Impact of Extreme Heatwaves on Population Exposure in China Due to Additional Warming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Definition of Present, 1.5 °C, and 2.0 °C Warming
2.3. Quantile Mapping Bias Correction
2.4. Heatwave Events and Population Exposure
2.5. Amplified Impacts and Relative Contributions
3. Results
3.1. Changes in Heatwave Events
3.2. Present Distribution Patterns and Future Changes in Population Exposure
3.3. Amplified Impacts and Relative Contributions of Climate and Population
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Sun, J. Significant Increase of the Global Population Exposure to Increased Precipitation Extremes in the Future. Earths Future 2021, 9, e2020EF001941. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar]
- van Vuuren, D.P.; Kriegler, E.; O’Neill, B.C.; Ebi, K.L.; Riahi, K.; Carter, T.R.; Edmonds, J.; Hallegatte, S.; Kram, T.; Mathur, R.; et al. A New Scenario Framework for Climate Change Research: Scenario Matrix Architecture. Clim. Chang. 2014, 122, 373–386. [Google Scholar] [CrossRef]
- KC, S.; Lutz, W. The Human Core of the Shared Socioeconomic Pathways: Population Scenarios by Age, Sex and Level of Education for All Countries to 2100. Glob. Environ. Chang. 2017, 42, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Sun, J. Changes in Drought Characteristics over China Using the Standardized Precipitation Evapotranspiration Index. J. Clim. 2015, 28, 5430–5447. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Pan, T.; Liu, Y.; Sun, F.; Ge, Q. Population Exposure to Droughts in China under the 1.5 °C Global Warming Target. Earth Syst. Dyn. 2018, 9, 1097–1106. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Alexander, L.V.; Donat, M.G.; Zhang, X.; Bador, M.; Herold, N.; Lippmann, T.; Allan, R.; Aguilar, E.; Barry, A.A.; et al. Development of an Updated Global Land In Situ-Based Data Set of Temperature and Precipitation Extremes: HadEX3. J. Geophys. Res. Atmos. 2020, 125, e2019JD032263. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, Z.; Li, J.; Li, W.; Sun, C.; Li, L. Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China? Adv. Atmos. Sci. 2020, 37, 1119–1132. [Google Scholar] [CrossRef]
- Sanderson, B.M.; Xu, Y.; Tebaldi, C.; Wehner, M.; O’Neill, B.; Jahn, A.; Pendergrass, A.G.; Lehner, F.; Strand, W.G.; Lin, L.; et al. Community Climate Simulations to Assess Avoided Impacts in 1.5 and 2 °C Futures. Earth Syst. Dyn. 2017, 8, 827–847. [Google Scholar] [CrossRef]
- Qu, X.; Huang, G. Global Monsoon Changes under the Paris Agreement Temperature Goals in CESM1(CAM5). Adv. Atmos. Sci. 2019, 36, 279–291. [Google Scholar] [CrossRef]
- Good, P.; Booth, B.B.B.; Chadwick, R.; Hawkins, E.; Jonko, A.; Lowe, J.A. Large Differences in Regional Precipitation Change between a First and Second 2 K of Global Warming. Nat. Commun. 2016, 7, 13667. [Google Scholar] [CrossRef] [Green Version]
- Coffel, E.D.; Horton, R.M.; de Sherbinin, A. Temperature and Humidity Based Projections of a Rapid Rise in Global Heat Stress Exposure during the 21st Century. Environ. Res. Lett. 2018, 13, 014001. [Google Scholar] [CrossRef]
- Matthews, T.K.R.; Wilby, R.L.; Murphy, C. Communicating the Deadly Consequences of Global Warming for Human Heat Stress. Proc. Natl. Acad. Sci. USA 2017, 114, 3861–3866. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Ruane, A.C.; Vautard, R.; Arnell, N.; Coppola, E.; Cruz, F.A.; Dessai, S.; Islam, A.S.; Rahimi, M.; Ruiz Carrascal, D.; et al. Climate Change Information for Regional Impact and for Risk Assessment. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 1767–1926. [Google Scholar]
- Dematte, J.E. Near-Fatal Heat Stroke during the 1995 Heat Wave in Chicago. Ann. Intern. Med. 1998, 129, 173. [Google Scholar] [CrossRef]
- Christidis, N.; Jones, G.S.; Stott, P.A. Dramatically Increasing Chance of Extremely Hot Summers since the 2003 European Heatwave. Nat. Clim. Chang. 2015, 5, 46–50. [Google Scholar] [CrossRef]
