The Perception Scale for the 7E Model-Based Augmented Reality Enriched Computer Course (7EMAGBAÖ): Validity and Reliability Study
Abstract
:1. Introduction
Purpose of the Research
2. Materials and Methods
2.1. Study Group
2.2. The Process of Creating the Scale
- Emotional Attitudes Towards Computer Courses (Factor 1): This sub-dimension aims to measure whether students thought the computer course is fun, interesting, straightforward, motivating, and important;
- Flipped Classroom Videos (Factor 2): This sub-dimension aims to assess whether the teacher’s explanation of the subject increased student participation, whether it was clear and informative, and whether the lecturer supported their statements with examples;
- Computer Assisted Education Applications (Factor 3): This factor aims to assess whether applications in computer lessons increase teacher-student interaction, increase student-student interaction, help students understand better, and make learning more enjoyable and efficient;
- Laboratory Assisted Computer Course (Factor 4): To assess the development of empathy skills, the increase of communication skills, the development of new perspectives, the encouragement of working with computers, and the contribution of the practices in the development of thinking skills, and the improvement of these practices in the computer lab;
- AR Activities (Factor 5): To assess whether AR activities in the computer courses arouse curiosity, provide a sense of reality to the atmosphere, and help learn three-dimensional technology;
- Computer Lab Anxiety (Factor 6): To assess why learners do not wish to participate in the activities in the computer lab.
2.3. Data Analysis
2.4. Validity Study
3. Results
3.1. Findings Related to EFA
3.2. Correlation Analysis for Concordance Validity
3.3. Model Fit Criteria of CFA
3.4. Findings on Reliability
4. Conclusions, Discussion and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Item No | Strongly Disagree | Disagree | Neutral | Agree | Strongly Agree | |
---|---|---|---|---|---|---|
1.Sub-dimension (Emotional Attitudes towards Computer Courses) | ||||||
1 | Computer course is my best course | |||||
2 | Computer course is fun | |||||
3 | Computer course is interesting | |||||
4 | Computer course is important | |||||
5 | Computer course is enjoyable | |||||
6 | Computer course is easy | |||||
7 | Computer course is motivating | |||||
8 | Computer course is useful | |||||
9 | Computer course helps me to increase my motivation | |||||
10 | The success that increases with the computer course also increases my success in other courses. | |||||
11 | Computer course is a waste of time | |||||
12 | Computer course makes me feel that I do not have enough knowledge in computers. | |||||
2. Sub-dimension (Flipped Classroom Videos) | ||||||
13 | Computer course lecture videos are well prepared. | |||||
14 | Computer course lecture videos increase my participation. | |||||
15 | Computer course lecture videos are sufficient because they are informative | |||||
16 | Computer course lecture videos should be supported by examples. | |||||
17 | Computer course lecture videos allow careful monitoring of the topics the teacher covers. | |||||
18 | Computer course lecture videos should be efficient so that the course can be understood better | |||||
19 | Computer course lecture videos allow me to have control of my learning. | |||||
20 | Computer course lecture videos are difficult because they contain few examples. | |||||
21 | Computer course lecture videos are a waste of time for me. | |||||
22 | Computer course lecture videos are not suitable for practice in activities. | |||||
3. Sub-dimension (Computer Assisted Education Applications) | ||||||
23 | Applications in the computer course allow me to learn. | |||||
24 | Applications in the computer course increase my performance. | |||||
25 | Applications in the computer course are as valuable as the grade I received from this course. | |||||
26 | Applications in the computer course allow me to learn to use the computer. | |||||
27 | Applications in the computer course contribute to the development of thinking skills. | |||||
28 | Applications in the computer course make it easier to develop new perspectives. | |||||
29 | Applications in the computer course require using the relevant technology appropriately. | |||||
30 | Applications in the computer course improve my problem-solving skills. | |||||
31 | Applications in the computer course allow me to take more responsibility in the learning process. | |||||
32 | Applications in the computer course make it easier for me to learn the basic concepts in the course. | |||||
33 | Applications in the computer course allow me to participate actively in the lesson. | |||||
34 | Applications in the computer course help me to understand the lecture better | |||||
