Economic Evaluation of Bioremediation of Hydrocarbon-Contaminated Urban Soils in Chile
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Cost of Bioremediation in Chile and Other Countries
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Fuentes, S.; Méndez, V.; Aguila, P.; Seeger, M. Bioremediation of petroleum hydrocarbons: Catabolic genes, microbial communities, and applications. Appl. Microbiol. Biotechnol. 2014, 98, 4781–4794. [Google Scholar] [CrossRef] [PubMed]
- Wartell, B.; Boufadel, M.; Rodriguez-Freire, L. An effort to understand and improve the anaerobic biodegradation of petroleum hydrocarbons: A literature review. Int. Biodeterior. Biodegrad. 2021, 157, 105156. [Google Scholar] [CrossRef]
- Orellana, R.; Macaya, C.; Bravo, G.; Dorochesi, F.; Cumsille, A.; Valencia, R.; Rojas, C.; Seeger, M. Living at the Frontiers of Life: Extremophiles in Chile and Their Potential for Bioremediation. Front. Microbiol. 2018, 9, 2309. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, S.; Barra, B.; Caporaso, J.G.; Seeger, M. From Rare to Dominant: A Fine-Tuned Soil Bacterial Bloom during Petroleum Hydrocarbon Bioremediation. Appl. Environ. Microbiol. 2016, 82, 888–896. [Google Scholar] [CrossRef]
- Yergeau, E.; Sanschagrin, S.; Beaumier, D.; Greer, C.W. Metagenomic Analysis of the Bioremediation of Diesel-Contaminated Canadian High Arctic Soils. PLoS ONE 2012, 7, e30058. [Google Scholar] [CrossRef]
- Atlas, R.M.; Hazen, T.C. Oil Biodegradation and Bioremediation: A Tale of the Two Worst Spills in U.S. History. Environ. Sci. Technol. 2011, 45, 6709–6715. [Google Scholar] [CrossRef]
- Hamamura, N.; Ward, D.M.; Inskeep, W.P. Effects of petroleum mixture types on soil bacterial population dynamics associated with the biodegradation of hydrocarbons in soil environments. FEMS Microbiol. Ecol. 2013, 85, 168–178. [Google Scholar] [CrossRef]
- Zheng, J.; Feng, J.-Q.; Zhou, L.; Mbadinga, S.M.; Gu, J.-D.; Mu, B.-Z. Characterization of bacterial composition and diversity in a long-term petroleum contaminated soil and isolation of high-efficiency alkane-degrading strains using an improved medium. World J. Microbiol. Biotechnol. 2018, 34, 34. [Google Scholar] [CrossRef]
- Apul, O.G.; Arrowsmith, S.; Hall, C.A.; Miranda, E.M.; Alam, F.; Dahlen, P.; Sra, K.; Kamath, R.; McMillen, S.J.; Sihota, N.; et al. Biodegradation of petroleum hydrocarbons in a weathered, unsaturated soil is inhibited by peroxide oxidants. J. Hazard. Mater. 2022, 433, 128770. [Google Scholar] [CrossRef]
- Mohapatra, B.; Dhamale, T.; Saha, B.K.; Phale, P.S. Chapter 18—Microbial degradation of aromatic pollutants: Metabolic routes, pathway diversity, and strategies for bioremediation. In Microbial Biodegradation and Bioremediation, 2nd ed.; Das, S., Dash, H.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 365–394. [Google Scholar]
- Lovley, D.R. Cleaning up with genomics: Applying molecular biology to bioremediation. Nat. Rev. Microbiol. 2003, 1, 35–44. [Google Scholar] [CrossRef]
- Guermouche M’rassi, A.; Bensalah, F.; Gury, J.; Duran, R. Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons. Environ. Sci. Pollut. Res. 2015, 22, 15332–15346. [Google Scholar] [CrossRef] [PubMed]
- Ehis-Eriakha, C.B.; Chikere, C.B.; Akaranta, O. Functional Gene Diversity of Selected Indigenous Hydrocarbon-Degrading Bacteria in Aged Crude Oil. Int. J. Microbiol. 2020, 2020, 2141209. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Deng, J.; Niu, H.; Liang, J.; Arslan, M.; Gamal El-Din, M.; Wang, Q.; Guo, S.; Chen, C. Establishing and Optimizing a Bacterial Consortia for Effective Biodegradation of Petroleum Contaminants: Advancing Classical Microbiology via Experimental and Mathematical Approach. Water 2021, 13, 3311. [Google Scholar] [CrossRef]
- Mangimbulude, J.C.; Lembang, R.K. Biostimulation and Bioaugmentation: An Alternative Strategy for Bioremediation of Ground Water Contaminated Mixed Landfill Leachate and Sea Water in Low Income ASEAN Countries. In Handbook of Environmental Materials Management; Hussain, C.M., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 515–533. [Google Scholar]
- Dominati, E.; Patterson, M.; Mackay, A. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 2010, 69, 1858–1868. [Google Scholar] [CrossRef]
- Prince, R.C.; Drake, E.N. Transformation and Fate of Polycyclic Aromatic Hydrocarbons in Soil. In Bioremediation of Contaminated Soils; American Society of Agronomy, Inc.: Madison, WI, USA, 1999; pp. 89–110. [Google Scholar]
