Guizhou Karst Carbon Sink and Sustainability—An Overview
Abstract
:1. Introduction
2. Development Process of Karst Carbon Sink Research
2.1. Karstification and the Carbon Cycle: The Embryonic Stage
2.2. Whether Karst Carbon Sinks Form Stable Carbon Sinks: Doubts and Debates
2.3. Voice of China: Responding to International Academic Doubts
3. Research Status of the Karst Carbon Sink
3.1. A Model of an Aquatic, Photosynthetic, Stable Carbon Sink
3.2. Human Intervention Can Increase Karst Carbon Sink Flux and Stability
3.2.1. Afforestation
3.2.2. Soil Improvement
3.2.3. Pay Attention to the Role of Exogenous Water
3.2.4. Enhance the Photosynthesis of Aquatic Plants
4. Survey Methods and Data Analysis
4.1. Automatic Monitoring of Hydrology and Hydrochemistry with a High Time Resolution
4.2. Water Sample Collection and Testing
4.3. Calculation of the CO2 Partial Pressure and Calcite Saturation Index in Water
4.4. Data Analysis and Communication
5. Finding
5.1. Science and Technology Issues
5.1.1. Insufficient Research on the Stability of Karst Aquatic Photosynthetic Carbon Sinks and the Monitoring and Calculation Technology System
5.1.2. The Research on the Feedback Mechanism of the Ecological Environment in Karst Areas Is Insufficient
5.2. Popular Science Propaganda and Policy Issues
5.2.1. Low Awareness and Weak Publicity
5.2.2. The Trading Policy Is Not Clear, and Many Parties Hold a Wait-and-See Attitude
6. Suggestion
6.1. Suggestions for Government Policies
6.1.1. National Level
- (1)
- Strengthen international exchanges and cooperation to highlight the leading role of the “karst carbon sink” in Guizhou
- (2)
- Scientific and rational utilization of karst, and the construction of a karst carbon sink evaluation system
- (3)
- Build the basic framework of karst carbon sink trading
6.1.2. Provincial level
- (1)
- Strengthen the construction of a karst carbon sink observation station
- (2)
- Establish a linkage mechanism for departmental collaboration
- (3)
- Digital economy and the establishment of carbon sink cloud platform
- (4)
- Increase policy and legislative support
- (5)
- Increase investment in scientific and technological research and development
- (6)
- Increase the promotion of the karst carbon sink
- (7)
- Explore artificial sink technology
6.2. Prospect of Scientific Research and Technology
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, D.X. The development of modern karstology in China. Geol. Rev. 2006, 52, 733–736. [Google Scholar]
- Jiang, Z.C.; Yuan, D.X.; Cao, J.H.; Qin, X.Q.; He, S.Y.; Zhang, C. A study of carbon sink capacity of karst processes in China. Acta Geosci. Sin. 2012, 33, 129–134. [Google Scholar]
- Pu, J.B.; Jiang, Z.C.; Yuan, D.X.; Zhang, C. Some opinions on rock-weathering-related carbon sinks from the IPCC fifth assessment report. Adv. Earth Sci. 2015, 30, 1081–1090. [Google Scholar]
- Liu, Z.; Zhao, J. Contribution of carbonate rock weathering to the atmospheric CO2 sink. Environ. Geol. 2000, 39, 1053–1058. [Google Scholar] [CrossRef]
- Zeng, S.B.; Liu, Z.H.; Kaufmann, G. Sensitivity of the global carbonate weathering carbon-sink flux to climate and land-use changes. Nat. Commun. 2019, 10, 5749. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Xiao, Q.; Fan, J.; Zhao, H.; Cao, M.; Zhang, C.; Jiang, Y. The impact of heterotrophic bacteria on recalcitrant dissolved organic carbon formation in a typical karstic river. Sci. Total Environ. 2022, 815, 152576. [Google Scholar] [CrossRef] [PubMed]
- IEA (International Energy Agency). Net Zero by 2050: A Roadmap for the Global Energy Sector. 2021. Available online: https://www.iea.org/reports/net-zero-by-2050 (accessed on 5 August 2022).