35 | Applications made in the computer course make learning more enjoyable | |||||
36 | Applications in the computer courses increase teacher-student interaction | |||||
37 | Applications in the computer courses increase student-student interaction | |||||
38 | Applications in the computer course allow the course to be processed in a student-centered manner. | |||||
39 | Applications in the computer course allow effective group work. | |||||
40 | Applications in the computer course make it easier to access information resources. | |||||
41 | Applications in the computer course make the course more efficient | |||||
42 | Applications in the computer class reduce my self-confidence. | |||||
4. Sub-dimension (Laboratory Assisted Computer Course) | ||||||
43 | Learning the course in the computer laboratory increases my communication skills. | |||||
44 | Working with computers in the computer lab is enjoyable. | |||||
45 | Working with computers in the computer lab is encourages me to learn more | |||||
46 | Learning in the computer lab improves my empathy skills | |||||
47 | Being in the computer lab is a big nuisance. | |||||
48 | Failure to attend activities performed in the computer lab causes me to have problems. | |||||
5. Sub-dimension (Augmented Reality Activities) | ||||||
49 | AR activities in the computer courses make me curious | |||||
50 | AR activities in the computer courses reduce class participation. | |||||
51 | AR activities in the computer courses give a sense of reality to the atmosphere | |||||
52 | AR activities in the computer course do not reinforce the subject. | |||||
53 | When AR activities are carried out with a mobile phone in the computer courses, it increases the desire to learn. | |||||
54 | AR activities in the computer courses help to learn 3D technology |
Item No | Strongly Disagree | Disagree | Neutral | Agree | Strongly Agree | |
---|---|---|---|---|---|---|
1.Sub-dimension (Emotional Attitudes towards Computer Courses) | ||||||
1 | Computer course is fun | |||||
2 | Computer course is enjoyable | |||||
3 | Computer course is interesting | |||||
4 | Computer course is easy | |||||
5 | Computer course is my best course | |||||
6 | Computer course is motivating | |||||
7 | Computer course is important | |||||
2. Sub-dimension (Flipped Classroom Videos) | ||||||
8 | Computer course lecture videos allow careful monitoring of the topics the teacher covers. | |||||
9 | Computer course lecture videos increase my participation | |||||
10 | Computer course lecture videos should be efficient so that the course can be understood better | |||||
11 | Computer course lecture videos are sufficient because they are informative | |||||
12 | Computer course lecture videos should be supported by examples | |||||
3. Sub-dimension (Computer Assisted Education Applications) | ||||||
13 | Applications in the computer courses increase teacher-student interaction | |||||
14 | Applications in the computer courses increase student-student interaction | |||||
15 | Applications in the computer course help me to understand the lecture better | |||||
16 | Applications made in the computer course make learning more enjoyable | |||||
17 | Applications made in the computer course make the course more efficient | |||||
4. Sub-dimension (Laboratory Assisted Computer Course) | ||||||
18 | Learning in the computer lab improves my empathy skills | |||||
19 | Learning the course in the computer laboratory increases my communication skills. | |||||
20 | Applications in the computer course make it easier to develop new perspectives | |||||
21 | Working with computers in the computer lab encourages me to learn more | |||||
22 | Applications in the computer course contribute to the development of thinking skills | |||||
23 | Applications in computer courses are as valuable as the grades I take in this course | |||||
5. Sub-dimension (Augmented Reality Activities) | ||||||
24 | AR activities in computer courses make me curious | |||||
25 | AR activities in computer courses give a sense of reality to the atmosphere | |||||
26 | AR activities in computer courses help to learn 3D technology | |||||
6. Sub-dimension (Computer Lab Anxiety) | ||||||
27 | Failure to attend activities performed in the computer lab causes me to have problems | |||||
28 | Being in the computer lab is a big nuisance |
Madde No | MADDELER | Kesinlikle Katılıyorum | Katılıyorum | Kararsızım | Katılmıyorum | Kesinlikle Katılmıyorum |
---|---|---|---|---|---|---|
1.Altboyut (Bilgisayar Dersine Yönelik Duygusal Tutumlar) | ||||||
1 | Bilgisayar dersi eğlencelidir | |||||
2 | Bilgisayar dersi zevklidir | |||||
3 | Bilgisayar dersi ilgi çekicidir | |||||
4 | Bilgisayar dersi kolaydır | |||||
5 | Bilgisayar dersi en iyi dersimdir | |||||
6 | Bilgisayar dersi güdüleyicidir | |||||