- Robine, J.-M.; Cheung, S.L.K.; Le Roy, S.; Van Oyen, H.; Griffiths, C.; Michel, J.-P.; Herrmann, F.R. Death Toll Exceeded 70,000 in Europe during the Summer of 2003. C. R. Biol. 2008, 331, 171–178. [Google Scholar] [CrossRef]
- Katsafados, P.; Papadopoulos, A.; Varlas, G.; Papadopoulou, E.; Mavromatidis, E. Seasonal Predictability of the 2010 Russian Heat Wave. Nat. Hazards Earth Syst. Sci. 2014, 14, 1531–1542. [Google Scholar] [CrossRef]
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García-Herrera, R. The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef]
- Vautard, R.; van Aalst, M.; Boucher, O.; Drouin, A.; Haustein, K.; Kreienkamp, F.; van Oldenborgh, G.J.; Otto, F.E.L.; Ribes, A.; Robin, Y.; et al. Human Contribution to the Record-Breaking June and July 2019 Heatwaves in Western Europe. Environ. Res. Lett. 2020, 15, 094077. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; AghaKouchak, A.; Duan, Q. Unraveling Anthropogenic Influence on the Changing Risk of Heat Waves in China. Geophys. Res. Lett. 2017, 44, 5078–5085. [Google Scholar] [CrossRef]
- Tong, J.; Jing, Z.; Cheng, J.; Lige, C.; Yanjun, W.; Hemin, S.; Anqian, W.; Jinlong, H.; Buda, S.; Run, W. National and Provincial Population Projected to 2100 under the Shared Socioeconomic Pathways in China. Adv. Clim. Chang. Res. 2017, 13, 128. [Google Scholar]
- Chen, H.; Sun, J. Increased Population Exposure to Extreme Droughts in China Due to 0.5 °C of Additional Warming. Environ. Res. Lett. 2019, 14, 064011. [Google Scholar] [CrossRef]
- Tang, S.; Qiao, S.; Feng, T.; Jia, Z.; Zang, N.; Feng, G. Predictability of the Mid-Summer Surface Air Temperature over the Yangtze River Valley in the National Centers for Environmental Prediction Climate Forecast System. Int. J. Climatol. 2021, 41, 811–829. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, Z.; Li, L. Projection of Climate Extremes in China, an Incremental Exercise from CMIP5 to CMIP6. Sci. Bull. 2021, 66, 2528–2537. [Google Scholar] [CrossRef]
- Rohat, G.; Flacke, J.; Dosio, A.; Dao, H.; Maarseveen, M. Projections of Human Exposure to Dangerous Heat in African Cities Under Multiple Socioeconomic and Climate Scenarios. Earths Future 2019, 7, 528–546. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Sippel, S.; Barcikowska, M.J.; Ghisetti, C.; Smid, M.; O’Neill, B. Half a Degree and Rapid Socioeconomic Development Matter for Heatwave Risk. Nat. Commun. 2019, 10, 136. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.; O’Neill, B.C.; McDaniel, L.; McGinnis, S.; Mearns, L.O.; Tebaldi, C. Future Population Exposure to US Heat Extremes. Nat. Clim. Chang. 2015, 5, 652–655. [Google Scholar] [CrossRef]
- Liao, X.; Xu, W.; Zhang, J.; Li, Y.; Tian, Y. Global Exposure to Rainstorms and the Contribution Rates of Climate Change and Population Change. Sci. Total Environ. 2019, 663, 644–653. [Google Scholar] [CrossRef]
- Jones, B.; Tebaldi, C.; O’Neill, B.C.; Oleson, K.; Gao, J. Avoiding Population Exposure to Heat-Related Extremes: Demographic Change vs Climate Change. Clim. Chang. 2018, 146, 423–437. [Google Scholar] [CrossRef]
- Liu, Z.; Anderson, B.; Yan, K.; Dong, W.; Liao, H.; Shi, P. Global and Regional Changes in Exposure to Extreme Heat and the Relative Contributions of Climate and Population Change. Sci. Rep. 2017, 7, 43909. [Google Scholar] [CrossRef]
- Rohat, G.; Flacke, J.; Dosio, A.; Pedde, S.; Dao, H.; van Maarseveen, M. Influence of Changes in Socioeconomic and Climatic Conditions on Future Heat-Related Health Challenges in Europe. Glob. Planet. Chang. 2019, 172, 45–59. [Google Scholar] [CrossRef]
- Ding, T.; Qian, W. Geographical Patterns and Temporal Variations of Regional Dry and Wet Heatwave Events in China during 1960–2008. Adv. Atmos. Sci. 2011, 28, 322–337. [Google Scholar] [CrossRef]
- Kong, Q.; Guerreiro, S.B.; Blenkinsop, S.; Li, X.-F.; Fowler, H.J. Increases in Summertime Concurrent Drought and Heatwave in Eastern China. Weather Clim. Extrem. 2020, 28, 100242. [Google Scholar] [CrossRef]
