Numerical Simulation of CO2-ECBM Based on Multi-Physical Field Coupling Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Assumptions
2.2. Gas Transport Equation
2.3. Governing Equation of Coal Seam Stress Field
2.4. Control Equation of Coal Seam Temperature Field
2.5. Coupling Terms
2.6. Fluid-Solid-Thermal Field Cross-Coupling
2.7. Geometric Model Description
3. Results and Discussion
3.1. Boundary Conditions
3.2. CBM Extraction Law
3.2.1. Pressure Cloud Map Distribution
3.2.2. Displacement Effect at Different Positions of Coal Seam
3.3. Influence of Coal Seam Characteristic Parameters on CO2-ECBM
3.3.1. Displacement Effect under Different Initial Temperatures
3.3.2. Displacement Effect under Different Coal Seam Pressures
3.3.3. Displacement Effect under Different Initial Permeability
3.4. Displacement Effect under Different Gas Injection Pressures
4. Conclusions
- (1)
- Under the same working conditions, the increase of the gas injection pressure or the initial coal seam pressure has a positive effect on increasing the cumulative production concentration of CH4 and the cumulative storage concentration of CO2.
- (2)
- With the increase of the coal seam temperature, the CH4 production concentration and CO2 storage concentration in the coal seam will decrease, and the permeability ratio will decrease faster.
- (3)
- In the process of displacement, the greater the initial permeability, the greater the fracture opening of the coal seam, which is more conducive to the seepage migration of gas, and the displacement effect is also better.
- (4)
- The closer to the injection well, the better the displacement effect and the lower the permeability ratio.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; Li, Z.; Zhang, R.; Wang, G.; Yu, H.; Sun, G.; Chen, L. CO2 injection in coal: Advantages and influences of temperature and pressure. Fuel 2019, 236, 493–500. [Google Scholar] [CrossRef]
- Long, Y. Experimental study on influence of different rank coal on gas adsorption characteristics and CO2-ECBM influence. Master’s Thesis, China University of Mining and Technology, Beijing, China, 2020. [Google Scholar]
- Wolterbeek, T.K.; Peach, C.J.; Raoof, A.; Spiers, C.J. Reactive transport of CO2-rich fluids in simulated wellbore interfaces: Flow-through experiments on the 1–6m length scale. Int. J. Greenh. Gas Control 2016, 54, 96–116. [Google Scholar] [CrossRef]
- Raoof, A.; Nick, H.M.; Wolterbeek, T.K.T.; Spiers, C.J. Pore-scale modeling of reactive transport in wellbore cement under CO2 storage conditions. Int. J. Greenh. Gas Control 2012, 11, 67–77. [Google Scholar] [CrossRef]
- Liu, Y.; Lebedev, M.; Zhang, Y.; Wang, E.; Li, W.; Liang, J.; Feng, R.; Ma, R. Micro-Cleat and Permeability Evolution of Anisotropic Coal During Directional CO2 Flooding: An In Situ Micro-CT Study. Nat. Resour. Res. 2022, 31, 2805–2818. [Google Scholar] [CrossRef]
- Godec, M.; Koperna, G.; Gale, J. CO2-ECBM: A Review of its Status and Global Potential. Energy Procedia 2014, 63, 5858–5869. [Google Scholar] [CrossRef]
- Baran, P.; Zarebska, K.; Krzystoliket, P.; Hadro, J.; Nunn, A. CO2-ECBM and CO2 Sequestration in Polish Coal Seam—Experimental Study. J. Min. Sci. 2014, 13, 22–29. [Google Scholar] [CrossRef]
- Gunter, W.D.; Gentzis, T.; Rottenfusser, B.A.; Richardson, R.J.H. Deep coalbed methane in Alberta, Canada: A fuel resource with the potential of zero greenhouse gas emissions. Energy Convers. Manag. 1997, 38, S217–S222. [Google Scholar] [CrossRef]
- White, C.M.; Smith, D.H.; Jones, K.L.; Goodman, A.L.; Jikich, S.A.; LaCount, R.B.; DuBose, S.B.; Ozdemir, E.; Morsi, B.I.; Schroeder, K.T. Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane Recovery-A Review. Energy Fuels 2005, 19, 659–724. [Google Scholar] [CrossRef]
- Dutka, B.; Kudasik, M.; Pokryszka, Z.; Skoczylas, N.; Topolnicki, J.; Wierzbicki, M. Balance of CO2/CH4 exchange sorption in a coal briquette. Fuel Process. Technol. 2013, 106, 95–101. [Google Scholar] [CrossRef]