7 | Bilgisayar dersi önemlidir | |||||
2. Altboyut (Ters-Yüz Edilmiş Sınıf Videoları) | ||||||
8 | Bilgisayar dersi konu anlatım videoları öğretmenin anlattığı konuların dikkatle izlenmesini sağlar | |||||
9 | Bilgisayar dersi konu anlatım videoları derse katılımımı artırır | |||||
10 | Bilgisayar dersi konu anlatım videoları yeterli olmalıdır, böylelikle ders daha iyi anlaşılır | |||||
11 | Bilgisayar dersi konu anlatım videoları bilgi verici olduğu için yeterlidir | |||||
12 | Bilgisayar dersi konu anlatım videoları örneklerle desteklenmelidir | |||||
3. Altboyut (Bilgisayar Destekli Eğitim Uygulamaları) | ||||||
13 | Bilgisayar derslerinde yapılan uygulamalar öğretmen-öğrenci etkileşimini artırır | |||||
14 | Bilgisayar derslerinde yapılan uygulamalar öğrenci-öğrenci etkileşimini artırır | |||||
15 | Bilgisayar dersinde yapılan uygulamalar dersi daha iyi anlamama yardımcı olur | |||||
16 | Bilgisayar dersinde yapılan uygulamalar öğretimi daha zevkli hale getirir | |||||
17 | Bilgisayar dersinde yapılan uygulamalar dersin daha verimli olmasını sağlar | |||||
4. Altboyut (Laboratuvar Destekli Bilgisayar Dersi) | ||||||
18 | Bilgisayar laboratuvarında ders yapılması empati yeteneğimi geliştirir | |||||
19 | Bilgisayar laboratuvarında dersin işlenmesi iletişim becerimi artırır | |||||
20 | Bilgisayar dersinde yapılan uygulamalar yeni bakış açıları geliştirmeyi kolaylaştırır | |||||
21 | Bilgisayar laboratuvarında bilgisayarlarla çalışmak teşvik edicidir | |||||
22 | Bilgisayar dersinde yapılan uygulamalar düşünme becerilerinin gelişmesine katkı sağlar | |||||
23 | Bilgisayar dersinde yapılan uygulamalar bu dersten aldığım not kadar değerlidir | |||||
5. Altboyut (Artırılmış Gerçeklik Etkinlikleri) | ||||||
24 | Bilgisayar dersinde Artırılmış Gerçeklik etkinlikleri merak uyandırır | |||||
25 | Bilgisayar dersinde Artırılmış Gerçeklik etkinlikleri ortama gerçeklik hissi verir | |||||
26 | Bilgisayar dersinde Artırılmış Gerçeklik etkinlikleri 3 Boyutlu teknolojiyi öğrenmeye yardımcı olur | |||||
6. Altboyut (Bilgisayar Laboratuvarı Kaygısı) | ||||||
27 | Bilgisayar laboratuvarında yapılan etkinliklere katılmamam, problem yaşamama neden olur | |||||
28 | Bilgisayar laboratuvarında bulunmak büyük bir sorundur |
References
- Tuncel, G.; İçen, M. Eğitim felsefesinde insan doğasının rolü. IJONASS 2018, 2, 62–69. [Google Scholar]
- Çakıcı, D.; Alver, B.; Ada, Ş. Anlamlı Öğrenmenin Öğretimde Uygulanması. Atatürk Üniversitesi Kazım Karabekir Eğitim Fakültesi Derg. 2010, 13, 71–80. [Google Scholar]
- Bulut, M. İlköğretim Öğrencileri ve Velilerinin Bakış Açısıyla Ideal din Kültürü ve Ahlak Bilgisi Öğretmeni Profili: İstanbul Örneği. Ph.D. Thesis, Marmara University, Istanbul, Turkey, 8 July 2009; p. 236, Yök Ulusal Tez Merkezi. Available online: https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=CwVIqqBuz1VkysVpueogAem--Anzs9lQ3PkreMV_oWZR3RvKhFz3IKHs_981WNuG (accessed on 12 October 2019).
- Bayezit, B. Ortaokul 6. Sınıf Hacim Konusunun Öğretiminde Teknoloji Entegrasyonuna Yönelik bir Öğretim Tasarımının Geliştirilmesi. Ph.D. Thesis, Fen Bilimleri Enstitüsü Balıkesir Üniversity, Balıkesir, Turkey, January 2019; p. 256, Yök Ulusal Tez Merkezi. Available online: https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=T1mWGp9MngYYkCSgiJvtVrKlVOYzwC9nhRhTwwgwebjv65J1GDvlRuh69TqxB9U9 (accessed on 14 October 2019).
- İşman, A. Eğitim Teknolojisi ve Öğretim Tasarımı. In Eğitim Teknolojileri Okumaları, 1st ed.; Akkoyunlu, B., İşman, A., Odabaşı, H.F., Eds.; TOJET: Ankara, Turkey, 2015; Volume 1, pp. 1–24. ISBN 9786053181262.2. [Google Scholar]
- Çelik, B.; Gündoğdu, K. The effect of using humor and concept cartoons in high school ICT lesson on students’ achievement, retention, attitude and anxiety. Comput. Educ. 2016, 103, 144–157. [Google Scholar] [CrossRef]
- Gelen, I. Academicians’ Predictions of 21′st Century Education and Education in the 21′st Century. Eur. J. Educ. Stud. 2018, 4, 165–204. [Google Scholar]
- UNESCO; UNICEF. Envisioning Education in the Post-2015 Development Agenda: Executive Summary. Paris. 2013. Document Code: ED-13/EFA/POST-2015/2. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000223025?posInSet=10&queryId=7b3d9d5c-d9fd-4180-9152-6766402a0dab (accessed on 25 May 2020).
- İşman, A. Uzaktan Eğitim, 4th ed.; Pegem Akademi: Ankara, Turkey, 2011; ISBN 9789758792822. [Google Scholar]
- Sarıtaç, S. Fen Bilimleri Öğretmenlerinin Pedagojik-Epistemolojik İnanç Sistemlerinin Sınıf İçi Pratiklerine ve Sınıf Yönetimi Algılarına Etkisinin İncelenmesi. Ph.D. Thesis, İstanbul Aydın Üniversitesi and Yıldız Teknik Üniversitesi, Sosyal Bilimler Enstitüsü, Turkey, 25 September 2019; p. 164. Available online: https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=aEzj_IdWAsjiSAfK3qwrBrYiX_OJDA6wrVh1xy18oy-FX96qtZZVJAl4FDSmW7Aa (accessed on 22 March 2021).
