Environmental Impacts of End-of-Life Options of Biobased and Fossil-Based Polyethylene Terephthalate and High-Density Polyethylene Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Approach, Functional Unit, System Boundary
2.2. LCA Scenario Development
- R-B: the biobased plastic shampoo bottle is reused, replacing an equivalent virgin biobased plastic shampoo bottle for one use (HDPE for R-B-H and PET for R-B-P);
- R-F: the fossil based plastic shampoo bottle is reused replacing an equivalent virgin fossil based plastic shampoo bottle for one use (HDPE for R-F-H and PET for R-F-P);
- M-B: the biobased plastic shampoo bottle is recycled through mechanical recycling replacing an equivalent virgin biobased plastic shampoo bottle for one use (HDPE for M-B-H and PET for M-B-P);
- M-F: the fossil based plastic shampoo bottle is mechanically recycled replacing an equivalent virgin fossil based plastic shampoo bottle for one use (HDPE for M-F-H and PET for M-F-P);
- C-B: the biobased plastic shampoo bottle is recycled through chemical recycling replacing an equivalent virgin biobased plastic shampoo bottle for one use (HDPE for C-B-H and PET for C-B-P);
- C-F: the plastic shampoo bottle, based on the current plastic market mix, is chemically recycled replacing an equivalent plastic shampoo bottle, based on the current market mix, for one use (HDPE for C-F-H and PET for C-F-P).
2.3. End-of-Life Assumptions and Data Sources
2.3.1. Reuse Scenarios
2.3.2. Mechanical Recycling Scenarios
Scenario | Collection Efficiency | Sorting Efficiency | Recycling Efficiency | ||||
---|---|---|---|---|---|---|---|
Value | Source | Value | Source | Value | Source | ||
PET | Reuse | 1 | Assumption | - | 0.99 | Assumption | |
Mechanical | 0.77 | [36] | 0.31 | [36] | 0.86 | [36] | |
Glycolysis | 0.77 | [36] | 0.31 | [36] | 0.87 | [37,38] | |
HDPE | Reuse | 1 | Assumption | - | 0.99 | Assumption | |
Mechanical | 0.72 | [36] | 0.40 | [36] | 0.95 | [36] | |
Pyrolysis | 0.72 | [36] | 0.40 | [36] | 0.21 | [37,39,40] |
Scenario | Value | Source | ||
---|---|---|---|---|
Sorting | ||||
Diesel | 0.084 MJ kg−1 | [34] | ||
Energy | 0.122 MJ kg−1 | [34] | ||
Reuse | ||||
Caustic soda | 0.007 kg−1 | [33] | ||
Heat | 0.019 kWh kg−1 | [33] | ||
Electricity | 0.004 kWh kg−1 | [33] | ||
Water | 0.368 kg kg−1 | [33] | ||
Mechanical reprocessing | PET | HDPE | ||
Sodium hydroxide | 0.002 kg kg−1 | - | [34] | |
Methane | 1.89 MJ kg−1 | 0.52 MJ kg−1 | [34] | |
Electric energy | 0.79 MJ kg−1 | 1.75 MJ kg−1 | [34] | |
Water | 2.24 kg kg−1 | 1.56 kg kg−1 | [34] | |
Chemical reprocessing HDPE | ||||
Heat | 2.67 MJ kg−1 | Estimated value, see Section 2.3.3 | ||
Chemical reprocessing PET | ||||
Heat | 0.906 MJ kg−1 | Estimated value, see Section 2.3.4 | ||
Ethylene glycol | 0.5 kg kg−1 | [41] | ||
Repolymerization | Methane | 1.63 MJ kg−1 | [38] | |
Electricity | 0.7 MJ kg−1 | [38] | ||
Steam | 0.94 kg kg−1 | [38] | ||
Incineration | ||||
Natural gas | 0.00986 MJ kg−1 | [42] | ||
Electricity | 0.252 MJ kg−1 | [42] |
2.3.3. HDPE Chemical Recycling
2.3.4. PET Chemical Recycling
2.4. Virgin Plastic Production
2.5. Contribution, Sensitivity and Uncertainty Analysis
3. Results
3.1. Scenario Performance and Contribution Analysis
3.1.1. Climate Change
3.1.2. Fossil Resource Scarcity
3.1.3. Mineral Resource Scarcity
3.2. Sensitivity Analysis
3.3. Uncertainty Analysis
4. Discussion
4.1. Comparison with Previous Research
4.2. Study Limitations
4.3. Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The World Bank. Global Economic Prospects June 2022. Available online: https://www.worldbank.org/en/news/press-release/2022/06/07/stagflation-risk-rises-amid-sharp-slowdown-in-growth-energy-markets (accessed on 13 July 2022).