- Talapatra, A. A study on the carbon dioxide injection into coal seam aiming at enhancing coal bed methane (ECBM) recovery. J. Petrol. Explor. Prod. Technol. 2020, 10, 1965–1981. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Sang, S.; Liu, S. Experimental simulation of replacing and displacing CH4 by injecting supercritical CO2 and its geological significance. Int. J. Greenh. Gas Control 2019, 81, 115–125. [Google Scholar] [CrossRef]
- Fang, H.; Sang, S.; Liu, S. Numerical simulation of enhancing coalbed methane recovery by injecting CO2 with heat injection. Pet. Sci. 2019, 16, 32–43. [Google Scholar] [CrossRef]
- Fang, H.; Sang, S.; Liu, S. Establishment of dynamic permeability model of coal reservoir and its numerical simulation during the CO2-ECBM process. J. Pet. Sci. Eng. 2019, 179, 885–898. [Google Scholar] [CrossRef]
- Qu, H.; Liu, J.; Chen, Z. Complex evolution of coal permeability during CO2 injection under variable temperatures. Int. J. Greenh. Gas Control 2012, 9, 281–293. [Google Scholar] [CrossRef]
- Perera, M.S.A.; Ranjith, P.G.; Ranathunga, A.S.; Koay, A.Y.J.; Zhao, J.; Choi, S.K. Optimization of enhanced coal-bed methane recovery using numerical simulation. J. Geophys. Eng. 2015, 12, 90–107. [Google Scholar] [CrossRef]
- Yang, H.; Wei, C.; Wang, Z.; Yang, T. Numerical simulation of coal-bed methane displacement by underground gas injection based on multi-physics coupling. J. China Coal Soc. 2010, 35, 109–114. [Google Scholar]
- Rutqvist, J.; Wu, Y.S.; Tsang, C.F.; Bodvarsson, G. A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int. J. Rock Mech. Min. Sci. 2002, 39, 429–442. [Google Scholar] [CrossRef]
- Sun, K. Model and numerical simulation about multispecies fluid diffusion and seepage in exploitation coalbed methane by gas injection. J. Liaoning Tech. Univ. 2005, 24, 305–308. [Google Scholar]
- Li, N. Numerical Simulation Study on CO2-ECBM and Geosequestration of deep buried area in the Qinshui Basin. Master’s Thesis, China University of Mining and Technology, Beijing, China, 2018. [Google Scholar]
- Li, S.; Fan, C.; Han, J.; Luo, M.; Yang, Z.; Bi, H. A fully coupled thermal-hydraulic-mechanical model with two-phase flow for coalbed methane extraction. J. Nat. Gas Sci. Eng. 2016, 33, 324–336. [Google Scholar] [CrossRef]
- Xia, T.; Zhou, F.; Gao, F. Simulation of coal self-heating processes in underground methane-rich coal seams. Int. J. Coal Geol. 2015, 141–142, 1–12. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Elsworth, D. How sorption-induced matrix deformation affects gas flow in coal seams: A new FE model. Int. J. Rock Mech. Min. Sci. 2008, 45, 1226–1236. [Google Scholar] [CrossRef]
- Li, H.; Lin, B.; Yang, W.; Hong, Y.; Wang, Z. A fully coupled electromagnetic-thermal-mechanical model for coalbed methane extraction with microwave heating. J. Nat. Gas Sci. Eng. 2017, 46, 830–844. [Google Scholar] [CrossRef]
- Guo, H.; Yu, Z.; Zhang, H. Phylogenetic diversity of microbial communities as sociated with coalbed methane gas from Eastern Ordos Basin, China. Int. J. Coal Geol. 2015, 150–151, 120–126. [Google Scholar] [CrossRef]
- Gruszkiewicz, M.S.; Naney, M.T.; Blencoe, J.G.; Cole, D.R.; Pashin, J.C.; Carroll, R.E. Adsorption kinetics of CO2, CH4, and their equimolar mixture on coal from the Black Warrior Basin, West-Central Alabama. Int. J. Coal Geol. 2019, 77, 23–33. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, J.; Elsworth, D.; Connell, L.D.; Pan, Z. Impact of CO2 injection and differential deformation on CO2 injectivity under in-situ stress conditions. Int. J. Coal Geol. 2010, 81, 97–108. [Google Scholar] [CrossRef]
- Deng, C.; Fan, Y.; Zhang, X. Numerical Simulation of Fluid-Solid-Heat Coupling for CO2 Sequestration in Coal Seams. J. Eng. Thermophys. 2019, 40, 2879–2886. [Google Scholar]
- Fan, Y.; Deng, C.; Zhang, X.; Li, F.; Wang, X.; Qiao, L. Numerical study of CO2-enhanced coalbed methane recovery. Int. J. Greenh. Gas Control 2018, 76, 12–23. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Z.; Elsworth, D.; Qu, H.; Chen, D. Interactions of multiple processes during CBM extraction: A critical review. Int. J. Coal Geol. 2011, 87, 175–189. [Google Scholar] [CrossRef]