- Somyürek, S. Öğretim sürecinde z kuşağının dikkatini çekme: Artırılmış gerçeklik. Eğitim Teknol. Kuram Uygul. 2014, 4, 63–80. [Google Scholar] [CrossRef]
- Aygören, F. Yapılandırmacı Öğrenme Ortamlarının Sınıf Öğretmenlerinin ve Okul Yöneticilerinin Görüşlerine Göre Değerlendirilmesi (Çine Örneği). Master’s Thesis, Adnan Menderes Üniversitesi, Sosyal Bilimler Enstitüsü, Efeler, Turkey, 2009. Available online: http://adudspace.adu.edu.tr:8080/jspui/handle/11607/846v (accessed on 29 June 2022).
- Çırak, K.S. Ortaokul Oğretmenlerinin “Oğretim Programı” Kavramına İlişkin Metaforik Algıları. Dicle Univ. J. Ziya Gökalp Educ. Fac. 2017, 31. [Google Scholar] [CrossRef]
- Saygıner, Ş.; Erdem, M. Web Tabanlı Öğrenme Ortamları: Yapılandırmacı Öğrenme Açısından Bir İnceleme. In Eğitim Teknolojileri Okumaları, 1st ed.; Akkoyunlu, B., İşman, A., Odabaşı, H.F., Eds.; Pegem Akademi: Ankara, Turkey, 2018; Volume 1, pp. 573–584. [Google Scholar]
- Marlowe, B.A.; Page, M.L. Creating and Sustaining the Constructivist Classroom; Corwin Press: Thousand Oaks, CA, USA, 1998. [Google Scholar]
- Holloway, J.H. Caution: Constructivism ahead. Educ. Leadersh. 1999, 57, 85–86. [Google Scholar]
- Kanlı, U. Yapılandırmacı Kuramın Işığında Öğrenme Halkası’nın Kökleri ve Evrimi-Örnek Bir Etkinlik. Eğitim ve Bilim 2010, 34, 151. Available online: http://213.14.10.181/index.php/EB/article/view/607/86 (accessed on 29 June 2022).
- Karplus, R.; Their, H.D. A New Look at Elementary School Science: Science Curriculum Improvement Study; Rand McNally: Chicago, IL, USA, 1967. [Google Scholar]
- Wilder, M.; Shuttleworth, P. Cell inquiry: A 5E learning cycle lesson. Sci. Act. 2004, 41, 25–31. [Google Scholar] [CrossRef]
- Lawson, A.E. Science Teaching and the Development of Thinking; Wadsworth: Belmont, CA, USA, 1995. [Google Scholar]
- Özmen, H. Fen öğretiminde öğrenme teorileri ve teknoloji destekli yapılandırmacı (constructivist) öğrenme. Turk. Online J. Educ. Technol. 2004, 3, 100–111. [Google Scholar]
- Bybee, R.W. Achieving Scientific Literacy: From Purposes to Practices; Heinemann: Westport, CT, USA, 1997. [Google Scholar]
- Boddy, N.; Watson, K.; Aubusson, P. A trial of the five Es: A referent model for constructivist teaching and learning. Res. Sci. Educ. 2003, 33, 27–42. [Google Scholar] [CrossRef]
- Eisenkraft, A. Expanding the 5E model. Sci. Teach. Wash. 2003, 70, 56–59. [Google Scholar]
- Şahin, M. Yapılandırmacı Öğrenme Yaklaşımı. In Öğretim İlke ve Yöntemleri (Kuramlar, Yaklaşımlar, Modeller, Stratejiler); Budak, Y., Ed.; Pegem Akademi: Ankara, Turkey, 2016; ISBN 9786053648307. [Google Scholar]
- Blau, I.; Inbal, T.S. Re-designed flipped learning model in an academic course: The role of co-creation and co-regulation. Comput. Educ. 2017, 115, 69–81. [Google Scholar] [CrossRef]
- Alsancak, S.D.; Seferoğlu, S. Tersyüz sınıf modelinde bireysel özelliklerin rolüyle ilgili bir değerlendirme. Eğitim Teknol. Okumaları 2017, 38, 725–754. [Google Scholar]
- Kara, C.O. Flipped classroom. Tıp Eğitimi Dünyası 2016, 15, 12–26. [Google Scholar] [CrossRef]
- Aydın, C.; Biroğul, S. E-öğrenmede açık kaynak kodlu öğretim yönetim sistemleri ve moodle. Bilişim Teknol. Derg. 2008, 1, 2. Available online: https://dergipark.org.tr/tr/pub/gazibtd/issue/6613/87871 (accessed on 29 June 2022).
