Get Rid of Marine Pollution: Bioremediation an Innovative, Attractive, and Successful Cleaning Strategy
Abstract
:1. Introduction
- 1.
- From Land.
- 2.
- From Air.
- 3.
- From Water.
2. Toxic Substances and Their Effects
2.1. Heavy Metals
2.2. Microplastics and Nanoplastics
2.3. Pesticides
2.4. Common Compounds inside Personal Care Products
2.5. The Combined Action of Pollutants
2.6. Contamination Due to Biological Pollutants
- Pathogenic bacteria;
- Coliforms;
- Fecal streptococci;
- Clostridium perfringens;
- Viruses;
- Protozoa;
- Helminths.
3. Bioaccumulation, Bioconcentration, and Biomagnification
Bioindicators
4. Bioremediation of Marine Ecosystems
4.1. Biostimulation
4.2. Bioaugmentation
- Check that the substrate concentration is sufficient to support the growth of the microbial population;
- Be certain that the system does not have any components that may inhibit the process, such as temperature;
- Competition with other micro-organisms causes growth inhibition;
- Inoculated micro-organisms may degrade other organics rather than the target pollutant substrate;
- Make sure the number of micro-organisms is sufficient for the process;
- Use organisms specific to the type of substrate to be degraded.
5. Pathways for Bioremediation of Marine Ecosystems
5.1. Biodegradation of Petroleum Hydrocarbons
5.2. Bioremediation of Heavy Metal Pollutants
5.3. Bioremediation of Marine Plastic Pollution
- Biodeterioration;
- Biofragmentation;
- Assimilation;
- Mineralization.
5.4. Bioremediation of Pesticides
5.5. Genetic Manipulation in Marine Bacteria to Enhance Bioremediation Efficiency
5.6. Use of Nanomaterials for Marine Bioremediation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trček, B.; Žigon, D.; Zidar, V.K.; Auersperger, P. The fate of benzotriazole pollutants in an urban oxic intergranular aquifer. Water Res. 2018, 131, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Rocha, A.C.; Camacho, C.; Eljarrat, E.; Peris, A.; Aminot, Y.; Readman, J.W.; Boti, V.; Nannou, C.; Marques, A.; Nunes, M.L.; et al. Bioaccumulation of persistent and emerging pollutants in wild sea urchin Paracentrotus lividus. Environ. Res. 2018, 161, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Zicarelli, G.; Multisanti, C.R.; Falco, F.; Faggio, C. Evaluation of toxicity of Personal Care Products (PCPs) in freshwaters: Zebrafish as a model. Environ. Toxicol. Pharmacol. 2022, 94, 103923. [Google Scholar] [CrossRef]
- Porretti, M.; Arrigo, F.; Di Bella, G.; Faggio, C. Impact of pharmaceutical products on zebrafish: An effective tool to assess aquatic pollution. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 261, 109439. [Google Scholar] [CrossRef] [PubMed]
- Boscolo, C.N.P.; Pereira, T.S.B.; Batalhão, I.G.; Dourado, P.L.R.; Schlenk, D.; de Almeida, E.A. Diuron metabolites act as endocrine disruptors and alter aggressive behaviour in Nile tilapia (Oreochromis niloticus). Chemosphere 2018, 191, 832–838. [Google Scholar] [CrossRef]
- Santos, D.; Luzio, A.; Coimbra, A.M. Zebrafish sex differentiation and gonad development: A review on the impact of environmental factors. Aquat. Toxicol. 2017, 191, 141–163. [Google Scholar] [CrossRef]
- Alam, M.W.; Xiangmin, X.; Ahamed, R. Protecting the marine and coastal water from land-based sources of pollution in the northern Bay of Bengal: A legal analysis for implementing a national comprehensive act. Environ. Chall. 2021, 4, 100154. [Google Scholar] [CrossRef]