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; The World Bank: Washington, DC, USA, 2018; ISBN 978-1-4648-1329-0. [Google Scholar]
- Wang, C.; Liu, Y.; Chen, W.-Q.; Zhu, B.; Qu, S.; Xu, M. Critical Review of Global Plastics Stock and Flow Data. J. Ind. Ecol. 2021, 25, 1300–1317. [Google Scholar] [CrossRef]
- PlasticsEurope. Plastics—The Facts 2020; European Plastics Recyclers and European Association of Plastics Recycling and Recovery Organisations: Brussels, Belgium, 2020. [Google Scholar]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Garcia, J.M.; Robertson, M.L. The Future of Plastics Recycling. Science 2017, 358, 870. [Google Scholar] [CrossRef]
- Vollmer, I.; Jenks, M.J.F.; Roelands, M.C.P.; White, R.J.; van Harmelen, T.; de Wild, P.; van der Laan, G.P.; Meirer, F.; Keurentjes, J.T.F.; Weckhuysen, B.M. Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angew. Chem. Int. Ed. 2020, 59, 15402–15423. [Google Scholar] [CrossRef]
- Alaerts, L.; Augustinus, M.; Van Acker, K. Impact of Bio-Based Plastics on Current Recycling of Plastics. Sustainability 2018, 10, 1487. [Google Scholar] [CrossRef]
- Chen, X.; Wilfart, A.; Puillet, L.; Aubin, J. A New Method of Biophysical Allocation in LCA of Livestock Co-Products: Modeling Metabolic Energy Requirements of Body-Tissue Growth. Int. J. Life Cycle Assess. 2017, 22, 883–895. [Google Scholar] [CrossRef]
- Coppola, G.; Gaudio, M.T.; Lopresto, C.G.; Calabro, V.; Curcio, S.; Chakraborty, S. Bioplastic from Renewable Biomass: A Facile Solution for a Greener Environment. Earth Syst. Environ. 2021, 5, 231–251. [Google Scholar] [CrossRef]
- FBR BP Biorefinery & Sustainable Value Chains; FBR Sustainable Chemistry & Technology; Biobased Products; van den Oever, M.; Molenveld, K.; van der Zee, M.; Bos, H. Bio-Based and Biodegradable Plastics: Facts and Figures: Focus on Food Packaging in the Netherlands; Wageningen Food & Biobased Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- Nessi, S.; Bulgheroni, C.; Garcia-Gutierrez, P.; Giuntoli, J.; Konti, A.; Sanye-Mengual, E.; Tonini, D.; Pant, R.; Marelli, L. Comparative Life Cycle Assessment (LCA) of Alternative Feedstock for Plastics Production-Part 2; Joint Research Centre, European Commission: Ispra, Italy, 2020; p. 615. [Google Scholar]
- Spierling, S.; Venkatachalam, V.; Behnsen, H.; Herrmann, C.; Endres, H.-J. Bioplastics and Circular Economy—Performance Indicators to Identify Optimal Pathways. In Progress in Life Cycle Assessment; Schebek, L., Herrmann, C., Cerdas, F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 147–154. ISBN 978-3-319-92236-2. [Google Scholar]
- European Bioplastics. Bioplastic Market Development Update 2021; European Bioplastics: Berlin, Germany, 2021. [Google Scholar]
- Hottle, T.A.; Bilec, M.M.; Landis, A.E. Biopolymer Production and End of Life Comparisons Using Life Cycle Assessment. Resour. Conserv. Recycl. 2017, 122, 295–306. [Google Scholar] [CrossRef]
- Walker, S.; Rothman, R. Life Cycle Assessment of Bio-Based and Fossil-Based Plastic: A Review. J. Clean. Prod. 2020, 261, 121158. [Google Scholar] [CrossRef]