- Akca, M.A.; Önder, R.; Gülsoy, H.T. Öğrenme yönetim sistemlerine yönelik öğrenci başarı analiz plugini geliştirilmesi. J. Res. Educ. Teach. 2016, 5, 322–329. [Google Scholar]
- Deperlioğlu, Ö. Bölüm-6 E-öğrenme sistemlerinde verimliliğin ölçülmesi: Afyon Kocatepe Üniversitesi Örneği. Türkiye’de E-Öğrenme Gelişmeler Uygul 2010, 131–161. Available online: https://openaccess.maltepe.edu.tr/xmlui/handle/20.500.12415/5360 (accessed on 29 June 2022).
- Özel, N. Bilgi ve İletişim Teknolojilerinin Etkisiyle Değişen Bilgi Kaynakları, Hizmetleri ve Öğrenme Ortamları. Milli Eğitim Derg. 2016, 45, 270–294. Available online: https://dergipark.org.tr/en/pub/milliegitim/issue/36141/406077 (accessed on 29 June 2022).
- Bilici, F. Pazarlamada Artırılmış Gerçeklik ve Karekod Teknolojileri: Tüketicilerin Artırılmış Gerçeklik Teknoloji Algılamaları Üzerine bir alan Araştırması. Master’s Thesis, Uludağ Üniversitesi: Bursa, Turkey, 2015. Available online: http://hdl.handle.net/11452/1688 (accessed on 29 June 2022).
- Ibáñez, M.B.; Kloos, C.D. Augmented reality for STEM learning: A systematic review. Comput. Educ. 2018, 123, 109–123. [Google Scholar] [CrossRef]
- Bacca, A.; Luis, A.; Baldiris, N.S.M.; Fabregat, G.R.; Graf, S. Augmented reality trends in education: A systematic review of research and applications. J. Educ. Technol. Soc. 2014, 17, 133–149. Available online: https://dugi-doc.udg.edu/handle/10256/17763 (accessed on 29 June 2022).
- Akçayır, M.; Akçayır, G. Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educ. Res. Rev. 2017, 20, 1–11. [Google Scholar] [CrossRef]
- Ersoy, H.; Duman, E.; Semiral, Ö.N. Artırılmış gerçeklik ile motivasyon ve başarı: Deneysel bir çalışma. J. Instr. Technol. Teach. Educ. 2016, 5, 39–44. [Google Scholar]
- Yücel, E. Fen Bilgisi Öğretmen Adaylarının Laboratuvar Derslerine Yönelik Öz-Yeterlik, Tutum ve Kaygı Puanlarının Bazı Değişkenlere Göre Incelenmesi. Master’s Thesis, Sakarya Üniversitesi, Sakarya, Turkey, 2014. [Google Scholar]
- Kip, B. Çevrimiçi Öğrenenlerin Farklı Destek Ortamlarını Kullanma Sıklıklarıyla Sosyal Bulunuşluk Algıları Arasındaki Ilişki. Ph.D. Thesis, Anadolu University Turkey, Eskişehir, Turkey, 2017. [Google Scholar]
- Kahya, V. Koronavirüs (COVID-19) salgını süresince zorunlu uzaktan eğitim uygulamalarının birleştirilmiş teknoloji kabul modeli ile araştırılması. Bus. Manag. Stud. Int. J. 2021, 9, 737–750. [Google Scholar] [CrossRef]
- Di Pietro, G.; Biagi, F.; Costa, P.; Karpiński, Z.; Mazza, J. The Likely Impact of COVID-19 on Education: Reflections based on the Existing Literature and Recent International Datasets; Publications Office of the European Union: Luxembourg, 2020; Volume 30275, Available online: https://epale.ec.europa.eu/sites/default/files/kjna30275enn.en_.pdf (accessed on 29 June 2022).
- Lee, J.; Han, S.H. The Future of Service Post-COVID-19 Pandemic, V.1. In Rapid Adoption of Digital Service Technology; Springer Nature: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Al-Kumaim, N.H.; Alhazmi, A.K.; Mohammed, F.; Gazem, N.A.; Shabbir, M.S.; Fazea, Y. Exploring the Impact of the COVID-19 Pandemic on University Students’ Learning Life: An Integrated Conceptual Motivational Model for Sustainable and Healthy Online Learning. Sustainability 2021, 13, 2546. [Google Scholar] [CrossRef]
- Selwyn, N.; Jandrić, P. Postdigital living in the age of Covid-19: Unsettling what we see as possible. Postdigital Sci. Educ. 2020, 2, 989–1005. [Google Scholar] [CrossRef]
- Arora, M.; Goyal, L.M.; Chintalapudi, N.; Mittal, M. Factors affecting digital education during COVID-19: A statistical modeling approach. In Proceedings of the 2020 5th International Conference on Computing, Communication and Security (ICCCS), Patna, India, 14–16 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Zawacki-Richter, O. The current state and impact of Covid-19 on digital higher education in Germany. Hum. Behav. Emerg. Technol. 2021, 3, 218–226. [Google Scholar] [CrossRef]
- Tonbuloğlu, İ.; Tonbuloğlu, B. Eğitimde dijital dönüşüm: Harmanlanmış öğrenme. Tech. Rep. İlke Yayınları 2021, 106, 1–52. [Google Scholar] [CrossRef]
- Telli, S.G.; Altun, D. Coronavirüs ve çevrimiçi (online) eğitimin önlenemeyen yükselişi. Üniversite Araştırmaları Dergisi. 2020, 3, 25–34. [Google Scholar] [CrossRef]
- Taherdoost, H. Sampling Methods in Research Methodology; How to Choose a Sampling Technique for Research. 2016. Available online: https://ssrn.com/abstract=3205035 (accessed on 29 June 2022).