- Pagano, M.; Vazzana, I.; Gentile, A.; Caracappa, G.; Faggio, C. Hematological and biochemical parameters in Sea turtles (Caretta caretta) after stranding. Reg. Stud. Mar. Sci. 2019, 32, 100832. [Google Scholar] [CrossRef]
- Aliko, V.; Korriku, R.S.; Pagano, M.; Faggio, C. Double-edged sword: Fluoxetine and ibuprofen as development jeopardizers and apoptosis’ inducers in common toad, Bufo bufo, tadpoles. Sci. Total Environ. 2021, 776, 145945. [Google Scholar] [CrossRef]
- Catsiki, V.A.; Florou, H. Study on the behavior of the heavy metals Cu, Cr, Ni, Zn, Fe, Mn and 137Cs in an estuarine ecosystem using Mytilus galloprovincialis as a bioindicator species: The case of Thermaikos gulf, Greece. J. Environ. Radioact. 2006, 86, 31–44. [Google Scholar] [CrossRef]
- Wen, B.; Zhang, N.; Jin, S.R.; Chen, Z.Z.; Gao, J.Z.; Liu, Y.; Liu, H.P.; Xu, Z. Microplastics have a more profound impact than elevated temperatures on the predatory performance, digestion, and energy metabolism of an Amazonian cichlid. Aquat. Toxicol. 2018, 195, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Torre, A.; Trischitta, F.; Corsaro, C.; Mallamace, D.; Faggio, C. Digestive cells from Mytilus galloprovincialis show a partial regulatory volume decrease following acute hypotonic stress through mechanisms involving inorganic ions. Cell Biochem. Funct. 2013, 31, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Cajaraville, M.P.; Bebianno, M.J.; Blasco, J.; Porte, C.; Sarasquete, C.; Viarengo, A. The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: A practical approach. Sci. Total Environ. 2000, 247, 295–311. [Google Scholar] [CrossRef]
- Leblebici, Z.; Aksoy, A.; Duman, F. Influence of salinity on the growth and heavy metal accumulation capacity of Spirodela polyrrhiza (Lemnaceae). Turk. J. Biol. 2011, 35, 215–220. [Google Scholar] [CrossRef]
- Pagano, M.; Porcino, C.; Briglia, M.; Fiorino, E.; Vazzana, M.; Silvestro, S.; Faggio, C. The influence of exposure of cadmium chloride and zinc chloride on haemolymph and digestive gland cells from Mytilus galloprovincialis. Int. J. Environ. Res. 2017, 11, 207–216. [Google Scholar] [CrossRef]
- Aliko, V.; Qirjo, M.; Sula, E.; Morina, V.; Faggio, C. Antioxidant defence system, immune response and erythron profile modulation in goldfish, Carassius auratus, after acute manganese treatment. Fish Shellfish Immunol. 2018, 76, 101–109. [Google Scholar] [CrossRef]
- Sula, E.; Aliko, V.; Marku, E.; Nuro, A.; Faggio, C. Evaluation of kidney histopathological alterations in Crucian Carp, Carassius carassius, from a pesticide and PCB-contaminated freshwater ecosystem, using light microscopy and organ index mathematical model. Int. J. Aquat. Biol. 2020, 8, 154–165. [Google Scholar]
- Kemp, M.; Wepener, V.; De Kock, K.N.; Wolmarans, C.T. Metallothionein induction as indicator of low level metal exposure to aquatic macroinvertebrates from a relatively unimpacted river system in South Africa. Bull. Environ. Contam. Toxicol. 2017, 99, 662–667. [Google Scholar] [CrossRef]
- Singh, R.; Gautam, N.; Mishra, A.; Gupta, R. Heavy metals and living systems: An overview. Indian J. Pharmacol. 2011, 43, 246. [Google Scholar] [CrossRef]
- Torre, A.; Trischitta, F.; Faggio, C. Effect of CdCl2 on Regulatory Volume Decrease (RVD) in Mytilus galloprovincialis digestive cells. Toxicol. In Vitr. 2013, 27, 1260–1266. [Google Scholar] [CrossRef]