- Wang, P.; Tang, J.; Wang, S.; Dong, X.; Fang, J. Regional Heatwaves in China: A Cluster Analysis. Clim. Dyn. 2018, 50, 1901–1917. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, W.; Li, X.; Wang, X.; Wang, D. Synoptic-Scale Characteristics and Atmospheric Controls of Summer Heat Waves in China. Clim. Dyn. 2016, 46, 2923–2941. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, F.; Zhang, X. Spatial and Temporal Variations of Regional High Temperature Events in China. Int. J. Climatol. 2014, 34, 3054–3065. [Google Scholar] [CrossRef]
- Wei, K.; Chen, W. An Abrupt Increase in the Summer High Temperature Extreme Days across China in the Mid-1990s. Adv. Atmos. Sci. 2011, 28, 1023–1029. [Google Scholar] [CrossRef]
- Zhan, L.-F.; Wang, Y.; Sun, H.; Zhai, J.; Zhan, M. Study on the Change Characteristics of and Population Exposure to Heatwave Events on the North China Plain. Adv. Meteorol. 2019, 2019, 7069195. [Google Scholar] [CrossRef]
- Dong, S.; Zhou, B.; Hou, M.; Li, R.; Xu, Y.; Yu, L.; Zhang, Y. Projected Risk of Extreme Heat in China Based on CMIP5 Models. Adv. Clim. Chang. Res. 2014, 10, 365–369. [Google Scholar] [CrossRef]
- Zhang, G.; Zeng, G.; Liang, X.-Z.; Huang, C. Increasing Heat Risk in China’s Urban Agglomerations. Environ. Res. Lett. 2021, 16, 064073. [Google Scholar] [CrossRef]
- Chen, H.; He, W.; Sun, J.; Chen, L. Increases of Extreme Heat-Humidity Days Endanger Future Populations Living in China. Environ. Res. Lett. 2022, 17, 064013. [Google Scholar] [CrossRef]
- Wu, X.; Hao, Z.; Tang, Q.; Zhang, X.; Feng, S.; Hao, F. Population Exposure to Compound Dry and Hot Events in China under 1.5 and 2 °C Global Warming. Int. J. Climatol. 2021, 41, 5766–5775. [Google Scholar] [CrossRef]
- Ma, F.; Yuan, X. Impact of Climate and Population Changes on the Increasing Exposure to Summertime Compound Hot Extremes. Sci. Total Environ. 2021, 772, 145004. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 1st ed.; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-00-915794-0. [Google Scholar]
- Wu, J.; Gao, X. A Gridded Daily Observation Dataset over China Region and Comparison with the Other Datasets. Chin. J. Geophys. Chin. 2013, 56, 1102–1111. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The Representative Concentration Pathways: An Overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. The Working Group I Contribution to the Sixth Assessment Report; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; in press. [Google Scholar]
- Hoyer, S.; Hamman, J. Xarray: N-D Labeled Arrays and Datasets in Python. J. Open Res. Softw. 2017, 5, 10. [Google Scholar] [CrossRef]
- Rose, A.; McKee, J.; Sims, K.; Bright, E.; Reith, A.; Urban, M. LandScan Global 2020; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2021. [Google Scholar]
- Chen, Y.; Guo, F.; Wang, J.; Cai, W.; Wang, C.; Wang, K. Provincial and Gridded Population Projection for China under Shared Socioeconomic Pathways from 2010 to 2100. Sci. Data 2020, 7, 83. [Google Scholar] [CrossRef]
- Li, H.; Sheffield, J.; Wood, E.F. Bias Correction of Monthly Precipitation and Temperature Fields from Intergovernmental Panel on Climate Change AR4 Models Using Equidistant Quantile Matching. J. Geophys. Res. 2010, 115, D10101. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Chaumont, D.; Braun, M. Finding Appropriate Bias Correction Methods in Downscaling Precipitation for Hydrologic Impact Studies over North America. Water Resour. Res. 2013, 49, 4187–4205. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM Precipitation to the Station Scale Using Statistical Transformations—A Comparison of Methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef]
- Piani, C.; Weedon, G.; Best, M.; Gomes, S.; Viterbo, P.; Hagemann, S.; Haerter, J. Statistical Bias Correction of Global Simulated Daily Precipitation and Temperature for the Application of Hydrological Models. J. Hydrol. 2010, 395, 199–215. [Google Scholar] [CrossRef]
