Prediction of Suitable Distribution Area of Plateau pika (Ochotona curzoniae) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Theoretical Basis and Research Framework
2.3. Data Collection
2.4. Screening of Environment Variables
2.5. Model Optimization
3. Results
3.1. Model Accuracy Test and Identification of Main Environmental Factors
3.2. Suitable Distribution Area of Plateau Pika under Historical Climatic Conditions
- The 99 sampling points were projected onto the raster map of the historical prediction results, and the fitness index of each sampling point was extracted. The results showed that 61.61%, 25.25%, and 15.15% of the points were distributed in the highly suitable, moderately suitable, and minimally suitable areas, respectively, whereas no points were distributed in the unsuitable area. The proportion of distribution points of Plateau pika decreased with the decrease in suitability;
- The effective burrow density of Plateau pika in 76 sample plots was counted during sampling. The effective burrow density can represent the population density of Plateau pika [67]. The statistical results showed that the average effective burrow density was 0.276 ± 0.013 m−2 for the sampling points in the highly suitable area (Figure 4, Sample 3), approximately 0.152 ± 0.015 m−2 for the sampling points in the moderately suitable area (Figure 4, Sample 2), and 0.078 ± 0.005 m−2 for the sampling points in the minimally suitable area (Figure 4, Sample 1). The effective burrow density decreased with the decrease in suitability.
3.3. Suitable Distribution Area of Plateau pika on the Qinghai–Tibet Plateau under Three Climate Change Scenarios
3.4. Geospatial Analysis of Suitable Distribution Area of Plateau Pika
3.5. Centroid Migration Analysis
4. Discussion
4.1. Adjustment of Model Accuracy
4.2. Key Factors Affecting the Distribution of Plateau Pika
4.3. Change Trend of Suitable Distribution Area of Plateau Pika under Three Climate Scenarios
4.4. Comparison of Centroid Transfer in Suitable Distribution Areas of Plateau pika under the Influence of Future Climate Change
5. Conclusions
- (1)
- The election of species distribution points and environmental variables as well as the optimization of MaxEnt model parameters using the Kuenm package could vastly improve the accuracy of model prediction. The environmental factors affecting the distribution of Plateau pika in the Qinghai–Tibet Plateau were mainly climatic factors and topographic factors, accounting for 64.1% and 33.1%, while soil factors had a small contribution, accounting for 3%. Specifically, the main influencing factors were BIO 16, BIO 2, Slope, Elevation, BIO 4, and BIO 1.
- (2)
- In the historical period, the total suitable distribution area of Plateau pika in the Qinghai–Tibet Plateau accounted for 29.90% (approximately 74.74 × 104 km2) of the total area (Table 6), concentrated in the eastern and central areas of the Qinghai–Tibet Plateau.
- (3)
- The influence of future climate on the suitable distribution area of Plateau pika showed different trends under different scenarios and periods. The total suitable distribution area of pika under SSP 1-2.6 and SSP 2-4.5 showed an expansion trend in the near term (2021–2040), and the expansion area was mainly concentrated in the eastern and central parts of the Qinghai–Tibet Plateau. The expansion was the largest in Qinghai Province, followed by Sichuan Province and Tibet, and the suitable distribution area shrank in the Altun Mountains, Xinjiang. Under SSP 5-8.5 in the near term and all scenarios in the medium term (2041–2060), the suitable distribution area of Plateau pika decreased to different degrees. The shrinkage was mainly concentrated at the margin of the Qaidam Basin, central Tibet, and the Qilian Mountains in the east of Qinghai Province.