- Vural Gursel, I.; Moretti, C.; Hamelin, L.; Jakobsen, L.G.; Steingrimsdottir, M.M.; Junginger, M.; Høibye, L.; Shen, L. Comparative Cradle-to-Grave Life Cycle Assessment of Bio-Based and Petrochemical PET Bottles. Sci. Total Environ. 2021, 793, 148642. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Pelton, R.E.O.; Smith, T.M. Comparative Life Cycle Assessment of Fossil and Bio-Based Polyethylene Terephthalate (PET) Bottles. J. Clean. Prod. 2016, 137, 667–676. [Google Scholar] [CrossRef]
- Moretti, C.; Hamelin, L.; Jakobsen, L.G.; Junginger, M.H.; Steingrimsdottir, M.M.; Høibye, L.; Shen, L. Cradle-to-Grave Life Cycle Assessment of Single-Use Cups Made from PLA, PP and PET. Resour. Conserv. Recycl. 2021, 169, 105508. [Google Scholar] [CrossRef]
- Benavides, P.T.; Dunn, J.B.; Han, J.; Biddy, M.; Markham, J. Exploring Comparative Energy and Environmental Benefits of Virgin, Recycled, and Bio-Derived PET Bottles. ACS Sustain. Chem. Eng. 2018, 6, 9725–9733. [Google Scholar] [CrossRef]
- Piemonte, V. Bioplastic Wastes: The Best Final Disposition for Energy Saving. J. Polym. Environ. 2011, 19, 988–994. [Google Scholar] [CrossRef]
- Klemeš, J.J.; Fan, Y.V.; Jiang, P. Plastics: Friends or Foes? The Circularity and Plastic Waste Footprint. Energy Sour. Part A Recovery Util. Environ. Effects 2021, 43, 1549–1565. [Google Scholar] [CrossRef]
- Beigbeder, J. How to Manage Biocomposites Wastes End of Life? A Life Cycle Assessment Approach (LCA) Focused on Polypropylene (PP)/Wood Flour and Polylactic Acid (PLA)/Flax Fibres Biocomposites. Waste Manag. 2019, 83, 184–193. [Google Scholar] [CrossRef]
- Schwarz, A.E.; Ligthart, T.N.; Godoi Bizarro, D.; De Wild, P.; Vreugdenhil, B.; van Harmelen, T. Plastic Recycling in a Circular Economy; Determining Environmental Performance through an LCA Matrix Model Approach. Waste Manag. 2021, 121, 331–342. [Google Scholar] [CrossRef]
- Gala, A.B.; Raugei, M.; Fullana-i-Palmer, P. Introducing a New Method for Calculating the Environmental Credits of End-of-Life Material Recovery in Attributional LCA. Int. J. Life Cycle Assess. 2015, 20, 645–654. [Google Scholar] [CrossRef]
- Laurent, A.; Clavreul, J.; Bernstad, A.; Bakas, I.; Niero, M.; Gentil, E.; Christensen, T.H.; Hauschild, M.Z. Review of LCA Studies of Solid Waste Management Systems—Part II: Methodological Guidance for a Better Practice. Waste Manag. 2014, 34, 589–606. [Google Scholar] [CrossRef]
- SS-EN ISO 14040. Environmental Management—Life Cycle Assessment, Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- SS-EN ISO 14044. Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- PRé Sustainability, B.V. Simapro 9.3.; Pré Sustainability B.V.: Amersfoort, The Netherlands, 2022. [Google Scholar]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Kouloumpis, V.; Pell, R.S.; Correa-Cano, M.E.; Yan, X. Potential Trade-Offs between Eliminating Plastics and Mitigating Climate Change: An LCA Perspective on Polyethylene Terephthalate (PET) Bottles in Cornwall. Sci. Total Environ. 2020, 727, 138681. [Google Scholar] [CrossRef]
- Muranko, Ż.; Tassell, C.; Zeeuw van der Laan, A.; Aurisicchio, M. Characterisation and Environmental Value Proposition of Reuse Models for Fast-Moving Consumer Goods: Reusable Packaging and Products. Sustainability 2021, 13, 2609. [Google Scholar] [CrossRef]