- Matozzo, V.; Ballarin, L.; Pampanin, D.M.; Marin, M.G. Effects of copper and cadmium exposure on functional responses of hemocytes in the clam, Tapes philippinarum. Arch. Environ. Contam. Toxicol. 2001, 41, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Balbus, J.M.; Boxall, A.B.; Fenske, R.A.; McKone, T.E.; Zeise, L. Implications of global climate change for the assessment and management of human health risks of chemicals in the natural environment. Environ. Toxicol. Chem. 2013, 32, 62–78. [Google Scholar] [CrossRef] [PubMed]
- Chromcova, L.; Blahova, J.; Zivna, D.; Plhalova, L.; Di Tocco, F.C.; Divisoval, L.; Prokes, M.; Faggio, C.; Tichy, F.; Svobodova, Z. NeemAzal T/S—toxicity to early-life stages of common carp (Cyprinus carpio L.). Veterinární Med. 2015, 60, 23–30. [Google Scholar] [CrossRef]
- Bartoskova, M.; Dobsikova, R.; Stancova, V.; Zivna, D.; Blahova, J.; Marsalek, P.; Zelníckova, L.; Bartos, M.; Di Tocco, F.C.; Faggio, C. Evaluation of ibuprofen toxicity for zebrafish (Danio rerio) targeting on selected biomarkers of oxidative stress. Neuro Endocrinol. Lett. 2013, 34, 102–108. [Google Scholar] [PubMed]
- Messina, C.M.; Faggio, C.; Laudicella, A.V.; Sanfilippo, M.; Trischitta, F.; Santulli, A. Effect of sodium dodecyl sulfate (SDS) on stress response in the Mediterranean mussel (Mytilus galloprovincialis): Regulatory volume decrease (RVD) and modulation of biochemical markers related to oxidative stress. Aquat. Toxicol. 2014, 157, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Authman, M.M.; Zaki, M.S.; Khallaf, E.A.; Abbas, H.H. Use of fish as bio-indicator of the effects of heavy metals pollution. J. Aquac. Res. Dev. 2015, 6, 4. [Google Scholar] [CrossRef]
- Shahjahan, M.; Taslima, K.; Rahman, M.S.; Al-Emran, M.; Alam, S.I.; Faggio, C. Effects of heavy metals on fish physiology—A review. Chemosphere 2022, 300, 134519. [Google Scholar] [CrossRef]
- Gobi, N.; Vaseeharan, B.; Rekha, R.; Vijayakumar, S.; Faggio, C. Bioaccumulation, cytotoxicity and oxidative stress of the acute exposure selenium in Oreochromis mossambicus. Ecotoxicol. Environ. Saf. 2018, 162, 147–159. [Google Scholar] [CrossRef]
- Curpan, A.S.; Impellitteri, F.; Plavan, G.; Ciobica, A.; Faggio, C. Mytilus galloprovincialis: An essential, low-cost model organism for the impact of xenobiotics on oxidative stress and public health. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 256, 109302. [Google Scholar] [CrossRef]
- LI, W.C.; Tse, H.F.; Fok, L. Plastic waste in the marine environment: A review of sources, occurrence and effects. Sci. Total Environ. 2016, 566, 333–349. [Google Scholar] [CrossRef]
- Chia, R.W.; Lee, J.Y.; Kim, H.; Jang, J. Microplastic pollution in soil and groundwater: A review. Environ. Chem. Lett. 2021, 19, 4211–4224. [Google Scholar] [CrossRef]
- Alimba, C.G.; Faggio, C.; Sivanesan, S.; Ogunkanmi, A.L.; Krishnamurthi, K. Micro (nano)-plastics in the environment and risk of carcinogenesis: Insight into possible mechanisms. J. Hazard. Mater. 2021, 416, 126143. [Google Scholar] [CrossRef]
- GESAMP. Sources, Fate and Effects of Microplastics in the Marine Environment (Part 2). 2016. Available online: http://www.gesamp.org/publications/microplastics-in-the-marine-environment-part-2 (accessed on 18 August 2022).