- Shuttleworth, M. Content Validity. 2009. Available online: https://explorable.com/content-validity (accessed on 31 July 2022).
- Lawshe, C.H. A quantitative approach to content validity. Pers. Psychol. 1975, 28, 563–575. [Google Scholar] [CrossRef]
- Allen, M.J.; Yen, W.M. Introduction to Measurement Theory, 2nd ed.; Waveland Press: Prospect Heights, IL, USA, 2002; p. 310. [Google Scholar]
- Rubio, D.M.; Berg-Weger, M.; Tebb, S.; Lee, S.; Rauch, S. Objectifying content validity: Conducting a content validity study in social work research. Soc. Work. Res. ProQuest Psychol. J. 2003, 27, 94–104. [Google Scholar] [CrossRef]
- Basham, A.; Sedlacek, W.E. Validity. In The ACA Encyclopedia of Counseling; American Counseling Association: Alexandria, VA, USA, 2009; p. 557. [Google Scholar] [CrossRef]
- Brinkman. W.P. Design of a Questionnaire Instrument. Handbook of Mobile Technology Research Methods; Nova Publisher: Amsterdam, The Netherlands, 2009; pp. 31–57. ISBN 9781606927670. [Google Scholar]
- McMillan, J.H.; Schumacher, S. Research in Education: Evidence-Based Inquiry, 7th ed.; Pearson: New York, NY, USA, 2010. [Google Scholar]
- Wilson, F.R.; Pan, W.; Schumsky, D.A. Recalculation of the critical values for Lawshe’s content validity ratio. Meas. Eval. Couns. Dev. 2012, 45, 197–210. [Google Scholar] [CrossRef]
- Ayre, C.; Scally, A.J. Critical values for Lawshe’s content validity ratio: Revisiting the original methods of calculation. Meas. Eval. Couns. Dev. 2014, 47, 79–86. [Google Scholar] [CrossRef]
- Joshi, A.; Kale, S.; Chandel, S.; Pal, D.K. Likert Scale: Explored and Explained. Curr. J. Appl. Sci. Technol. 2015, 7, 396. [Google Scholar] [CrossRef]
- Şencan, H. Sosyal ve Davranışsal Ölçümlerde Güvenilirlik ve Geçerlik; Seçkin Yayıncılık Sanayi ve Ticaret A.Ş.: Ankara, Turkey, 2005. [Google Scholar]
- Dziuban, C.D.; Shirkey, E.C. When is a correlation matrix appropriate for factor analysis? Some decision rules. Psychol. Bull. 1974, 81, 358–361. [Google Scholar] [CrossRef]
- Stein, C.M. Estimation of the Mean of a Multivariate Normal Distribution. Ann. Stat. 1981, 9, 1135–1151. [Google Scholar] [CrossRef]
- Costello, A.B.; Osborne, J. Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Pract. Assess. Res. Eval. 2005, 10, 1–9. [Google Scholar] [CrossRef]
- Maćkiewicz, A.; Ratajczak, W. Principal components analysis (PCA). Comput. Geosci. 1993, 19, 303–342. [Google Scholar] [CrossRef]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Dien, J.; Beal, D.J.; Berg, P. Optimizing principal components analysis of event-related potentials: Matrix type, factor loading weighting, extraction, and rotations. Clin. Neurophysiol. 2005, 116, 1808–1825. [Google Scholar] [CrossRef]
- Cerny, B.A.; Kaiser, H.F. A Study of a Measure of Sampling Adequacy for Factor-Analytic Correlation Matrices. Multivar. Behav. Res. 1977, 12, 43–47. [Google Scholar] [CrossRef]
- Brown, T.A. Confirmatory Factor Analysis for Applied Research; Guilford Publications: New York, NY, USA, 2015. [Google Scholar]
- Horvath, L. The Maximum Likelihood Method for Testing Changes in the Parameters of Normal Observations. Ann. Stat. 1993, 21, 671–680. [Google Scholar] [CrossRef]
- Hinton, P.; McMurray, I.; Brownlow, C. SPSS Explained; Routledge: Oxfordshire, UK, 2014. [Google Scholar] [CrossRef]
- Hutcheson, G.D.; Sofroniou, N. The Multivariate Social Scientist: Introductory Statistics using Generalized Linear Models; Sage: Newcastle-upon-Tyne, UK, 1999. [Google Scholar]