- Abed, R.M.M. Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons. Int. Biodeterior. Biodegrad. 2010, 64, 58–64. [Google Scholar] [CrossRef]
- Almansoory, A.F.; Hasan, H.A.; Abdullah, S.R.S.; Idris, M.; Anuar, N.; Al-Adiwish, W.M. Biosurfactant produced by the hydrocarbon-degrading bacteria: Characterization, activity and applications in removing TPH from contaminated soil. Environ. Technol. Innov. 2019, 14, 100347. [Google Scholar] [CrossRef]
- Prince, R.C.; Amande, T.J.; McGenity, T.J. Prokaryotic Hydrocarbon Degraders. In Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes; McGenity, T.J., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–39. [Google Scholar]
- Hashmat, A.J.; Afzal, M.; Fatima, K.; Anwar-ul-Haq, M.; Khan, Q.M.; Arias, C.A.; Brix, H. Characterization of Hydrocarbon-Degrading Bacteria in Constructed Wetland Microcosms Used to Treat Crude Oil Polluted Water. Bull. Environ. Contam. Toxicol. 2019, 102, 358–364. [Google Scholar] [CrossRef]
- Zvomuya, F.; Murata, A.P. Soil Contamination and Remediation. In Encyclopedia of Environmetrics; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Van Liedekerke, M.; Prokop, G.; Rabl-Berger, S.; Kibblewhite, M.; Louwagie, G. Progress in the Management of Contaminated Sites in Europe; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- The State Council of the People’s Republic of China. National Plan for Adjustment and Reconstruction of Old Industrial Bases (2013–2022); The State Council of the People’s Republic of China: Beijing, China, 2013.
- Koshlaf, E.; Ball, A.S. Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiol. 2017, 3, 25–49. [Google Scholar] [CrossRef]
- Li, X.N.; Jiao, W.T.; Xiao, R.B.; Chen, W.P.; Chang, A.C. Soil pollution and site remediation policies in China: A review. Environ. Rev. 2015, 23, 263–274. [Google Scholar] [CrossRef]
- Singh, A.; Kuhad, R.C.; Ward, O.P. Biological Remediation of Soil: An Overview of Global Market and Available Technologies. In Advances in Applied Bioremediation; Singh, A., Kuhad, R.C., Ward, O.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–19. [Google Scholar]
- BCC Bioremediation: Global Markets and Technologies to 2023. Available online: https://www.bccresearch.com/market-research/environment/bioremediation.html#:~:text=The%20global%20bioremediation%20market%20should,15.4%25%20from%202018%20through%202023 (accessed on 5 October 2021).
- Ministerio del Medio Ambiente. Quinto Reporte del Estado del Medio Ambiente; Ministerio del Medio Ambiente: Puente Alto, Chile, 2019; p. 269.
- Oyarzún, J.; Oyarzún, R. Sustainable development threats, inter-sector conflicts and environmental policy requirements in the arid, mining rich, northern Chile territory. Sustain. Dev. 2011, 19, 263–274. [Google Scholar] [CrossRef]
- Tapia, J.S.; Valdés, J.; Orrego, R.; Tchernitchin, A.; Dorador, C.; Bolados, A.; Harrod, C. Geologic and anthropogenic sources of contamination in settled dust of a historic mining port city in northern Chile: Health risk implications. PeerJ 2018, 6, e4699. [Google Scholar] [CrossRef] [PubMed]
- Lam, E.J.; Montofré, I.L.; Álvarez, F.A.; Gaete, N.F.; Poblete, D.A.; Rojas, R.J. Methodology to Prioritize Chilean Tailings Selection, According to Their Potential Risks. Int. J. Environ. Res. Public Health 2020, 17, 3948. [Google Scholar] [CrossRef] [PubMed]
- Donoso, G.; Cancino, J.; Magri, A. Effects of agricultural activities on water pollution with nitrates and pesticides in the Central Valley of Chile. Water Sci. Technol. 1999, 39, 49–60. [Google Scholar] [CrossRef]
- Melo, O.; Quiñones, N.B.; Acuña, D. Towards Sustainable Agriculture in Chile, Reflections on the Role of Public Policy. Int. J. Agric. Nat. Resour. 2021, 48, 186–209. [Google Scholar] [CrossRef]
- Henriquez, M.; Becerra, J.; Barra, R.; Rojas, J. Hydrocarbons and organochlorine pesticides in soils of the Urban ecosystem of Chillán and Chillán Viejo, Chile. J. Chil. Chem. Soc. 2006, 51, 938–944. [Google Scholar] [CrossRef]
- Barra, R.; Quiroz, R.; Saez, K.; Araneda, A.; Urrutia, R.; Popp, P. Sources of polycyclic aromatic hydrocarbons (PAHs) in sediment of the Biobio River in south central Chile. Environ. Chem. Lett. 2008, 7, 133–139. [Google Scholar] [CrossRef]