- Khadka, M.B.; Martin, J.B.; Jin, J. Transport of dissolved carbon and CO2 degassing from a river system in a mixed silicate and carbonate catchment. J. Hydrol. 2014, 513, 391–402. [Google Scholar] [CrossRef]
- Yang, R.; Chen, B.; Liu, H.; Liu, Z.; Yan, H. Carbon sequestration and decreased CO2 emission caused by terrestrial aquatic photosynthesis: Insights from diel hydrochemical variations in an epikarst spring and two spring-fed ponds in different seasons. Appl. Geochem. 2015, 63, 248–260. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, X.Y.; Li, W.; Yu, L. Biological carbon pump effect of microalgae in aquatic ecosystems of karst areas. Acta Microbiol. Sin. 2019, 59, 1012–1025. [Google Scholar]
- Liu, Z.H.; Macpherson, G.L.; Groves, C.; Martin, J.B.; Yuan, D.X.; Zeng, S.B. Large and active CO2 uptake by coupled carbonate weathering. Earth-Sci. Rev. 2018, 182, 42–49. [Google Scholar] [CrossRef]
- Wang, P.; Hu, Q.; Yang, H.; Cao, J.; Li, L.; Liang, Y.; Wang, K. Preliminary study on the utilization of Ca2+ and HCO3− in karst water by different sources of Chlorella vulgaris. Carbon. Evapor. 2014, 29, 203–210. [Google Scholar] [CrossRef]
- Wang, P.; Hu, G.; Cao, J.H. Stable carbon isotopic composition of submerged plants living in karst water and its eco-environmental importance. Aqua. Bot. 2017, 140, 78–83. [Google Scholar] [CrossRef]
- Liu, Z.H.; Dreybrodt, W.; Wang, H.J. A possible important CO2 sink by the global water cycle. Chin. Sci. Bull. 2018, 53, 402–407. [Google Scholar] [CrossRef]
- Liu, Z.H.; Dreybrodt, W. Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land. Sci. Bull. 2015, 60, 182–191. [Google Scholar] [CrossRef]
- Yang, M.X.; Liu, Z.H.; Sun, H.L.; Yang, R.; Chen, B. Organic carbon source tracing and DIC fertilization effect in the Pearl river: Insights from lipid biomarker and geochemical analysis. Appl. Geochem. 2016, 73, 132–141. [Google Scholar] [CrossRef]
- Xia, F.; Liu, Z.; Zhao, M.; Li, Q.; Li, D.; Cao, W.; Zeng, C.; Hu, Y.; Chen, B.; Bao, Q.; et al. High stability of autochthonous dissolved organic matter in karst aquatic ecosystems: Evidence from fluorescence. Water Res. 2022, 220, 118723. [Google Scholar] [CrossRef]
- Krklec, K.; Domínguez-Villar, D.; Perica, D. Use of rock tablet method to measure rock weathering and landscape denudation. Earth-Sci. Rev. 2021, 212, 103449. [Google Scholar] [CrossRef]
- Cai, Y.L. Spatial scales integration of land system change: A case study design on Guizhou Karst Plateau. Adv. Earth Sci. 2009, 24, 1301–1308. [Google Scholar]
- Xu, S.Y.; Jiang, Z.C. Preliminary estimation of the relationship between karstification and the sources and sinks of atmospheric greenhouse gas CO2 in China. Chin. Sci. Bull. 1997, 42, 953–956. [Google Scholar]
- Jiang, Z.C.; Jiang, X.Z.; Lei, M.T. Estimation of atmospheric CO2 sink of karst areas in China based on GIS and limestone tablet loss data. Carsol. Sin. 2000, 19, 212–217. [Google Scholar]
- Wu, W.H.; Zheng, H.B.; Yang, J.D.; Chao, L.; Bin, Z. Chemical weathering of large river catchments in China and the global carbon cycle. Quat. Sci. 2011, 31, 397–407. [Google Scholar]
- Liu, C.; Jiang, Y.; Tao, F.; Lang, Y.; Li, S. Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling in Southwest China. Geochimica 2008, 37, 404–414. [Google Scholar]
- Cao, J.H.; Yuan, D.X.; Pan, G.X.; Jiang, G.H. Influence of soil carbon transfer under different vegetations on carbon cycle of karst dynamics system. Earth Environ. 2004, 32, 90–96. [Google Scholar]
- Li, H.; Wang, S.; Bai, X.; Cao, Y.; Wu, L. Spatiotemporal evolution of carbon sequestration of limestone weathering in China. Sci. China Earth Sci. 2019, 62, 974–991. [Google Scholar] [CrossRef]
- Yang, Y.X.; Xiang, P.; Lu, W.Q.; Wang, S.L. The sedimentation rate and burial fluxes of carbon and nitrogen in Wujiangdu reservoir, Guizhou, China. Earth Environ. 2017, 45, 66–73. [Google Scholar]
- IEA. Energy Technology RD&D Budgets: Overview. 2021. Available online: https://www.iea.org/reports/energy-technology-rdd-budgets (accessed on 12 August 2022).