- Sussarellu, R.; Suquet, M.; Thomas, Y.; Lambert, C.; Fabioux, C.; Pernet, M.E.J.; Le Goic, N.; Epelboin, Y.; Corporeau, C.; Guyomarch, J.; et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl. Acad. Sci. USA 2016, 113, 2430–2435. [Google Scholar] [CrossRef] [PubMed]
- Tosetto, L.; Brown, C.; Williamson, J.E. Microplastics on beaches: Ingestion and behavioural consequences for beachhoppers. Mar. Biol. 2016, 163, 199. [Google Scholar] [CrossRef]
- Mishra, S.; charan Rath, C.; Das, A.P. Marine microfiber pollution: A review on present status and future challenges. Mar. Pollut. Bull. 2019, 140, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, J.; Solomando, A.; Cohen-Sánchez, A.; Pinya, S.; Tejada, S.; Ferriol, P.; Mateu-Vicens, G.; Box, A.; Faggio, C.; Sureda, A. Effects of Human Activity on Markers of Oxidative Stress in the Intestine of Holothuria tubulosa, with Special Reference to the Presence of Microplastics. Int. J. Mol. Sci. 2022, 23, 9018. [Google Scholar] [CrossRef]
- Prokić, M.D.; Gavrilović, B.R.; Radovanović, T.B.; Gavrić, J.P.; Petrović, T.G.; Despotović, S.G.; Faggio, C. Studying microplastics: Lessons from evaluated literature on animal model organisms and experimental approaches. J. Hazard. Mater. 2021, 414, 125476. [Google Scholar] [CrossRef]
- Sula, E.; Aliko, V.; Barceló, D.; Faggio, C. Combined Effects of Moderate Hypoxia, Pesticide and PCBs Upon Crucian Carp Fish, Carassius carassius, From a Freshwater Lake—In situ Ecophysiological Approach. Aquat. Toxicol. 2020, 228, 105644. [Google Scholar] [CrossRef]
- Yalsuyi, A.M.; Vajargah, M.F.; Hajimoradloo, A.; Galangash, M.M.; Prokić, M.D.; Faggio, C. Evaluation of behavioural changes and tissue damages in common carp (Cyprinus carpio) after exposure to the herbicide glyphosate. Vet. Sci. 2021, 8, 218. [Google Scholar] [CrossRef]
- Ayoola, S.O. Toxicity of glyphosate herbicide on Nile tilapia (Oreochromis niloticus) juvenile. Afr. J. Agric. Res. 2008, 3, 825–834. [Google Scholar]
- Fiorino, E.; Sehonova, P.; Plhalova, L.; Blahova, J.; Svobodova, Z.; Faggio, C. Effects of glyphosate on early life stages: Comparison between Cyprinus carpio and Danio rerio. Environ. Sci. Pollut. Res. 2018, 25, 8542–8549. [Google Scholar] [CrossRef] [PubMed]
- Matozzo, V.; Fabrello, J.; Masiero, L.; Ferraccioli, F.; Finos, L.; Pastore, P.; Di Gangi, I.M.; Bogialli, S. Ecotoxicological risk assessment for the herbicide glyphosate to non-target aquatic species: A case study with the mussel Mytilus galloprovincialis. Environ. Pollut. 2018, 233, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Stehle, S.; Schulz, R. Insecticide contamination of global surface waters. Proc. Natl. Acad. Sci. USA 2015, 112, 5750–5755. [Google Scholar] [CrossRef] [PubMed]
- Stara, A.; Pagano, M.; Albano, M.; Savoca, S.; Di Bella, G.; Albergamo, A.; Zuskova, E.; Sandova, M.; Velisek, J.; Fabrello, J.; et al. Effects of long-term exposure of Mytilus galloprovincialis to thiacloprid: A multi-biomarker approach. Environ. Pollut. 2021, 289, 117892. [Google Scholar] [CrossRef] [PubMed]
- Barathinivas, A.; Ramya, S.; Neethirajan, K.; Jayakumararaj, R.; Pothiraj, C.; Balaji, P.; Faggio, C. Ecotoxicological Effects of Pesticides on Hematological Parameters and Oxidative Enzymes in Freshwater Catfish, Mystus keletius. Sustainability 2022, 14, 9529. [Google Scholar] [CrossRef]
- Faggio, C.; Pagano, M.; Alampi, R.; Vazzana, I.; Felice, M.R. Cytotoxicity, haemolymphatic parameters, and oxidative stress following exposure to sub-lethal concentrations of quaternium-15 in Mytilus galloprovincialis. Aquat. Toxicol. 2016, 180, 258–265. [Google Scholar] [CrossRef]
- Machado, M.D.; Soares, E.V. Toxicological effects induced by the biocide triclosan on Pseudokirchneriella subcapitata. Aquat. Toxicol. 2021, 230, 105706. [Google Scholar] [CrossRef]
