Kinetic Analysis of Thermal Decomposition Process of Emulsion Explosive Matrix in the Presence of Sulfide Ores
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sulfide Ores
2.2. Emulsion Explosive Matrix
2.3. STA (Simultaneous Thermal Analyzer)
3. Results and Discussion
3.1. TG/DTG of Samples with Different Heating Rates
3.2. Thermal Decomposition Behavior of Different Samples
3.3. Thermal Oxidative Decomposition Kinetics Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Cao, Y.; Tang, Y.; Yao, M.; Shang, P.; Zou, Z.; Qiu, G.; Xiong, X. Geological characteristics and resource potential of sulfur deposits in China. Earth Sci. Front. 2018, 25, 179–195. [Google Scholar]
- Gu, D.; Zhou, K. Development theme of the modern metal mining. Metal Mine. 2012, 41, 1. [Google Scholar]
- Steis, T.; Evans, W. Sulfide ore explosives exothermic reactions. Cim Bull. 1995, 88, 54–57. [Google Scholar]
- Pan, W.; Jin, H.; Liu, Z.; Tang, J.; Cheng, S. Experimental and theoretical study on strengthening leaching of sulfide ores by surfactants. Process Saf. Environ. Protect. 2020, 137, 289–299. [Google Scholar] [CrossRef]
- Gunawan, R.; Freij, S.; Zhang, D.K.; Beach, F.; Littlefair, M. A mechanistic study into the reactions of ammonium nitrate with pyrite. Chem. Eng. Sci. 2006, 61, 5781–5790. [Google Scholar] [CrossRef]
- Priyananda, P.; Djerdjev, A.M.; Gore, J.; Neto, C.; Beattie, J.K.; Hawkett, B.S. Premature detonation of an NH4NO3 emulsion in reactive ground. J. Hazard. Mater. 2015, 283, 314–320. [Google Scholar] [CrossRef]
- Nakmura, H.; Iwasaki, M.; Sato, S.; Hara, Y. The reaction of ammonium nitrate with pyrite. J. Hazard. Mater. 1994, 36, 293–303. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Q.; Fu, X. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite. J. Hazard. Mater. 2015, 300, 702–710. [Google Scholar] [CrossRef]
- Liu, F.; Zhu, S.; Xing, H.; Zhang, H. Comparison of Thermal Decomposition Characteristics of Emulsion Explosives in Two Atmospheres. Initiat. Pyrotech. 2018, 4, 40–44. [Google Scholar]
- Djerdjev, A.M.; Priyananda, P.; Gore, J.; Beattie, J.K.; Neto, C.; Hawkett, B.S. The mechanism of the spontaneous detonation of ammonium nitrate in reactive grounds. J. Environ. Chem. Eng. 2018, 6, 281–288. [Google Scholar] [CrossRef]
- Vázquez, M.; Moreno-Ventas, I.; Raposo, I.; Palma, A.; Díaz, M.J. Kinetic of pyrite thermal degradation under oxidative environment. J. Therm. Anal. Calorim. 2020, 141, 1157–1163. [Google Scholar] [CrossRef]
- Ruan, S.; Wang, C.; Jie, X.; Yin, F.; Zhang, Y.; Yao, Z.; Chen, Y. Kinetics of pyrite multi-step thermal decomposition in refractory gold sulphide concentrates. J. Therm. Anal. Calorim. 2022, 147, 3689–3702. [Google Scholar] [CrossRef]
- Yang, F.; Wu, C.; Li, Z. Spontaneous combustion tendency of fresh and pre-oxidized sulfide ores. J. Cent. South Univ. 2014, 21, 715–719. [Google Scholar] [CrossRef]
- Liu, H.; Xiang, C.L.; Hong, R.; Song, Y.; Jin, K.; Zhu, K.; Yang, C.; Lv, C. Thermal behavior and kinetics of sulfide concentrates. Therm. Sci. 2019, 23, 2801–2811. [Google Scholar] [CrossRef] [Green Version]
- Lopes, F.C.R.; Tannous, K. Coconut fiber pyrolysis: Specific heat capacity and enthalpy of reaction through thermogravimetry and differential scanning calorimetry. Thermochim. Acta 2022, 707, 179087. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, H.; Liu, K.H.; Shu, C.M. Macrocharacteristics and the inhibiting effect of coal spontaneous combustion with various treatment durations of ionic liquids. Thermochim. Acta 2021, 703, 179012. [Google Scholar] [CrossRef]
- Chanturvedi, S.; Dave, P.N. Review on Thermal Decomposition of Ammonium Nitrate. J. Energ. Mater. 2013, 31, 1–26. [Google Scholar] [CrossRef]
- Xiang, C.; Liu, H.; Mu, J.; Lang, Z.; Wang, H.; Nie, R.; Kong, F. Thermodynamic model and kinetic compensation effect of spontaneous combustion of sulfur concentrates. ACS Omega 2020, 5, 20618–20629. [Google Scholar] [CrossRef]