- (4)
- Plateau pika migrated toward the east or southeast on the Qinghai–Tibet Plateau under the three climate scenarios in the future, and under most of the scenarios, the migration distance was longer in the medium term than in the near term.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sampling Point | Longitude (°E) | Latitude (°N) | Elevation (m) | Sampling Point | Longitude (°E) | Latitude (°N) | Elevation (m) |
---|---|---|---|---|---|---|---|
Basu1 | 97.130 | 30.530 | 4125 | Shiqu2 | 98.015 | 33.033 | 4302 |
Tibet3 | 82.536 | 30.587 | 4955 | Balongnong | 98.027 | 31.565 | 3942 |
Naqu5 | 83.917 | 29.917 | 4711 | Shiqu3 | 98.047 | 32.984 | 4507 |
Tibet4 | 85.089 | 29.493 | 4686 | Xingxinghai | 98.130 | 34.830 | 4217 |
Tibet1 | 87.218 | 29.237 | 4503 | Maduo | 98.133 | 34.796 | 4306 |
Tuzilake | 87.308 | 36.800 | 4734 | Shiqu4 | 98.317 | 33.017 | 3986 |
Aqikelake | 88.610 | 37.033 | 4340 | Huashixia1 | 98.760 | 35.264 | 4099 |
Doublelake | 88.832 | 33.186 | 4916 | Huashixia2 | 98.850 | 35.080 | 4289 |
Jiangzi | 90.101 | 28.901 | 4976 | Xinghai1 | 99.000 | 34.800 | 4584 |
Nuni | 90.270 | 29.502 | 4081 | Tianjun | 99.106 | 37.245 | 3376 |
kaerqiuka | 90.755 | 37.043 | 4163 | Xinghai2 | 99.484 | 35.450 | 4099 |
Anduo1 | 91.035 | 32.178 | 4743 | Gangcha1 | 99.667 | 37.167 | 3304 |
Namucuo | 91.035 | 30.721 | 4844 | Niaodao | 99.758 | 37.171 | 3302 |
Dangxiong | 91.040 | 30.720 | 4850 | Heka | 99.908 | 35.821 | 3902 |
Anduo2 | 91.590 | 32.310 | 4870 | Dari1 | 99.928 | 33.564 | 4129 |
Naqu1 | 91.650 | 30.983 | 4717 | Gangcha2 | 100.134 | 37.325 | 3302 |
Geladandong | 91.652 | 33.589 | 4856 | Jiangxigou | 100.211 | 36.621 | 3302 |
Langkazi | 91.652 | 29.109 | 4334 | Maqin1 | 100.212 | 34.505 | 3849 |
Anduo3 | 91.718 | 32.157 | 4810 | Gande | 100.218 | 34.203 | 4228 |
Naqu2 | 91.797 | 31.280 | 4608 | Mole1 | 100.233 | 37.967 | 3653 |
Tanggulamountain | 91.856 | 33.224 | 4860 | Qinghailake | 100.233 | 37.233 | 3302 |
Naqu3 | 91.967 | 31.467 | 4617 | Shiqu2 | 98.015 | 33.033 | 4302 |
Zhuonailake | 92.260 | 35.548 | 4680 | Mole2 | 100.299 | 37.963 | 3781 |
Naqu4 | 92.277 | 31.441 | 4471 | Seda1 | 100.325 | 32.274 | 3885 |
Mozhugongka | 92.296 | 29.693 | 4718 | Seda2 | 100.350 | 36.233 | 2973 |
Riduovillage | 92.317 | 29.767 | 4785 | Dawu | 100.350 | 34.400 | 3870 |
Tuotuo River1 | 92.440 | 34.216 | 4536 | Reshui | 100.434 | 37.548 | 3554 |
Tuotuo River2 | 92.591 | 34.330 | 4591 | Dari2 | 100.437 | 33.293 | 3994 |
Beilu River | 92.942 | 34.862 | 4572 | Qika | 100.498 | 34.207 | 3977 |
Chumaer River | 93.386 | 35.356 | 4517 | Maqin2 | 100.500 | 34.285 | 4110 |
Budong Spring | 93.897 | 35.522 | 4615 | Qilianarou | 100.525 | 38.048 | 3104 |
Xidatan1 | 94.058 | 35.712 | 4590 | Maqin3 | 100.533 | 34.350 | 4000 |
Kunlong Mountain1 | 94.060 | 35.710 | 4590 | Anduo4 | 100.590 | 32.180 | 4120 |