- Huang, Y.Q.; Liang, C.H.; He, L.; Tian, J.; Liang, C.S.; Chen, X.; Liu, Z.Y. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J. Clin. Oncol. 2016, 34, 2157–2164. [Google Scholar] [CrossRef]
- Meador, J.P.; Yeh, A.; Gallagher, E.P. Adverse metabolic effects in fish exposed to contaminants of emerging concern in the field and laboratory. Environ. Pollut. 2018, 236, 850–861. [Google Scholar] [CrossRef]
- Dar, O.I.; Aslam, R.; Sharma, S.; Jia, A.Q.; Kaur, A.; Faggio, C. Biomolecular alterations in the early life stages of four food fish following acute exposure of Triclosan. Environ. Toxicol. Pharmacol. 2022, 91, 103820. [Google Scholar] [CrossRef]
- Sharma, S.; Iqbal Dar, O.; Andotra, M.; Sharma, S.; Kaur, A.; Faggio, C. Environmentally relevant concentrations of Triclosan induce cyto-genotoxicity and biochemical alterations in the hatchlings of Labeo rohita. Appl. Sci. 2021, 11, 10478. [Google Scholar] [CrossRef]
- Pernoncini, K.V.; Montagnini, B.G.; de Góes, M.L.M.; Garcia, P.C.; Gerardin, D.C.C. Evaluation of reproductive toxicity in rats treated with triclosan. Reprod. Toxicol. 2018, 75, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, J.; Bai, C.; Chen, Y.; Zhou, H.; Liu, Y.; Shi, Q.; Pan, W.; Dong, H.; Li, L.; Xu, H.; et al. Environmental relevant concentrations of benzophenone-3 induced developmental neurotoxicity in zebrafish. Sci. Total Environ. 2020, 721, 137686. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, W.; Chen, L.; Wang, J.; Liu, T. The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour. Technol. 2013, 128, 745–750. [Google Scholar] [CrossRef]
- Houghton, J.; Holt, M.M.; Giles, D.A.; Hanson, M.B.; Emmons, C.K.; Hogan, J.T.; Branch, T.A.; VanBlaricom, G.R. The Relationship between Vessel Traffic and Noise Levels Received by Killer Whales (Orcinus orca). PLoS ONE 2015, 10, e0140119. [Google Scholar] [CrossRef]
- Piwetz, S.; Lundquist, D.; Wuersig, B. Humpback dolphin (genus Sousa) behavioural responses to human activities. In Advances in Marine Biology; Academic Press: Cambridge, MA, USA, 2015; Volume 72, pp. 17–45. [Google Scholar]
- Boudjema, K.; Badis, A.; Moulai-Mostefa, N. Study of heavy metal bioaccumulation in Mytilus galloprovincialis (Lamark 1819) from heavy metal mixture using the CCF design. Environ. Technol. Innov. 2022, 25, 102202. [Google Scholar] [CrossRef]
- Landis, W.G.; Sofield, R.M.; Yu, M.H. Introduction to Environmental Toxicology: Molecular Substructures to Ecological Landscapes; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Gobas, F.A.P.C.; Morrison, H.A. Bioconcentration and biomagnification in the aquatic environment. In Handbook of Property Estimation Methods for Chemicals; Springer: Dordrecht, The Netherlands, 2000; pp. 189–231. [Google Scholar]
- Hemond, H.F.; Fechner, E.J. Chemical Fate and Transport in the Environment; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Matozzo, V.; Rova, S.; Marin, M.G. The nonsteroidal anti-inflammatory drug, ibuprofen, affects the immune parameters in the clam Ruditapes philippinarum. Mar. Environ. Res. 2012, 79, 116–121. [Google Scholar] [CrossRef]
- Qyli, M.; Aliko, V. The effect of thermal stress exposure on the hemolymph glucose level in crabs (Carcinus estuaris). Int. J. Ecosyst. Ecol. Sci. IJEES 2015, 5, 537–540. [Google Scholar]
- Aliko, V.; Hajdaraj, G.; Caci, A.; Faggio, C. Copper induced lysosomal membrane destabilisation in haemolymph cells of Mediterranean Green Crab (Carcinus aestuarii, Nardo, 1847) from the Narta Lagoon (Albania). Braz. Arch. Biol. Technol. 2015, 58, 750–756. [Google Scholar] [CrossRef]
- Sehonova, P.; Plhalova, L.; Blahova, J.; Berankova, P.; Doubkova, V.; Prokes, M.; Tichy, F.; Vecerek, V.; Svobodova, Z. The effect of tramadol hydrochloride on early life stages of fish. Environ. Toxicol. Pharmacol. 2016, 44, 151–157. [Google Scholar] [CrossRef]