- Comrey, A.L.; Lee, H.B. A First Course in Factor Analysis; Psychology Press: Oxfordshire, UK, 2013. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; Sage: Newcastle-upon-Tyne, UK, 2013. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics; Allyn & Bacon Com: Boston, MA, USA, 2011. [Google Scholar]
- Kline, R.B. Methodology in the Social Sciences. Principles and Practice of Structural Equation Modeling, 2nd ed; Guilford Press: New York, NY, USA, 2005. [Google Scholar]
- Schermelleh-Engel, K.; Moosbrugger, H.; Müller, H. Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods Psychol. Res. Online 2003, 8, 23–74. [Google Scholar]
- Schumacker, R.E.; Lomax, R.G. A Beginner’s Guide to Structural Equation Modeling; Lawrence Erlbaum Associates, Inc: Mahwah, NJ, USA, 1996. [Google Scholar]
- Schumacker, R.E.; Lomax, R.G. A Beginner’s Guide to Structural Equation Modeling; Psychology Press: Oxfordshire, UK, 2004. [Google Scholar] [CrossRef]
- Kline, R.B. Convergence of Structural Equation Modeling and Multilevel Modeling; Sage: Newcastle-upon-Tyne, UK, 2011. [Google Scholar] [CrossRef]
- Gündüzalp, C.; Yıldız, E.P. Assure Modeli İle Tasarlanmış Bir Dersin Öğrencilerin Bilgi İletişim Teknolojileri Kullanımına Yönelik Tutum ve Bilgisayar Kaygı Düzeylerine Etkisi. Ekev Akademi Dergisi 2020, 83., 107–136. [Google Scholar] [CrossRef]
- Yılmaz, Y.; Suner, A.; Yılmaz, Ö. Mobile learning in a flipped classroom: Findings from a “5-lecture-5” blended learning design for large classes. Turk. J. Biochem. 2020, 47, 119–126. [Google Scholar] [CrossRef]
- Polat, K.; Karakuş, F. Öğretmen adaylarının bilgisayar destekli eğitime yönelik tutum ve öz yeterlik algılarının incelenmesi. Cumhur. Uluslararası Eğitim Derg. 2020, 9, 579–592. [Google Scholar]
- Alınlı, C.; Yazıcı, F. 8. sınıf TC inkılap tarihi ve atatürkçülük dersinde artırılmış gerçeklik uygulamalarının öğrencilerin akademik başarılarına etkisi ve öğrencilerin artırılmış gerçeklik uygulamasına karşı tutumları. Uluslararası Türk Eğitim Bilimleri Derg. 2020, 15, 99–113. [Google Scholar] [CrossRef]
- Scherer, R.; Siddiq, F.; Tondeur, J. All the same or different? Revisiting measures of teachers’ technology acceptance. Comput. Educ. 2020, 143, 103656. [Google Scholar] [CrossRef]
- Lee, C.; Yeung, A.S.; Cheung, K.W. Learner perceptions versus technology usage: A study of adolescent English learners in Hong Kong secondary schools. Comput. Educ. 2019, 133, 13–26. [Google Scholar] [CrossRef]
- Bandura, A. Self-Efficacy: The Exercise of Control; W.H. Freeman: New York, NY, USA, 1997. [Google Scholar]
- Shank, D.B.; Cotton, S.R. Does technology empower urban youth? The relationship of technology use to self-efficacy. Comput. Educ. 2014, 70, 184–193. [Google Scholar] [CrossRef]
- MEB (Milli Eğitim Bakanlığı–Türkiye). İlköğretim fen ve Teknoloji Programı; MEB Basımevi: Ankara, Turkey, 2004. [Google Scholar]
- Çepni, S.; Şan, H.M.; Gökdere, M.; Küçük, M. Fen bilgisi öğretiminde zihinde yapılanma kuramına uygun 7E modeline göre örnek etkinlik geliştirme. In Proceedings of the Yeni Bin Yılın Başında Fen Bilimleri Eğitimi Sempozyumu, Bildiri Kitabı, İstanbul, Turkey, 7–8 September 2001; pp. 183–190. [Google Scholar]
- Turan, Z.; Göktaş, Y. Yükseköğretimde yeni bir yaklaşım: Öğrencilerin ters yüz sınıf yöntemine ilişkin görüşleri. Yükseköğretim Ve Bilim Derg. 2015, 2, 156–164. [Google Scholar]
- Becker, A.S.; Cummins, M.; Davis, A.; Freeman, A.; Hall, C.G.; Ananthanarayanan, V. NMC Horizon Report: 2017 Higher Education Edition; The New Media Consortium: Austin, TX, USA, 2017. [Google Scholar]
- Martin, S.; Diaz, G.; Sancristobal, E.; Gil, R.; Castro, M.; Peire, J. New technology trends in education: Seven years of forecasts and convergence. Comput. Educ. 2011, 57, 1893–1906. [Google Scholar] [CrossRef]