- Deelaman, W.; Pongpiachan, S.; Tipmanee, D.; Choochuay, C.; Iadtem, N.; Suttinun, O.; Wang, Q.; Xing, L.; Li, G.; Han, Y.; et al. Source identification of polycyclic aromatic hydrocarbons in terrestrial soils in Chile. J. S. Am. Earth Sci. 2020, 99, 102514. [Google Scholar] [CrossRef]
- Oyarzo-Miranda, C.; Latorre, N.; Meynard, A.; Rivas, J.; Bulboa, C.; Contreras-Porcia, L. Coastal pollution from the industrial park Quintero bay of central Chile: Effects on abundance, morphology, and development of the kelp Lessonia spicata (Phaeophyceae). PLoS ONE 2020, 15, e0240581. [Google Scholar] [CrossRef]
- Fundacion Chile. Guía Metodológica para la Gestión de Suelos con Potencial Presencia de Contaminantes; Fundacion Chile: Santiago, Chile, 2015; p. 127. [Google Scholar]
- Neaman, A.; Valenzuela, P.; Tapia-Gatica, J.; Selles, I.; Novoselov, A.A.; Dovletyarova, E.A.; Yáñez, C.; Krutyakov, Y.A.; Stuckey, J.W. Chilean regulations on metal-polluted soils: The need to advance from adapting foreign laws towards developing sovereign legislation. Environ. Res. 2020, 185, 109429. [Google Scholar] [CrossRef]
- Salazar, O.; Casanova, M.; Fuentes, J.P.; Galleguillos, M.; Nájera, F.; Perez-Quezada, J.F.; Pfeiffer, M.; Renwick, L.L.R.; Seguel, O.; Tapia, Y. Soil research, management, and policy priorities in Chile. Geoderma Reg. 2022, 29, e00502. [Google Scholar] [CrossRef]
- Bartke, S. Valuation of market uncertainties for contaminated land. Int. J. Strateg. Prop. Manag. 2011, 15, 356–378. [Google Scholar] [CrossRef]
- Steffan, R.J. Developing Bioremediation Technologies for Commercial Application: An Insider’s View. In Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation; Steffan, R.J., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 21–32. [Google Scholar]
- Brown, D.M.; Okoro, S.; van Gils, J.; van Spanning, R.; Bonte, M.; Hutchings, T.; Linden, O.; Egbuche, U.; Bruun, K.B.; Smith, J.W.N. Comparison of landfarming amendments to improve bioremediation of petroleum hydrocarbons in Niger Delta soils. Sci Total Environ. 2017, 596–597, 284–292. [Google Scholar] [CrossRef]
- Brassington, K.J.; Pollard, S.J.T.; Coulon, F. Weathered Hydrocarbon Biotransformation: Implications for Bioremediation, Analysis, and Risk Assessment. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 2487–2499. [Google Scholar]
- Semple, K.T.; Reid, B.J.; Fermor, T.R. Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ. Pollut. 2001, 112, 269–283. [Google Scholar] [CrossRef]
- Trindade, P.V.O.; Sobral, L.G.; Rizzo, A.C.L.; Leite, S.G.F.; Soriano, A.U. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: A comparison study. Chemosphere 2005, 58, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Dias, R.L.; Ruberto, L.; Calabró, A.; Balbo, A.L.; Del Panno, M.T.; Mac Cormack, W.P. Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biol. 2015, 38, 677–687. [Google Scholar] [CrossRef]
- Gentry, T.; Rensing, C.; Pepper, I.A.N. New Approaches for Bioaugmentation as a Remediation Technology. Crit. Rev. Environ. Sci. Technol. 2004, 34, 447–494. [Google Scholar] [CrossRef]
- Kästner, M.; Miltner, A. Application of compost for effective bioremediation of organic contaminants and pollutants in soil. Appl. Microbiol. Biotechnol. 2016, 100, 3433–3449. [Google Scholar] [CrossRef]
- Antizar-Ladislao, B.; Lopez-Real, J.; Beck, A. Bioremediation of Polycyclic Aromatic Hydrocarbon (PAH)-Contaminated Waste Using Composting Approaches. Crit. Rev. Environ. Sci. Technol. 2004, 34, 249–289. [Google Scholar] [CrossRef]
- Orellana, R.; Cumsille, A.; Rojas, C.; Cabrera, P.; Seeger, M.; Cárdenas, F.; Stuardo, C.; González, M. Assessing technical and economic feasibility of complete bioremediation for soils chronically polluted with petroleum hydrocarbons. J. Bioremediat. Biodegrad. 2017, 8, 396. [Google Scholar] [CrossRef]
- Méndez, V.; Fuentes, S.; Morgante, V.; Hernández, M.; González, M.; Moore, E.; Seeger, M. Novel hydrocarbonoclastic metal-tolerant Acinetobacter and Pseudomonas strains from Aconcagua river oil-polluted soil. J. Soil Sci. Plant Nutr. 2017, 17, 1074–1087. [Google Scholar] [CrossRef] [Green Version]
- Macaya, C.C.; Méndez, V.; Durán, R.E.; Aguila-Torres, P.; Salvà-Serra, F.; Jaén-Luchoro, D.; Moore, E.R.B.; Seeger, M. Complete Genome Sequence of Hydrocarbon-Degrading Halotolerant Acinetobacter radioresistens DD78, Isolated from the Aconcagua River Mouth in Central Chile. Microbiol. Resour. Announc. 2019, 8, e00601-19. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, J.V.; Tsao, Y.M.; Bleam, R.D. Bioremediation: When Is Augmentation Needed? Battelle Press: Columbus, OH, USA, 1995; pp. 1–14. [Google Scholar]