- Cleary, J. Life Cycle Assessments of Wine and Spirit Packaging at the Product and the Municipal Scale: A Toronto, Canada Case Study. J. Clean. Prod. 2013, 44, 143–151. [Google Scholar] [CrossRef]
- Perugini, F.; Mastellone, M.L.; Arena, U. A Life Cycle Assessment of Mechanical and Feedstock Recycling Options for Management of Plastic Packaging Wastes. Environ. Prog. 2005, 24, 137–154. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Brouwer, M.T.; Thoden van Velzen, E.U.; Augustinus, A.; Soethoudt, H.; De Meester, S.; Ragaert, K. Predictive Model for the Dutch Post-Consumer Plastic Packaging Recycling System and Implications for the Circular Economy. Waste Manag. 2018, 71, 62–85. [Google Scholar] [CrossRef]
- Papong, S.; Malakul, P.; Trungkavashirakun, R.; Wenunun, P.; Chom-in, T.; Nithitanakul, M.; Sarobol, E. Comparative Assessment of the Environmental Profile of PLA and PET Drinking Water Bottles from a Life Cycle Perspective. J. Clean. Prod. 2014, 65, 539–550. [Google Scholar] [CrossRef]
- Shen, L.; Worrell, E.; Patel, M.K. Open-Loop Recycling: A LCA Case Study of PET Bottle-to-Fibre Recycling. Resour. Conserv. Recycl. 2010, 55, 34–52. [Google Scholar] [CrossRef]
- Donaj, P.J.; Kaminsky, W.; Buzeto, F.; Yang, W. Pyrolysis of Polyolefins for Increasing the Yield of Monomers’ Recovery. Waste Manag. 2012, 32, 840–846. [Google Scholar] [CrossRef]
- Liptow, C.; Tillman, A.-M. A Comparative Life Cycle Assessment Study of Polyethylene Based on Sugarcane and Crude Oil. J. Ind. Ecol. 2012, 16, 420–435. [Google Scholar] [CrossRef]
- Hooghoudt, T.; Pilippi, V.; Vilaplana Artigas, M. Polymer Degradation 2008. WO2014209117A1, 31 December 2014. [Google Scholar]
- Khoo, H.H. LCA of Plastic Waste Recovery into Recycled Materials, Energy and Fuels in Singapore. Resour. Conserv. Recycl. 2019, 145, 67–77. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; Yehia, F.Z.; Eshaq, Gh.; Rabie, A.M.; ElMetwally, A.E. Greener Routes for Recycling of Polyethylene Terephthalate. Egypt. J. Pet. 2016, 25, 53–64. [Google Scholar] [CrossRef]
- Anex, R.; Lifset, R. Life Cycle Assessment. Different Models for Different Purposes. J. Ind. Ecol. 2014, 18, 321–323. [Google Scholar] [CrossRef]
- Ekvall, T.; Weidema, B.P. System Boundaries and Input Data in Consequential Life Cycle Inventory Analysis. Int. J. Life Cycle Assess. 2004, 9, 161–171. [Google Scholar] [CrossRef]
- Goglio, P.; Williams, A.; Balta-Ozkan, N.; Harris, N.R.P.; Williamson, P.; Huisingh, D.; Zhang, Z.; Tavoni, M. Advances and Challenges of Life Cycle Assessment (LCA) of Greenhouse Gas Removal Technologies to Fight Climate Changes. J. Clean. Prod. 2020, 244, 118896. [Google Scholar] [CrossRef]
- López-Fonseca, R.; Duque-Ingunza, I.; de Rivas, B.; Flores-Giraldo, L.; Gutiérrez-Ortiz, J.I. Kinetics of Catalytic Glycolysis of PET Wastes with Sodium Carbonate. Chem. Eng. J. 2011, 168, 312–320. [Google Scholar] [CrossRef]
- López-Fonseca, R.; Duque-Ingunza, I.; de Rivas, B.; Arnaiz, S.; Gutiérrez-Ortiz, J.I. Chemical Recycling of Post-Consumer PET Wastes by Glycolysis in the Presence of Metal Salts. Polym. Degrad. Stab. 2010, 95, 1022–1028. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, S.H. Poly (Ethylene Terephthalate) Recycling for High Value Added Textiles. Fash. Text. 2014, 1, 1. [Google Scholar] [CrossRef]