KMO Sample Adequacy Measure | 0.921 | |
---|---|---|
χ2 | 6079.890 | |
Bartlett’s sphericity test | df | 378 |
P | 0.000 |
New Item No | Item No | Rotated Components Factor Load Values | ||||||
---|---|---|---|---|---|---|---|---|
Factor Common Variance | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 | ||
1 | 2 | 0.768 | 0.829 | |||||
2 | 5 | 0.779 | 0.823 | |||||
3 | 3 | 0.735 | 0.774 | |||||
4 | 6 | 0.499 | 0.673 | |||||
5 | 1 | 0.53 | 0.634 | |||||
6 | 7 | 0.528 | 0.612 | |||||
7 | 4 | 0.529 | 0.533 | |||||
8 | 17 | 0.668 | 0.751 | |||||
9 | 14 | 0.629 | 0.715 | |||||
10 | 18 | 0.598 | 0.714 | |||||
11 | 15 | 0.585 | 0.696 | |||||
12 | 16 | 0.489 | 0.620 | |||||
13 | 36 | 0.737 | 0.754 | |||||
14 | 37 | 0.614 | 0.723 | |||||
15 | 34 | 0.686 | 0.716 | |||||
16 | 35 | 0.708 | 0.652 | |||||
17 | 41 | 0.61 | 0.566 | |||||
18 | 46 | 0.615 | 0.756 | |||||
19 | 43 | 0.678 | 0.752 | |||||
20 | 28 | 0.647 | 0.642 | |||||
21 | 45 | 0.593 | 0.628 | |||||
22 | 27 | 0.654 | 0.609 | |||||
23 | 25 | 0.444 | 0.455 | |||||
24 | 49 | 0.818 | 0.826 | |||||
25 | 51 | 0.823 | 0.823 | |||||
26 | 54 | 0.80 | 0.814 | |||||
27 | 48 | 0.749 | 0.851 | |||||
28 | 47 | 0.699 | 0.744 | |||||
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 | |||
Eigenvalue | 10.224 | 2.564 | 1.545 | 1.492 | 1.215 | 1.169 | ||
Explained variance % | 36.51 | 9.15 | 5.51 | 5.33 | 4.34 | 4.17 | ||
Total variance | 65.036% |
Variables | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 | P |
Factor 1 | 1 | 0.395 | 0.620 | 0.588 | 0.310 | 0.267 | 0.000 |
Factor 2 | 0.395 | 1 | 0.479 | 0.511 | 0.527 | 0.252 | 0.000 |
Factor 3 | 0.620 | 0.479 | 1 | 0.639 | 0.462 | 0.331 | 0.000 |
Factor 4 | 0.588 | 0.511 | 0.639 | 1 | 0.444 | 0.268 | 0.000 |
Factor 5 | 0.310 | 0.527 | 0.462 | 0.444 | 1 | 0.316 | 0.000 |
Factor 6 | 0.267 | 0.252 | 0.331 | 0.268 | 0.316 | 1 | 0.000 |
Model Fit Indexes | 7EMAGBAÖ | Perfect Fit Criteria | Acceptable Fit Criteria |
---|---|---|---|
χ2/sd | 1.957 | ≤ 3 | ≤4–5 |
RMSEA | 0.049 | ≤ 0.05 | 0.06–0.08 |
NFI | 0.896 | ≥ 0.95 | 0.94–0.90 |
IFI | 0.946 | ≥ 0.95 | 0.94–0.90 |
CFI | 0.946 | ≥ 0.97 | 0.90–0.95 |
GFI | 0.899 | ≥ 0.95 | 0.90–0.95 |
AGFI | 0.876 | ≥ 0.90 | 0.85–0.95 |
RMR | 0.056 | ≤ 0.05 | 0.05–0.10 |
Sub-Dimensions | Cronbach’s Alpha Internal Consistency Coefficient (α) |
---|---|
Emotional attitudes towards computer Courses flipped classroom videos Computer-assisted education Applications Laboratory-assisted computer course AR activities Computer lab anxiety | 0.878 0.820 0.864 0.848 0.893 0.639 0.932 |
Scale in general |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erçağ, E.; Yasakcı, A. The Perception Scale for the 7E Model-Based Augmented Reality Enriched Computer Course (7EMAGBAÖ): Validity and Reliability Study. Sustainability 2022, 14, 12037. https://doi.org/10.3390/su141912037
Erçağ E, Yasakcı A. The Perception Scale for the 7E Model-Based Augmented Reality Enriched Computer Course (7EMAGBAÖ): Validity and Reliability Study. Sustainability. 2022; 14(19):12037. https://doi.org/10.3390/su141912037
Chicago/Turabian StyleErçağ, Erinç, and Aykut Yasakcı. 2022. "The Perception Scale for the 7E Model-Based Augmented Reality Enriched Computer Course (7EMAGBAÖ): Validity and Reliability Study" Sustainability 14, no. 19: 12037. https://doi.org/10.3390/su141912037
APA StyleErçağ, E., & Yasakcı, A. (2022). The Perception Scale for the 7E Model-Based Augmented Reality Enriched Computer Course (7EMAGBAÖ): Validity and Reliability Study. Sustainability, 14(19), 12037. https://doi.org/10.3390/su141912037