- Peters, M.; Timmerhaus, K.; West, R. Plant Design and Economics for Chemical Engineers; McGraw-Hill: New York, NY, USA, 1991; pp. 150–215. [Google Scholar]
- Azubuike, C.C.; Chikere, C.B.; Okpokwasili, G.C. Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 2016, 32, 180. [Google Scholar] [CrossRef] [PubMed]
- Sales da Silva, I.G.; Gomes de Almeida, F.C.; Padilha da Rocha e Silva, N.M.; Casazza, A.A.; Converti, A.; Asfora Sarubbo, L. Soil Bioremediation: Overview of Technologies and Trends. Energies 2020, 13, 4664. [Google Scholar] [CrossRef]
- Nagkirti, P.; Shaikh, A.; Vasudevan, G.; Paliwal, V.; Dhakephalkar, P. Bioremediation of Terrestrial Oil Spills: Feasibility Assessment. In Optimization and Applicability of Bioprocesses; Purohit, H.J., Kalia, V.C., Vaidya, A.N., Khardenavis, A.A., Eds.; Springer: Singapore, 2017; pp. 141–173. [Google Scholar]
- Loick, N.; Hobbs, P.J.; Hale, M.D.C.; Jones, D.L. Bioremediation of Poly-Aromatic Hydrocarbon (PAH)-Contaminated Soil by Composting. Crit. Rev. Environ. Sci. Technol. 2009, 39, 271–332. [Google Scholar] [CrossRef]
- Diaz, L.F.; de Bertoldi, M. History of composting. In Waste Management Series; Diaz, L.F., de Bertoldi, M., Bidlingmaier, W., Stentiford, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 8, pp. 7–24. [Google Scholar]
- Shrestha, P.; Small, G.E.; Kay, A. Quantifying nutrient recovery efficiency and loss from compost-based urban agriculture. PLoS ONE 2020, 15, e0230996. [Google Scholar] [CrossRef]
- Erhart, E.; Hartl, W.; Putz, B. Biowaste compost affects yield, nitrogen supply during the vegetation period and crop quality of agricultural crops. Eur. J. Agron. 2005, 23, 305–314. [Google Scholar] [CrossRef]
- Ahmad, R.; Naveed, M.; Aslam, M.; Zahir, Z.A.; Arshad, M.; Jilani, G. Economizing the use of nitrogen fertilizer in wheat production through enriched compost. Renew. Agric. Food Syst. 2008, 23, 243–249. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Alves-Pereira, I.; Faty, Y.; Perdigão, S.; Ferreira, R. Influence of Nitrogen Sources Applied by Fertigation to an Enriched Soil with Organic Compost on Growth, Mineral Nutrition, and Phytochemicals Content of Coriander (Coriandrum sativum L.) in Two Successive Harvests. Plants 2021, 11, 22. [Google Scholar] [CrossRef]
- Mehta, C.M.; Palni, U.; Franke-Whittle, I.H.; Sharma, A.K. Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manag. 2014, 34, 607–622. [Google Scholar] [CrossRef]
- Litterick, A.M.; Harrier, L.; Wallace, P.; Watson, C.A.; Wood, M. The Role of Uncomposted Materials, Composts, Manures, and Compost Extracts in Reducing Pest and Disease Incidence and Severity in Sustainable Temperate Agricultural and Horticultural Crop Production—A Review. Crit. Rev. Plant Sci. 2004, 23, 453–479. [Google Scholar] [CrossRef]
- Sánchez-Monedero, M.A.; Cayuela, M.L.; Sánchez-García, M.; Vandecasteele, B.; D’Hose, T.; López, G.; Martínez-Gaitán, C.; Kuikman, P.J.; Sinicco, T.; Mondini, C. Agronomic Evaluation of Biochar, Compost and Biochar-Blended Compost across Different Cropping Systems: Perspective from the European Project FERTIPLUS. Agronomy 2019, 9, 225. [Google Scholar] [CrossRef]
- Dsouza, A.; Price, G.W.; Dixon, M.; Graham, T. A Conceptual Framework for Incorporation of Composting in Closed-Loop Urban Controlled Environment Agriculture. Sustainability 2021, 13, 2471. [Google Scholar] [CrossRef]
- Adugna, G. A review on impact of compost on soil properties, water use and crop productivity. Agric. Sci. Res. J. 2018, 4, 93–104. [Google Scholar]
- Hill, M.J.; Braaten, R.; McKeon, G.M. A scenario calculator for effects of grazing land management on carbon stocks in Australian rangelands. Environ. Model. Softw. 2003, 18, 627–644. [Google Scholar] [CrossRef]
- Nikiema, J.; Brzezinski, R.; Heitz, M. Elimination of methane generated from landfills by biofiltration: A review. Rev. Environ. Sci. Bio/Technol. 2007, 6, 261–284. [Google Scholar] [CrossRef]
- Lu, Y.; Zheng, G.; Zhou, W.; Wang, J.; Zhou, L. Bioleaching conditioning increased the bioavailability of polycyclic aromatic hydrocarbons to promote their removal during co-composting of industrial and municipal sewage sludges. Sci. Total Environ. 2019, 665, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Cheruiyot, N.K.; Bui, X.-T.; Ngo, H.H. Composting and its application in bioremediation of organic contaminants. Bioengineered 2022, 13, 1073–1089. [Google Scholar] [CrossRef]