- Themeßl, M.J.; Gobiet, A.; Heinrich, G. Empirical-Statistical Downscaling and Error Correction of Regional Climate Models and Its Impact on the Climate Change Signal. Clim. Chang. 2012, 112, 449–468. [Google Scholar] [CrossRef]
- Boé, J.; Terray, L.; Habets, F.; Martin, E. Statistical and Dynamical Downscaling of the Seine Basin Climate for Hydro-Meteorological Studies. Int. J. Climatol. 2007, 27, 1643–1655. [Google Scholar] [CrossRef]
- Logan, T.; Aoun, A.; Bourgault, P.; Huard, D.; Lavoie, J.; Rondeau-Genesse, G.; Smith, T.J.; Alegre, R.; Barnes, C.; Biner, S.; et al. Ouranosinc/Xclim: V0.37.0; CERN: Meyrin, Switzerland, 2022. [Google Scholar]
- Nairn, J.; Fawcett, R. The Excess Heat Factor: A Metric for Heatwave Intensity and Its Use in Classifying Heatwave Severity. Int. J. Environ. Res. Public Health 2014, 12, 227–253. [Google Scholar] [CrossRef]
- Ma, F.; Yuan, X.; Jiao, Y.; Ji, P. Unprecedented Europe Heat in June–July 2019: Risk in the Historical and Future Context. Geophys. Res. Lett. 2020, 47, e2020GL087809. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P. Revisiting Summertime Hot Extremes in China during 1961–2015: Overlooked Compound Extremes and Significant Changes. Geophys. Res. Lett. 2017, 44, 5096–5103. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Y.; Liu, Y. Mechanisms for Regional Compound Hot Extremes in the Mid-lower Reaches of the Yangtze River. Int. J. Climatol. 2021, 41, 1292–1304. [Google Scholar] [CrossRef]
- Purich, A.; Cowan, T.; Cai, W.; van Rensch, P.; Uotila, P.; Pezza, A.; Boschat, G.; Perkins, S. Atmospheric and Oceanic Conditions Associated with Southern Australian Heat Waves: A CMIP5 Analysis. J. Clim. 2014, 27, 7807–7829. [Google Scholar] [CrossRef]
- Qiu, W.; Yan, X. The Trend of Heatwave Events in the Northern Hemisphere. Phys. Chem. Earth Parts ABC 2020, 116, 102855. [Google Scholar] [CrossRef]
- Rohli, R.V.; Keim, B.D. Spatial and Temporal Characteristics of Extreme-High-Summer-Temperature Events in the South-Central United States. Phys. Geogr. 1994, 15, 310–324. [Google Scholar] [CrossRef]
- Han, L.; Yu, X.; Xu, Y.; Deng, X.; Yang, L.; Li, Z.; Lv, D.; Xiao, M. Enhanced Summertime Surface Warming Effects of Long-term Urbanization in a Humid Urban Agglomeration in China. J. Geophys. Res. Atmos. 2021, 126, e2021JD03500. [Google Scholar] [CrossRef]
- Cardona, O.D.; Van Aalst, M.K.; Birkmann, J.; Fordham, M.; Mc Gregor, G.; Rosa, P.; Pulwarty, R.S.; Schipper, E.L.F.; Sinh, B.T.; Décamps, H.; et al. Determinants of Risk: Exposure and Vulnerability. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; pp. 65–108. [Google Scholar]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-1-107-02506-6. [Google Scholar]
- Li, D.; Zhou, T.; Zou, L.; Zhang, W.; Zhang, L. Extreme High-Temperature Events Over East Asia in 1.5 °C and 2 °C Warmer Futures: Analysis of NCAR CESM Low-Warming Experiments. Geophys. Res. Lett. 2018, 45, 1541–1550. [Google Scholar] [CrossRef] [Green Version]
SSPs | SSP1-2.6 | SSP2-4.5 | SSP5-8.5 | |
---|---|---|---|---|
Warming Scenarios | ||||
1.5 °C | 2023–2042 | 2021–2040 | 2018–2037 | |
2.0 °C | post–2100 | 2043–2062 | 2032–2051 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Rohli, R.V.; Lin, Q.; Jin, S.; Yan, X. Impact of Extreme Heatwaves on Population Exposure in China Due to Additional Warming. Sustainability 2022, 14, 11458. https://doi.org/10.3390/su141811458
Wang L, Rohli RV, Lin Q, Jin S, Yan X. Impact of Extreme Heatwaves on Population Exposure in China Due to Additional Warming. Sustainability. 2022; 14(18):11458. https://doi.org/10.3390/su141811458
Chicago/Turabian StyleWang, Leibin, Robert V. Rohli, Qigen Lin, Shaofei Jin, and Xiaodong Yan. 2022. "Impact of Extreme Heatwaves on Population Exposure in China Due to Additional Warming" Sustainability 14, no. 18: 11458. https://doi.org/10.3390/su141811458
APA StyleWang, L., Rohli, R. V., Lin, Q., Jin, S., & Yan, X. (2022). Impact of Extreme Heatwaves on Population Exposure in China Due to Additional Warming. Sustainability, 14(18), 11458. https://doi.org/10.3390/su141811458