- Macedo, I.d.C.; Verde Leal, M.R.L.; Ramos da Silva, J.E.A. Assessment of Greenhouse Gas Emissions in the Production and Use of Fuel Ethanol in Brazil; Secretariat of the Environment: São Paulo, Brazil, 2004. [Google Scholar]
- Tsiropoulos, I.; Faaij, A.P.C.; Lundquist, L.; Schenker, U.; Briois, J.F.; Patel, M.K. Life Cycle Impact Assessment of Bio-Based Plastics from Sugarcane Ethanol. J. Clean. Prod. 2015, 90, 114–127. [Google Scholar] [CrossRef]
- Albers, A.; Collet, P.; Lorne, D.; Benoist, A.; Hélias, A. Coupling Partial-Equilibrium and Dynamic Biogenic Carbon Models to Assess Future Transport Scenarios in France. Appl. Energy 2019, 239, 316–330. [Google Scholar] [CrossRef]
- Lefebvre, D.; Goglio, P.; Williams, A.; Manning, D.A.C.; de Azevedo, A.C.; Bergmann, M.; Meersmans, J.; Smith, P. Assessing the Potential of Soil Carbonation and Enhanced Weathering through Life Cycle Assessment: A Case Study for Sao Paulo State, Brazil. J. Clean. Prod. 2019, 233, 468–481. [Google Scholar] [CrossRef]
- Mendoza Beltran, A.; Chiantore, M.; Pecorino, D.; Corner, R.A.; Ferreira, J.G.; Cò, R.; Fanciulli, L.; Guinée, J.B. Accounting for Inventory Data and Methodological Choice Uncertainty in a Comparative Life Cycle Assessment: The Case of Integrated Multi-Trophic Aquaculture in an Offshore Mediterranean Enterprise. Int. J. Life Cycle Assess. 2018, 23, 1063–1077. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and Chemical Recycling of Solid Plastic Waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Bergerson, J.A.; Brandt, A.; Cresko, J.; Carbajales-Dale, M.; MacLean, H.L.; Matthews, H.S.; McCoy, S.; McManus, M.; Miller, S.A.; Morrow, W.R.; et al. Life Cycle Assessment of Emerging Technologies: Evaluation Techniques at Different Stages of Market and Technical Maturity. J. Ind. Ecol. 2020, 24, 11–25. [Google Scholar] [CrossRef]
- Civancik-Uslu, D.; Puig, R.; Ferrer, L.; Fullana-i-Palmer, P. Influence of End-of-Life Allocation, Credits and Other Methodological Issues in LCA of Compounds: An in-Company Circular Economy Case Study on Packaging. J. Clean. Prod. 2019, 212, 925–940. [Google Scholar] [CrossRef]
- Antelava, A.; Damilos, S.; Hafeez, S.; Manos, G.; Al-Salem, S.M.; Sharma, B.K.; Kohli, K.; Constantinou, A. Plastic Solid Waste (PSW) in the Context of Life Cycle Assessment (LCA) and Sustainable Management. Environ. Manag. 2019, 64, 230–244. [Google Scholar] [CrossRef]
- Moni, S.M.; Mahmud, R.; High, K.; Carbajales-Dale, M. Life Cycle Assessment of Emerging Technologies: A Review. J. Ind. Ecol. 2020, 24, 52–63. [Google Scholar] [CrossRef]
- Arzoumanidis, I.; Fullana-i-Palmer, P.; Raggi, A.; Gazulla, C.; Raugei, M.; Benveniste, G.; Anglada, M. Unresolved Issues in the Accounting of Biogenic Carbon Exchanges in the Wine Sector. J. Clean. Prod. 2014, 82, 16–22. [Google Scholar] [CrossRef]
- Bach, V.; Lehmann, A.; Görmer, M.; Finkbeiner, M. Product Environmental Footprint (PEF) Pilot Phase—Comparability over Flexibility? Sustainability 2018, 10, 2898. [Google Scholar] [CrossRef]