- Cai, Q.-Y.; Mo, C.-H.; Wu, Q.-T.; Zeng, Q.-Y.; Katsoyiannis, A.; Férard, J.-F. Bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated sewage sludge by different composting processes. J. Hazard. Mater. 2007, 142, 535–542. [Google Scholar] [CrossRef]
- Reyes-Bozo, L.; Godoy-Faundez, A.; Herrera-Urbina, R.; Higueras, P.; Salazar Navarrete, J.L.; Valdés-González, H.; Vyhmeister, E.; Antizar-Ladislao, B. Greening Chilean copper mining operations through industrial ecology strategies. J. Clean. Prod. 2014, 84, 671. [Google Scholar] [CrossRef]
- D’Adamo, I.; Gastaldi, M.; Morone, P.; Rosa, P.; Sassanelli, C.; Settembre-Blundo, D.; Shen, Y. Bioeconomy of Sustainability: Drivers, Opportunities and Policy Implications. Sustainability 2022, 14, 200. [Google Scholar] [CrossRef]
- EPA (United States Environmental Protection Agency). Remediation Technology Cost Compendium [Electronic Resource]: Year 2000; Office of Solid Waste and Emergency Response, Technology Innovation Office: Washington, DC, USA, 2001. [Google Scholar]
- EPA (United States Environmental Protection Agency). Soil Vapor Extraction at the Hastings Groundwater Contamination Superfund Site, Well Number 3 Subsite, Hastings, Nebraska. Cost and Performance Report. 1995. Available online: https://frtr.gov/costperformance/profile.cfm?ID=104&CaseID=104 (accessed on 17 July 2022).
- Leeson, A.P.; Graves, M.; Kramer, J. Site-Specific Technical Report for Bioslurper Testing at Site ST-04, K.I. Sawyer AFB; Battelle: Columbus, OH, USA, 1996. [Google Scholar]
- EPA (United States Environmental Protection Agency). Bioremediation Field Evaluation of Hill Air Force Base, Utah; EPA: Washington, DC, USA, 1997. [Google Scholar]
- EPA (United States Environmental Protection Agency). Cost and Performance Summary Report Soil Vapor Extraction at the Intersil/Siemens Superfund Site Cupertino, California; EPA: Washington, DC, USA, 1998. [Google Scholar]
- EPA (United States Environmental Protection Agency). Remediation Case Studies: In Situ Soil Treatment Technologies, (Soil Vapor Extraction, Thermal Processes) Volume 8; EPA: Cincinatti, OH, USA, 1998. [Google Scholar]
- EPA (United States Environmental Protection Agency). Installation Restoration Program. LF-036 Groundwater Surface Water and Sediments; Record of Decision Plattsburgh Air Force Base; EPA: Washington, DC, USA, 1995. [Google Scholar]
- Baxter, L.; Dossey, R.; Eastty, B.; Lamb, R.E.; Lush, A.; McCain, S.; Myers, C.; Nowick, M.; Smith, S.; Stetson, J. Final Environmental Assessment Addressing Construction of a Fitness Center at Beale Air Force Base, California; HDR Environmental, Operations and Construction Inc.: Englewood, CO, USA, 2009. [Google Scholar]
- Engineering Science, Inc. Part 1: Bioventing Pilot Test Work Plan for Installation Restoration Program Site 3, Fire Training Area, Battle Creek ANGB, Michigan. PART II: Draft Interim Pilot Test Results Report for Installation Restoration Program Site 3, Fire Training Area, Battle Creek ANGB, Michigan. 1992. Available online: https://apps.dtic.mil/sti/pdfs/ADA385759.pdf (accessed on 10 July 2022).
- EPA (United States Environmental Protection Agency). Soil Vapor Extraction at the Rocky Mountain Arsenal Superfund Site, Motor Pool Area (OU 18), Commerce City, Colorado; EPA: Washington, DC, USA, 1995. [Google Scholar]
- Wan, X.; Lei, M.; Chen, T. Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci. Total Environ. 2016, 563–564, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Line, M.A.; Garland, C.D.; Crowley, M. Evaluation of landfarm remediation of hydrocarbon-contaminated soil at the inveresk railyard, Launceston, Australia. Waste Manag. 1996, 16, 567–570. [Google Scholar] [CrossRef]
- Parsons Engineering Science Inc. Natural Attenuation of Chlorinated Solvents Performance and Cosr Results from Multiple Air Force Demonstration Sites; Parsons Engineering Science Inc.: Denver, CO, USA, 1999. [Google Scholar]
- Hinchee, R.; Downey, D.; Slaughter, J.; Selby, D.; Westray, M.; Long, G. Enhanced Bioreclamation of Jet Fuels: A Full-Scale Test at Eglin AFB, Florida. 1989, p. 164. Available online: https://www.researchgate.net/publication/235176012_Enhanced_Bioreclamation_of_Jet_Fuels_A_Full-Scale_Test_at_Eglin_AFB_Florida (accessed on 17 July 2022).
