0 | 0 | 58 |
DW-4 | 40 | 0.2 | 265 | 206 | 0 | 0 | 62 |
DW-5 | 30 | 0.1 | 177 | 74 | 0 | 28 | 34 |
DW-6 | 30 | 0.4 | 295 | 205 | 0 | 0 | 69 |
FT-1 | 10 | 0.2 | 110 | 33 | 0 | 13 | 27 |
FT-2 | 20 | 0.2 | 203 | 108 | 0 | 0 | 47 |
FT-3 | 30 | 0.2 | 240 | 140 | 0 | 0 | 57 |
FT-4 | 40 | 0.2 | 319 | 211 | 0 | 0 | 74 |
FT-5 | 30 | 0.1 | 193 | 90 | 0 | 0 | 36 |
FT-6 | 30 | 0.4 | 360 | 278 | 0 | 0 | 86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hang, L.; Yang, E.; Zhou, Y.; Song, W.; He, J. Microbially Induced Calcite Precipitation (MICP) for Stabilization of Desert Sand against the Wind-induced Erosion: A Parametric Study. Sustainability 2022, 14, 11409. https://doi.org/10.3390/su141811409
Hang L, Yang E, Zhou Y, Song W, He J. Microbially Induced Calcite Precipitation (MICP) for Stabilization of Desert Sand against the Wind-induced Erosion: A Parametric Study. Sustainability. 2022; 14(18):11409. https://doi.org/10.3390/su141811409
Chicago/Turabian StyleHang, Lei, Enjie Yang, Yundong Zhou, Wenzhi Song, and Jia He. 2022. "Microbially Induced Calcite Precipitation (MICP) for Stabilization of Desert Sand against the Wind-induced Erosion: A Parametric Study" Sustainability 14, no. 18: 11409. https://doi.org/10.3390/su141811409
APA StyleHang, L., Yang, E., Zhou, Y., Song, W., & He, J. (2022). Microbially Induced Calcite Precipitation (MICP) for Stabilization of Desert Sand against the Wind-induced Erosion: A Parametric Study. Sustainability, 14(18), 11409. https://doi.org/10.3390/su141811409