- Burgos-Aceves, M.A.; Cohen, A.; Smith, Y.; Faggio, C. Estrogen regulation of gene expression in the teleost fish immune system. Fish Shellfish. Immunol. 2016, 58, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Faggio, C.; Fedele, G.; Arfuso, F.; Panzera, M.; Fazio, F. Haematological and biochemical response of Mugil cephalus after acclimation to captivity. Cah. Biol. Mar. 2014, 55, 31–36. [Google Scholar]
- Pramanik, A.; Basak, P.; Sengupta, S.; Bhattacharyya, M. Marine Microbial Diversity: Potential Functions to Degrade Xenobiotics; Biodegradation and Bioremediation of the Series “Environmental Science and Engineering; Studium Press LLC: Houston, TX, USA, 2015; Volume 8. [Google Scholar]
- Dash, H.R.; Mangwani, N.; Chakraborty, J.; Kumari, S.; Das, S. Marine bacteria: Potential candidates for enhanced bioremediation. Appl. Microbiol. Biotechnol. 2013, 97, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Paniagua-Michel, J.; Rosales, A. Marine bioremediation-A sustainable biotechnology of petroleum hydrocarbons biodegradation in coastal and marine environments. J. Bioremediat. Biodegrad. 2015, 6, 1. [Google Scholar]
- Pearce, P.J. A New Augmentation Method for Bioremediation of Pathogenic Bacteria-Contaminated Water and Sludge; Nova Biologicals, Inc.: Conroe, TX, USA, 2006. [Google Scholar]
- Stephenson, D. Review of Effective Microorganisms (EM) and Bioaugmentation Factors for Wastewater Biosolids Treatment; Environmental Services Limited: Mandan, ND, USA, 2012. [Google Scholar]
- Jones, R.J.; Megarrity, R.G. Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome the toxicity of Leucaena. Aust. Vet. J. 1986, 63, 259–262. [Google Scholar] [CrossRef]
- Jahangeer and Vikram Kumar An Overview on Microbial Degradation of Petroleum Hydrocarbon Contaminants. Int. J. Eng. Tech. Res. IJETR 2013, 1, 34–37.
- Viesser, J.A.; Sugai-Guerios, M.H.; Malucelli, L.C.; Pincerati, M.R.; Karp, S.G.; Maranho, L.T. Petroleum-tolerant rhizospheric bacteria: Isolation, characterization and bioremediation potential. Sci. Rep. 2020, 10, 2060. [Google Scholar] [CrossRef]
- Oyetibo, G.O.; Chien, M.F.; Ikeda-Ohtsubo, W.; Suzuki, H.; Obayori, O.S.; Adebusoye, S.A.; Ilory, M.O.; Amund, O.O.; Endo, G. Biodegradation of crude oil and phenanthrene by heavy metal resistant Bacillus subtilis isolated from a multi-polluted industrial wastewater creek. Int. Biodeterior. Biodegrad. 2017, 120, 143–151. [Google Scholar] [CrossRef]
- Lee, S.; Kim, Y.; Kim, J.M.; Chu, B.; Joa, J.H.; Sang, M.K.; Song, J.; Weon, H.Y. A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizocompartments of tomato plants under real-world environments. Sci. Rep. 2019, 9, 9300. [Google Scholar] [CrossRef]
- Harayama, S.; Kasai, Y.; Hara, A. Microbial communities in oil-contaminated seawater. Curr. Opin. Biotechnol. 2004, 15, 205–214. [Google Scholar] [CrossRef]
- Lyu, Y.; Zheng, W.; Zheng, T.; Tian, Y. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS ONE 2014, 9, e11131942. [Google Scholar] [CrossRef] [PubMed]
- Jeyavani, J.; Sibiya, A.; Shanthini, S.; Ravi, C.; Vijayakumar, S.; Rajan, D.K.; Vaseeharan, B. A review on aquatic impacts of microplastics and its bioremediation aspects. Curr. Pollut. Rep. 2021, 7, 286–299. [Google Scholar] [CrossRef]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef]
- Nie, J.; Sun, Y.; Zhou, Y.; Kumar, M.; Usman, M.; Li, J.; Shao, J.; Wang, L.; Tsang, D.C. Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Sci. Total Environ. 2020, 707, 136080. [Google Scholar] [CrossRef] [PubMed]
- Ardal, E. Phycoremediation of Pesticides Using Microalgae. 2014. Available online: https://stud.epsilon.slu.se/7343/7/ardal_e_140923.pdf (accessed on 18 August 2022).