- Li, X.; Shang, Y.; Chen, Z.; Chen, X.; Niu, F.; Yang, M.; Zhang, Y. Study of spontaneous combustion mechanism and heat stability of sulfide minerals powder based on thermal analysis. Powder Technol. 2017, 309, 68–73. [Google Scholar] [CrossRef]
- Wu, C.; Meng, T. Experimental investigation on chemical thermodynamic behavior of sulfide ores during spontaneous combustion. West-China Explor. Eng. 1995, 7, 57–65. [Google Scholar]
- Gu, D.; Li, X. Modern Mining Science and Technology for Metal Mineral Resources; China Metallurgical Industry Press: Beijing, China, 2006. [Google Scholar]
- Gunawan, R.; Zhang, D. Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite. J. Hazard. Mater. 2009, 165, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Fujisato, K.; Habu, H.; Miyake, A.; Hori, K. Thermal decomposition of ammonium nitrate modeling of thermal dissociation in thermal analysis. Sci. Technol. Energ. Mater. 2014, 75, 28–36. [Google Scholar]
- Babrauskas, V.; Leggtet, D. Thermal decomposition of ammonium nitrate. Fire Mater. 2020, 44, 250–268. [Google Scholar] [CrossRef]
- Gupta, G.K.; Mondal, M.K. Kinetics and thermodynamic analysis of maize cob pyrolysis for its bioenergy potential using thermogravimetric analyzer. J. Therm. Anal. Calorim. 2019, 137, 1431–1441. [Google Scholar] [CrossRef]
- Jayapal, S.N.M.; Dubey, V.K.; Dinesh, S.; Wahab, A.; Khaleel, A.A.; Kadiresh, P.N. Thermal stability and kinetic study of blended Beeswax-ethylene vinyl acetate based hybrid rocket fuels. Thermochim. Acta 2021, 702, 178989. [Google Scholar] [CrossRef]
- Li, X.; Wu, T.; Zhou, Q.; Peng, Z.; Liu, G. Kinetics of oxidation roasting of molybdenite with different particle sizes. Trans. Nonferrous Met. Soc. China 2021, 31, 842–852. [Google Scholar] [CrossRef]
Compositions | Ammonium Nitrate | Sodium Nitrate | Compound Wax | Water | Emulsifier |
---|---|---|---|---|---|
wt% | 70 | 14 | 9 | 4 | 3 |
Heating Rate (K/min) | T0 (°C) | Tf (°C) | Tm (°C) | Heating Rate (K/min) | T0 (°C) | Tf (°C) | Tm (°C) | ||
---|---|---|---|---|---|---|---|---|---|
(a) | 3 | 231.83 | 273.83 | 267.60 | (c) | 3 | 232.52 | 259.24 | 254.79 |
5 | 234.91 | 282.96 | 273.57 | 5 | 245.19 | 278.67 | 271.86 | ||
10 | 253.43 | 298.38 | 286.43 | 10 | 254.80 | 290.48 | 283.94 | ||
15 | 281.33 | 305.95 | 296.28 | 15 | 264.79 | 301.41 | 292.32 | ||
(b) | 3 | 193.99 | 230.16 | 217.13 | (d) | 3 | 170.76 | 274.21 | 170.85 |
5 | 207.39 | 238.57 | 230.78 | 5 | 171.42 | 283.89 | 172.56 | ||
10 | 222.65 | 252.43 | 244.50 | 10 | 175.41 | 292.25 | 177.03 | ||
15 | 227.59 | 260.29 | 250.93 | 15 | 188.49 | 307.66 | 193.95 |
Ea, kJ/mol | R2 | |||||||
---|---|---|---|---|---|---|---|---|
3 K/min | 5 K/min | 10 K/min | 15 K/min | 3 K/min | 5 K/min | 10 K/min | 15 K/min | |
(a) | 83.44 | 90.42 | 112.9 | 102.4 | 0.99891 | 0.99995 | 0.99984 | 0.99953 |
(b) | 55.48 | 47.32 | 64.14 | 66.64 | 0.99914 | 0.99804 | 0.99833 | 0.99950 |
(c) | 237.0 | 226.0 | 216.2 | 228.2 | 0.99892 | 0.99966 | 0.99989 | 0.99993 |
(d) | 51.70 | 33.84 | 22.59 | 13.72 | 0.97123 | 0.99790 | 0.99118 | 0.98887 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Guo, Y.; Lai, Y.; Hong, Y.; Yuan, S. Kinetic Analysis of Thermal Decomposition Process of Emulsion Explosive Matrix in the Presence of Sulfide Ores. Sustainability 2022, 14, 11614. https://doi.org/10.3390/su141811614
Yang F, Guo Y, Lai Y, Hong Y, Yuan S. Kinetic Analysis of Thermal Decomposition Process of Emulsion Explosive Matrix in the Presence of Sulfide Ores. Sustainability. 2022; 14(18):11614. https://doi.org/10.3390/su141811614
Chicago/Turabian StyleYang, Fuqiang, Yong Guo, Yong Lai, Yidu Hong, and Shuaiqi Yuan. 2022. "Kinetic Analysis of Thermal Decomposition Process of Emulsion Explosive Matrix in the Presence of Sulfide Ores" Sustainability 14, no. 18: 11614. https://doi.org/10.3390/su141811614
APA StyleYang, F., Guo, Y., Lai, Y., Hong, Y., & Yuan, S. (2022). Kinetic Analysis of Thermal Decomposition Process of Emulsion Explosive Matrix in the Presence of Sulfide Ores. Sustainability, 14(18), 11614. https://doi.org/10.3390/su141811614