- EPA (United States Environmental Protection Agency). Use of Bioremediation at Superfund Sites; EPA: Washington, DC, USA, 2001. [Google Scholar]
- Wendell, S.J.; Johnson, K.; Sawyer, M.; Kelly, L.; Hellauer, K.; Schneider, R.L.; Gomez, C.; Perry, A.; Bates, S. Final Cannon AFB Housing Privatization Environmental Assessment; Geo-Marine Inc.: Plano, TX, USA, 2009. [Google Scholar]
- Parsons Engineering Science Inc. Intrinsic Remediation Engineering Evaluation/Cost Analysis for the Former Car Care Center, Bolling Air Force Base, Washington, District of Columbia; Parsons Engineering Science Inc.: Denver, CO, USA, 1997. [Google Scholar]
- EPA (United States Environmental Protection Agency). Application, Performance, and Cost of Biotreatment Technologies for Contaminated Soils; EPA: Washington, DC, USA, 2002. [Google Scholar]
- UNITED STATES AIR FORCE. Joint Base Elmendorf-Richardson Community Involvenment Plan. 2011. Available online: https://www.jber.jb.mil/Portals/144/Services-Resources/environmental/restoration/Enviornmental-JBER-Community-Involvement-Plan-(2011).pdf (accessed on 10 July 2022).
- EPA (United States Environmental Protection Agency). In Situ Bioremediation at Vandenberg Air Force Base, Lompoc, California; EPA: Washington, DC, USA, 2000. [Google Scholar]
- EPA (United States Environmental Protection Agency). Cleanup Activities Hanscom Field/Hanscom Air Force Base Bedford, MA; EPA: Washington, DC, USA, 2009. [Google Scholar]
- Department of the Air Force. Final Decision Document for no Further Action at B-58 Hustler Burial Site (Area of Concern 8). 2002. Available online: https://semspub.epa.gov/work/05/281571.pdf (accessed on 17 July 2022).
- EPA (United States Environmental Protection Agency). Remedial Action Plan for the Risk-Based. Air Force Center for Environmental Excellence Technology Transfer Division Brooks Air Force Base San Antonio, Texas; EPA: Washington, DC, USA, 1996. [Google Scholar]
- ESTCP. Electronically induced Redox Barriers for Treatment of Groundwater at F.E. Warren Air Force Base, Wyoming; ESTCP: Arlington, VA, USA, 2006. [Google Scholar]
- State of Hawaii, Department of Health. Hazard Evaluation and Emergency Response Office Fiscal Year 1998 Activities (7/1/97-6/30/98). 1999. Available online: https://health.hawaii.gov/heer/ (accessed on 17 July 2022).
- Parsons Engineering Science, Inc. Confirmation Sampling and Analysis Plan for Installation Restoration Program Site ST35 Ordnance Testing Laboratory Oil Leak, Air Force Plant PJKS, Colorado; Parsons Engineering Science Inc.: Denver, CO, USA, 1996. [Google Scholar]
- Constantino, J.; Dominador, D. Analysis of Camp Pendleton California Medical Treatment Facility Budget and Execution Process; Naval Postgraduate School: Monterey, CA, USA, 2008. [Google Scholar]
- Air Force Occupational and Environmental Health Laboratory. Hazardous Waste Staff Assistance Survey, Patrick AFB and Cape Canaveral AFS, Florida. 1997. Available online: https://www.osti.gov/biblio/6425972 (accessed on 17 July 2022).
- Cost and Performance Report: Solar-Powered Remediation and pH Control. 2017. Available online: https://apps.dtic.mil/sti/citations/AD1036540 (accessed on 17 July 2022).
- Parsons Engineering Science, Inc. Bioventing Performance and Cost Results from Multiple Air Force Test Sites; Parsons Engineering Science Inc.: Denver, CO, USA, 1996. [Google Scholar]
- Density-Driven Groundwater Sparging at Amcor Precast Ogden, Utah. 1994. Available online: https://frtr.gov/costperformance/pdf/AmcorPrecastGWSparging.pdf (accessed on 17 July 2022).
- Board, T.R.; National Academies of Sciences, Engineering, and Medicine. Use and Potential Impacts of AFFF Containing PFASs at Airports; The National Academies Press: Washington, DC, USA, 2017; p. 222. [Google Scholar]
- Division of Environmental Remediation New York State Department of Environmental Conservation. Proposed Remedial Action Plan Fort Drum-Waste Disposal Areas. 2016. Available online: https://www.dec.ny.gov/data/DecDocs/623008/PRAP.HW.623008.2016-02-24.fianl%20PRAP%20PCE%20Plume.pdf (accessed on 17 July 2022).