- Bilal, M.; Iqbal, H.M.; Barceló, D. Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems. Sci. Total Environ. 2019, 695, 133896. [Google Scholar] [CrossRef] [PubMed]
- Fomina, M.; Gadd, G.M. Biosorption: Current perspectives on concept, definition and application. Bioresour. Technol. 2014, 160, 3–14. [Google Scholar] [CrossRef]
- Ungureanu, G.; Santos, S.; Boaventura, R.; Botelho, C. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 2015, 151, 326–342. [Google Scholar] [CrossRef]
- Hussein, M.H.; Abdullah, A.M.; Badr El-Din, N.I.; Mishaqa, E.S.I. Biosorption potential of the microchlorophyte Chlorella vulgaris for some pesticides. J. Fertil. Pestic. 2017, 8, 177. [Google Scholar] [CrossRef]
- Jin, B.; Xie, L.; Guo, Y.; Pang, G. Multi-residue detection of pesticides in juice and fruit wine: A review of extraction and detection methods. Food Res. Int. 2012, 46, 399–409. [Google Scholar] [CrossRef]
- Pérez-Legaspi, I.A.; Ortega-Clemente, L.A.; Moha-León, J.D.; Ríos-Leal, E.; Gutiérrez, S.C.R.; Rubio-Franchini, I. Effect of the pesticide lindane on the biomass of the microalgae Nannochloris oculata. J. Environ. Sci. Health 2016, 51, 103–106. [Google Scholar] [CrossRef]
- Kanekar, N.; Briggs, F.H. 21-cm absorption studies with the Square Kilometer Array. New Astron. Rev. 2004, 48, 1259–1270. [Google Scholar] [CrossRef]
- Pieper, D.H.; Reineke, W. Engineering bacteria for bioremediation. Curr. Opin. Biotechnol. 2000, 11, 262–270. [Google Scholar] [CrossRef]
- Cecchin, I.; Reddy, K.R.; Thomé, A.; Tessaro, E.F.; Schnaid, F. Nanobioremediation: Integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int. Biodeterior. Biodegrad. 2017, 119, 419–428. [Google Scholar] [CrossRef]
- Rashidian, G.; Lazado, C.C.; Mahboub, H.H.; Mohammadi-Aloucheh, R.; Prokić, M.D.; Nada, H.S.; Faggio, C. Chemically and green synthesized ZnO nanoparticles alter key immunological molecules in common carp (Cyprinus carpio) skin mucus. Int. J. Mol. Sci. 2021, 22, 3270. [Google Scholar] [CrossRef] [PubMed]
- Yadav, J.S.; Tiwari, S.K. Effect of waste rubber fibres on the geotechnical properties of clay stabilized with cement. Appl. Clay Sci. 2017, 149, 97–110. [Google Scholar] [CrossRef]
- Cappello, S.; Mancini, G. Use of nanomaterials for marine bioremediation: A perspective. Ann. Mater. Sci. Eng. 2019, 4, 1035. [Google Scholar]
- Ball, A.S.; Patil, S.; Soni, S. Introduction into nanotechnology and microbiology. In Methods in Microbiology; Academic Press: Cambridge, MA, USA, 2019; Volume 46, pp. 1–18. [Google Scholar]
Definition | Size–Range | Description |
---|---|---|
Nanoplastics | >100 nm | The smallest plastic particles which can only be observed under scanning electron microscopy (SEM) and transmission electron microscopy (TEM). |
Microplastics | 100 nm–1 mm | Small plastic particles which can be visualized under light microscopy. |
Mesoplastics | 1 mm–2.5 cm | This term was introduced to distinguish plastic particles that can be observed by the naked eye, unlike the previous two categories. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliko, V.; Multisanti, C.R.; Turani, B.; Faggio, C. Get Rid of Marine Pollution: Bioremediation an Innovative, Attractive, and Successful Cleaning Strategy. Sustainability 2022, 14, 11784. https://doi.org/10.3390/su141811784
Aliko V, Multisanti CR, Turani B, Faggio C. Get Rid of Marine Pollution: Bioremediation an Innovative, Attractive, and Successful Cleaning Strategy. Sustainability. 2022; 14(18):11784. https://doi.org/10.3390/su141811784
Chicago/Turabian StyleAliko, Valbona, Cristiana Roberta Multisanti, Blerta Turani, and Caterina Faggio. 2022. "Get Rid of Marine Pollution: Bioremediation an Innovative, Attractive, and Successful Cleaning Strategy" Sustainability 14, no. 18: 11784. https://doi.org/10.3390/su141811784
APA StyleAliko, V., Multisanti, C. R., Turani, B., & Faggio, C. (2022). Get Rid of Marine Pollution: Bioremediation an Innovative, Attractive, and Successful Cleaning Strategy. Sustainability, 14(18), 11784. https://doi.org/10.3390/su141811784