- Goglio, P.; Owende, P.M.O. A Screening LCA of Short Rotation Coppice Willow (Salix sp.) Feedstock Production System for Small-Scale Electricity Generation. Biosyst. Eng. 2009, 103, 389–394. [Google Scholar] [CrossRef]
- González, A.; Riba, J.-R.; Puig, R.; Navarro, P. Review of Micro- and Small-Scale Technologies to Produce Electricity and Heat from Mediterranean Forests’ Wood Chips. Renew. Sustain. Energy Rev. 2015, 43, 143–155. [Google Scholar] [CrossRef]
- Kimming, M.; Sundberg, C.; Nordberg, Ǻ.; Baky, A.; Bernesson, S.; Norén, O.; Hansson, P.-A. Biomass from Agriculture in Small-Scale Combined Heat and Power Plants—A Comparative Life Cycle Assessment. Biomass Bioenergy 2011, 35, 1572–1581. [Google Scholar] [CrossRef]
Impact | R-B-H | R-F-H | M-B-H | M-F-H | C-B-H | C-F-H | R-B-P | R-F-P | M-B-P | M-F-P | C-B-P | C-F-P |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sensitivity Analysis 1: 100% recycled plastic included in recycled bottle (expressed in factor changes) | ||||||||||||
CC | 16.5 | 14.9 | 11.5 | 11.2 | 5.6 | 5.5 | 8.7 | 8.4 | ||||
FRS | 6.7 | 7.2 | 6.6 | 6.8 | 4.3 | 4.3 | 4.3 | 4.3 | ||||
MRS | 16.2 | 7.8 | 8.1 | 7.3 | 5.0 | 4.8 | 6.2 | 5.5 | ||||
Sensitivity Analysis 2: −25% sugarcane yield for biobased feedstocks (expressed in % changes) | ||||||||||||
CC | 0.5% | 2.3% | 1.0% | 0.1% | 0.2% | 0.7% | ||||||
FRS | 5.0% | 7.2% | 4.2% | 0.8% | 1.0% | 1.3% | ||||||
MRS | 2.4% | 10.8% | 1.6% | 0.4% | 0.6% | 1.5% | ||||||
Sensitivity Analysis 3: −10% blow moulding efficiency for both virgin and recycled bottles (expressed in % changes) | ||||||||||||
CC | −10% | −3% | −30% | 3% | −30% | −14% | −10% | −2% | −15% | 1% | −26% | 26% |
FRS | −10% | −3% | −11% | 1% | −11% | −7% | −10% | −1% | −10% | 0% | −10% | 4% |
MRS | −10% | −1% | −30% | 1% | −17% | −7% | −10% | −1% | −13% | 1% | −17% | 12% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helmes, R.J.K.; Goglio, P.; Salomoni, S.; van Es, D.S.; Vural Gursel, I.; Aramyan, L. Environmental Impacts of End-of-Life Options of Biobased and Fossil-Based Polyethylene Terephthalate and High-Density Polyethylene Packaging. Sustainability 2022, 14, 11550. https://doi.org/10.3390/su141811550
Helmes RJK, Goglio P, Salomoni S, van Es DS, Vural Gursel I, Aramyan L. Environmental Impacts of End-of-Life Options of Biobased and Fossil-Based Polyethylene Terephthalate and High-Density Polyethylene Packaging. Sustainability. 2022; 14(18):11550. https://doi.org/10.3390/su141811550
Chicago/Turabian StyleHelmes, Roel J. K., Pietro Goglio, Silvia Salomoni, Daan S. van Es, Iris Vural Gursel, and Lusine Aramyan. 2022. "Environmental Impacts of End-of-Life Options of Biobased and Fossil-Based Polyethylene Terephthalate and High-Density Polyethylene Packaging" Sustainability 14, no. 18: 11550. https://doi.org/10.3390/su141811550
APA StyleHelmes, R. J. K., Goglio, P., Salomoni, S., van Es, D. S., Vural Gursel, I., & Aramyan, L. (2022). Environmental Impacts of End-of-Life Options of Biobased and Fossil-Based Polyethylene Terephthalate and High-Density Polyethylene Packaging. Sustainability, 14(18), 11550. https://doi.org/10.3390/su141811550