- Day, S.J.; Morse, G.K.; Lester, J.N. The cost effectiveness of contaminated land remediation stategies. Sci. Total Environ. 1997, 201, 125–136. [Google Scholar] [CrossRef]
- EPA (United States Environmental Protection Agency). Superfund Explanation of Significant Differences for the Record of Decision: Fairchild Air Force Base, Craig Road Landfill, WA 12/5/1994; EPA: Washington, DC, USA, 1995. [Google Scholar]
- EPA (United States Environmental Protection Agency). Aerobic Degradation at Site 19, Edwards Air Force Base, California; EPA: Washington, DC, USA, 2000. [Google Scholar]
- EPA (United States Environmental Protection Agency). Remediation Case Studies: Ex Situ Soil Treatment Technologies (Bioremediation, Solvent Extraction, Thermal Desorption) Volumen 7; EPA: Cincinatti, OH, USA, 1998. [Google Scholar]
- Parsons Engineering Science Inc. Natural Attenuation of Fuel Hydrocarbons Performance and Cost Results from Multiple Air Force Demonstration Sites; Parsons Engineering Science Inc.: Denver, CO, USA, 1999. [Google Scholar]
- Carlton, G.N.; Smith, L.B. Exposures to Jet Fuel and Benzene During Aircraft Fuel Tank Repair in the U.S. Air Force. Appl. Occup. Environ. Hyg. 2000, 15, 485–491. [Google Scholar] [CrossRef] [PubMed]
- EPA (United States Environmental Protection Agency). Soil Vapor Extraction at the Verona Well Field Superfund Site, Thomas Solvent Raymond Road (OU-1), Battle Creek, Michigan: Cost and Performance Report; EPA: Washington, DC, USA, 1995. [Google Scholar]
- EPA (United States Environmental Protection Agency). Cost and Performance Report Sand Creek Industrial Superfund Site, O.U. 1; EPA: Washington, DC, USA, 1989. [Google Scholar]
- Parsons Engineering Science, Inc. Corrective Action Plan for Expanded Bioventing System Site SS-41, Former Building 93 (Fuel Pumping Station Number 3), Charleston Air Force Base, South Carolina; Parsons Engineering Science Inc.: Denver, CO, USA, 1997. [Google Scholar]
- Low Temperature Thermal Desorption at Longhorn Army Ammunition Plant. Burning Ground No. 3 Karnack, Texas; Cost and Performance Report; Karnack, Texas. 1999. Available online: https://frtr.gov/costperformance/profile.cfm?ID=138&CaseID=138 (accessed on 17 July 2022).
- EPA (United States Environmental Protection Agency). Vacuum-Enhanced, Low-Temperature Thermal Desorption at the FCX Washington Superfund Site Washington, North Carolina. Cost and Performance Report; EPA: Washington, DC, USA, 2009. [Google Scholar]
- EPA (United States Environmental Protection Agency). Cost and Performance Report: Thermal Desorption at the T H Agriculture & Nutrition Company Superfund Site Albany, Georgia; EPA: Washington, DC, USA, 1995. [Google Scholar]
- EPA (United States Environmental Protection Agency). Soil Vapor Extraction at the Fairchild Semiconductor Corporation Superfund Site San Jose, California. Cost and Performance Report; EPA/Office of Solid Waste and Emergency Response, Technology Innovation Office: Washington, DC, USA, 1995. [Google Scholar]
- EPA (United States Environmental Protection Agency). Report of the Remediation System Evaluation, Site Visit Conducted at the Commencement Bay/South Tacoma Channel Well 12A Superfund Site; EPA: Washington, DC, USA, 2001. [Google Scholar]
- Parsons Engineering Science, Inc. Intrinsic Remediation Treatibilidity Study for Site St-29 Patrick Air Force Base Florida; Parsons Engineering Science Inc.: Denver, CO, USA, 1995. [Google Scholar]
- EPA (United States Environmental Protection Agency). Thermal Desorption at the Sand Creek Industrial Superfund Site, OU 5 Commerce City, Colorado; EPA: Washington, DC, USA, 1999. [Google Scholar]
- EPA (United States Environmental Protection Agency). Thermal Desorption at the Metaltec Superfund Site, Franklin Borough, New Jersey; EPA: Washington, DC, USA, 2000. [Google Scholar]
- EPA (United States Environmental Protection Agency). Thermal Desorption at the Sarney Farm Superfund Site, Amenia, New York; EPA: Washington, DC, USA, 2001. [Google Scholar]
- EPA (United States Environmental Protection Agency). Superfund Record of Decision Garden State Cleaners, NJ. First Remedial Action; EPA: Washington, DC, USA, 1991. [Google Scholar]
- EPA (United States Environmental Protection Agency). Cost and Performance Report: Thermal Desorption at the McKin Company Superfund Site Gray, Maine. Available online: https://clu-in.org/products/costperf/THRMDESP/Mckin.htm (accessed on 17 July 2022).