Index | Units | Mean Value of Eastern Guizhou | n = 44 C.v. | Mean Value of Western Guizhou | n = 44 C.v. | Mean Value of Northern Guizhou | n = 45 C.v. | Mean Value of Southern Guizhou | n = 45 C.v. |
---|---|---|---|---|---|---|---|---|---|
T | °C | 18.89 | 0.04 | 18.10 | 0.03 | 18.64 | 0.08 | 18.24 | 0.37 |
Ph | — | 7.43 | 0.03 | 7.71 | 0.02 | 8.11 | 0.02 | 8.39 | 0.07 |
K+ | mg/L | 0.46 | 0.38 | 0.32 | 0.39 | 2.71 | 0.33 | 3.31 | 0.39 |
Na+ | mg/L | 0.79 | 0.28 | 0.45 | 0.66 | 6.74 | 0.75 | 3.56 | 0.62 |
Ca2+ | mg/L | 68.74 | 0.17 | 73.55 | 0.08 | 96.66 | 0.18 | 81.02 | 0.24 |
Mg2+ | mg/L | 2.42 | 0.17 | 16.79 | 0.27 | 20.58 | 0.32 | 17.59 | 0.32 |
Cl− | mg/L | 1.77 | 0.45 | 1.11 | 0.37 | 10.46 | 0.56 | 8.49 | 0.33 |
SO42− | mg/L | 15.63 | 0.23 | 14.71 | 0.33 | 97.46 | 0.60 | 53.28 | 0.33 |
HCO3− | mg/L | 182.59 | 0.09 | 228.93 | 0.07 | 231.19 | 0.08 | 203.95 | 0.18 |
Conductivity | 322.65 | 0.05 | 374.56 | 0.03 | 560.83 | 0.18 | 447.42 | 0.14 | |
SICe | — | 0.51 | — | 0.38 | — | 0.42 | — | 0.53 | — |
pCO2 | Pa | 504.32 | 0.58 | 337.24 | 0.40 | 527.17 | 0.32 | 365.56 | 0.58 |
Index | Mean Value of Eastern Guizhou | Mean Value of Western Guizhou | Mean Value of Northern Guizhou | Mean Value of Southern Guizhou |
---|---|---|---|---|
0.44 | 0.61 | 2.61 | 2.51 | |
Na+, | 0.57 | 0.79 | 6.34 | 3.26 |
Ca2+ | 0.52 × EC − 78.95 | 0.24 × EC − 21.67 | 0.119 × EC + 27.97 | 0.22 × EC − 10.83 |
Mg2+ | 0.062 × EC − 0.23 | 0.04 × EC − 4.68 | 0.041 × EC − 0.55 | 0.02 × EC + 9.09 |
Cl− | 1.37 | 1.79 | 1L44 | 7.99 |
SO42− | 14.02 | 16.75 | 0.43 × EC − 154.76 | 0.18 × EC − 23.55 |
HCO3− | 0.642 × EC − 27.33 | 0.816 × EC − 72.74 | 0.196 × EC + 129.20 | 0.38 × EC + 9.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Yang, W.; Yang, M.; Yan, J. Guizhou Karst Carbon Sink and Sustainability—An Overview. Sustainability 2022, 14, 11518. https://doi.org/10.3390/su141811518
Zhang M, Yang W, Yang M, Yan J. Guizhou Karst Carbon Sink and Sustainability—An Overview. Sustainability. 2022; 14(18):11518. https://doi.org/10.3390/su141811518
Chicago/Turabian StyleZhang, Min, Wu Yang, Mingxing Yang, and Jun Yan. 2022. "Guizhou Karst Carbon Sink and Sustainability—An Overview" Sustainability 14, no. 18: 11518. https://doi.org/10.3390/su141811518
APA StyleZhang, M., Yang, W., Yang, M., & Yan, J. (2022). Guizhou Karst Carbon Sink and Sustainability—An Overview. Sustainability, 14(18), 11518. https://doi.org/10.3390/su141811518