- Liu, T.; Lin, B.; Yang, W.; Liu, T.; Kong, J.; Huang, Z.; Wang, R.; Zhao, Y. Dynamic diffusion-based multifield coupling model for gas drainage. J. Nat. Gas Sci. Eng. 2017, 44, 233–249. [Google Scholar] [CrossRef]
- Fang, H.; Sang, S.; Liu, S. The coupling mechanism of the thermal-hydraulic-mechanical fields in CH4-bearing coal and its application in the CO2-enhanced coalbed methane recovery. J. Pet. Sci. Eng. 2019, 181, 106177. [Google Scholar] [CrossRef]
- Pan, Z.; Connell, L.D. Comparison of adsorption models in reservoir simulation of enhanced coalbed methane recovery and CO2 sequestration in coal, International Journal of Greenhouse Gas Control. Int. J. Greenh. Gas Control 2009, 3, 77–89. [Google Scholar] [CrossRef]
- Fan, Y.; Huo, Z.; Wang, Y. Numerical simulation of CO2-ECBM based on fluid-solid-thermal coupling. Saf. Coal Mines 2022, 53, 162–169. [Google Scholar]
- Shi, J.Q.; Mazumde, S.; Wolf, K.H.; Durucan, S. Competitive methane desorption by supercritical CO2 injection in coal. Transp. Porous Media 2008, 75, 35–54. [Google Scholar] [CrossRef]
- Connell, L.D. Coupled flow and geomechanical processes during gas production from coal seams. Int. J. Coal Geol. 2009, 79, 18–28. [Google Scholar] [CrossRef]
- Tao, Y. Study on the gassy coal THM coupling model and coal and gas outburst simulation. Ph.D. Thesis, Chongqing University, Chongqing, China, 2009. [Google Scholar]
- Kong, X.; Wang, E.; Liu, Q.; Li, Z.; Li, D.; Cao, Z.; Niu, Y. Dynamic permeability and porosity evolution of coal seam rich in CBM based on the flow-solid coupling theory. J. Nat. Gas Sci. Eng. 2017, 40, 61–71. [Google Scholar] [CrossRef]
- Fan, C.; Elsworth, D.; Li, S.; Zhou, L.; Yang, Z.; Song, Y. Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery. Energy 2019, 173, 1054–1077. [Google Scholar] [CrossRef]
- Liu, S.; Fang, H.; Sang, S.; Ashutosh, T.; Wu, J.; Zhang, S.; Zhang, B. CO2 injectability and CH4 recovery of the engineering test in qinshui Basin, China based on numerical simulation. Int. J. Greenh. Gas Control 2020, 95, 1750–5836. [Google Scholar] [CrossRef]
Parameter | Numerical Value | Parameter | Numerical Value |
---|---|---|---|
Young’s modulus of coal | 2710 | Coal skeleton expansion coefficient | 2.4−5 |
Poisson’s ratio of coal | 0.35 | CO2 specific heat capacity | 1250 |
Density of coal ) | 1370 | CO2 thermal conductivity | 0.015 |
Initial porosity of coal | 0.037 | CO2 constant pressure heat capacity | 37.18 |
Dynamic viscosity coefficient of CH4 | 1.84 × 10−5 | Dynamic viscosity coefficient of CO2 | 1.84 × 10−5 |
Skeletal Young’s Modulus | 8469 | CH4 thermal conductivity | 0.031 |
CH4 heat capacity at constant pressure | 34.4 | Thermal conductivity of coal skeleton | 0.191 |
CH4 Langmuir pressure | 2.07 | CO2 Langmuir pressure | 1.38 |
CH4 Langmuir volume | 0.0256 | CO2 Langmuir volume | 0.0477 |
CH4 dynamic dispersion coefficient | 3.6 × 10−12 | CO2 dynamic dispersion coefficient | 5.8 × 10−12 |
Coal skeleton density | 1470 | CO2 isosteric heat of adsorption | 33.4 |
CH4 isosteric heat of adsorption | 35 | Temperature correction coefficient | 0.021 |
Pressure correction coefficient | 0.071 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Yu, H.; Bai, Y. Numerical Simulation of CO2-ECBM Based on Multi-Physical Field Coupling Model. Sustainability 2022, 14, 11789. https://doi.org/10.3390/su141811789
Li Z, Yu H, Bai Y. Numerical Simulation of CO2-ECBM Based on Multi-Physical Field Coupling Model. Sustainability. 2022; 14(18):11789. https://doi.org/10.3390/su141811789
Chicago/Turabian StyleLi, Ziwen, Hongjin Yu, and Yansong Bai. 2022. "Numerical Simulation of CO2-ECBM Based on Multi-Physical Field Coupling Model" Sustainability 14, no. 18: 11789. https://doi.org/10.3390/su141811789
APA StyleLi, Z., Yu, H., & Bai, Y. (2022). Numerical Simulation of CO2-ECBM Based on Multi-Physical Field Coupling Model. Sustainability, 14(18), 11789. https://doi.org/10.3390/su141811789