- Acharya, P.; Ives, P. Incineration at Bayou Bounfouca remediation project. Waste Manag. 1994, 14, 13–26. [Google Scholar] [CrossRef]
- EPA (United States Environmental Protection Agency). Remediation System Evaluation SMS Instruments Deer Park, New York; EPA: Washington, DC, USA, 2003. [Google Scholar]
- Parsons Engineering Science, Inc. Site-Specific Technical Report for the Evaluation of Thermatrix GS Series Flameless Thermal Oxidizer for Off-Gas Treatment of Trichloroethene Vapors at Air Force Plant 4, Fort Worth, Texas; Parsons Engineering Science Inc.: Denver, CO, USA, 1996. [Google Scholar]
- EPA (United States Environmental Protection Agency). Cost and Performance Report: Thermal Desorption at the Outboard Marine Corporation Superfund Site Waukegan, Illinois. Available online: https://clu-in.org/products/costperf/THRMDESP/Omc.htm (accessed on 17 July 2022).
- EPA (United States Environmental Protection Agency). Final Record of Decision Operable Unit 1 Former Nebraska Ordnance Plant Site Mead, Nebraska; EPA: Washington, DC, USA, 1995. [Google Scholar]
- EEPA (United States Environmental Protection Agency). On-Site Incineration at the Celanese Corporation Shelby Fiber Operations Superfund Site Shelby, North Carolina; EPA: Washington, DC, USA, 1997. [Google Scholar]
- EPA (United States Environmental Protection Agency). Cost and Performance Report: Thermal Desorption/Dehalogenation at the Wide Beach Development Superfund Site Brant, New York. Available online: https://clu-in.org/products/costperf/THRMDESP/Widebch.htm (accessed on 17 July 2022).
- EPA (United States Environmental Protection Agency). Thermal Desorption at Port Moller Radio Relay Station Port Moller, Alaska. Cost and Performance Report. Available online: https://frtr.gov/costperformance/pdf/Port%20Moller.pdf (accessed on 17 July 2022).
- EPA (United States Environmental Protection Agency). Cost and Performance Summary Report Thermal Desorption at the Waldick Aerospace Devices Site Wall Township, New Jersey; EPA: Washington, DC, USA, 1998. [Google Scholar]
- EPA (United States Environmental Protection Agency). Incineration at the MOTCO Superfund Site Texas City, Texas; EPA: Washington, DC, USA, 1997. [Google Scholar]
Items | BE1 | BE4 | BAE | BA | BAV | |
---|---|---|---|---|---|---|
Products’ costs | Direct material costs | USD 17.5 | USD 81.9 | USD 174.0 | USD 59.9 | USD 61.4 |
Direct labor costs | USD 3.5 | USD 5.3 | USD 6.3 | USD 3.8 | USD 3.8 | |
Manufacturing overhead costs | USD 11.6 | USD 17.4 | USD 29.2 | USD 17.5 | USD 19.0 | |
Period costs | Administrative expenses | USD 4.5 | USD 6.7 | USD 6.7 | USD 4.0 | USD 4.0 |
Marketing and selling expenses | USD 0.2 | USD 0.4 | USD 0.4 | USD 0.2 | USD 0.2 | |
Liabilities and obligations | Covering assets | USD 3.3 | USD 4.9 | USD 36.0 | USD 21.6 | USD 25.5 |
Provision | USD 8.4 | USD 12.6 | USD 39.8 | USD 23.9 | USD 27.2 | |
Renewal machinery | USD 1.6 | USD 2.5 | USD 18.0 | USD 10.8 | USD 12.7 | |
Total | USD 50.7 | USD 131.7 | USD 310.4 | USD 141.8 | USD 153.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orellana, R.; Cumsille, A.; Piña-Gangas, P.; Rojas, C.; Arancibia, A.; Donghi, S.; Stuardo, C.; Cabrera, P.; Arancibia, G.; Cárdenas, F.; et al. Economic Evaluation of Bioremediation of Hydrocarbon-Contaminated Urban Soils in Chile. Sustainability 2022, 14, 11854. https://doi.org/10.3390/su141911854
Orellana R, Cumsille A, Piña-Gangas P, Rojas C, Arancibia A, Donghi S, Stuardo C, Cabrera P, Arancibia G, Cárdenas F, et al. Economic Evaluation of Bioremediation of Hydrocarbon-Contaminated Urban Soils in Chile. Sustainability. 2022; 14(19):11854. https://doi.org/10.3390/su141911854
Chicago/Turabian StyleOrellana, Roberto, Andrés Cumsille, Paula Piña-Gangas, Claudia Rojas, Alejandra Arancibia, Salvador Donghi, Cristian Stuardo, Patricio Cabrera, Gabriela Arancibia, Franco Cárdenas, and et al. 2022. "Economic Evaluation of Bioremediation of Hydrocarbon-Contaminated Urban Soils in Chile" Sustainability 14, no. 19: 11854. https://doi.org/10.3390/su141911854
APA StyleOrellana, R., Cumsille, A., Piña-Gangas, P., Rojas, C., Arancibia, A., Donghi, S., Stuardo, C., Cabrera, P., Arancibia, G., Cárdenas, F., Salazar, F., González, M., Santis, P., Abarca-Hurtado, J., Mejías, M., & Seeger, M. (2022). Economic Evaluation of Bioremediation of Hydrocarbon-Contaminated Urban Soils in Chile. Sustainability, 14(19), 11854. https://doi.org/10.3390/su141911854