Xidatan2 | 94.135 | 35.717 | 4446 | Jungong | 100.592 | 34.647 | 3435 |
Xidatan3 | 94.233 | 35.733 | 4280 | Guinan1 | 100.633 | 35.533 | 3336 |
Kunlong Mountain2 | 94.310 | 35.374 | 4641 | Qilianebao | 100.934 | 37.968 | 3435 |
Naqu6 | 95.083 | 36.500 | 2941 | Senduo | 101.000 | 35.440 | 3404 |
Zhiduo1 | 95.696 | 33.939 | 4367 | Guinan2 | 101.133 | 35.467 | 3497 |
Qumalai | 95.877 | 34.139 | 4384 | Guide1 | 101.205 | 36.254 | 3686 |
Zhiduo2 | 96.060 | 33.540 | 4350 | Menyuan1 | 101.275 | 37.690 | 3263 |
Nangqian | 96.508 | 32.190 | 3951 | Menyuan2 | 101.440 | 35.218 | 3933 |
Yushu1 | 96.886 | 33.057 | 3913 | Zeku | 101.450 | 35.017 | 3696 |
Bangda | 97.128 | 30.529 | 4355 | Lajimountain | 101.467 | 37.200 | 3661 |
Basu2 | 97.206 | 30.674 | 4474 | Aba | 101.581 | 33.009 | 3465 |
Chenduo | 97.240 | 33.360 | 4432 | Tongren | 101.716 | 35.586 | 3877 |
Yela Mountain | 97.295 | 30.187 | 4527 | Maqu | 101.733 | 33.717 | 3521 |
Basu3 | 97.330 | 30.190 | 4392 | Lvqu | 102.098 | 34.065 | 3716 |
Yushu2 | 97.420 | 33.330 | 4215 | Hequ | 102.483 | 34.133 | 3612 |
Shiqu1 | 97.650 | 33.183 | 4361 | Ruoergai | 102.880 | 33.900 | 3490 |
Elinlake | 97.720 | 35.070 | 4278 |
Data Category | Data Name | Variable Abbreviation | Variable Meaning |
---|---|---|---|
Climate data | NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) | BIO 1 | Annual mean temperature |
BIO 2 | Mean diurnal range (mean of monthly (max temp–min temp)) | ||
BIO 3 | Isothermality (BIO 2/BIO 7) (×100) | ||
BIO 4 | Temperature seasonality (standard deviation ×100) | ||
BIO 5 | Max temperature of warmest Month | ||
BIO 6 | Min temperature of coldest Month | ||
BIO 7 | Temperature annual range (BIO 5-BIO 6) | ||
BIO 8 | Mean temperature of wettest quarter | ||
BIO 9 | Mean temperature of driest quarter | ||
BIO 10 | Mean temperature of warmest quarter | ||
BIO 11 | Mean temperature of coldest quarter | ||
BIO 12 | Annual precipitation | ||
BIO 13 | Precipitation of wettest Month | ||
BIO 14 | Precipitation of driest Month | ||
BIO 15 | Precipitation seasonality (coefficient of variation) | ||
BIO 16 | Precipitation of wettest quarter | ||
BIO 17 | Precipitation of driest quarter | ||
BIO 18 | Precipitation of warmest quarter | ||
BIO 19 | Precipitation of coldest quarter | ||
Soil data | ISRIC-WISE30sec | ALSAT | Aluminum saturation (as % of ECEC) |
BSAT | Base saturation (as % of CECsoil) | ||
BULK | Bulk density | ||
CECC | Cation exchange capacity of clay size fraction (CECclay) | ||
CECS | Cation exchange capacity (CECsoil) | ||
CFRAG | Coarse fragments (>2 mm; volume %) | ||
CLPC | Clay (mass %) | ||
CNrt | C/N ratio | ||
ECEC | Effective cation exchange capacity | ||
ELCO | Electrical conductivity | ||
ESP | Exchangeable sodium percentage | ||
GYPS | Gypsum content | ||
ORGC | Organic carbon | ||
PHAQ | Soil reaction (PHH2O) | ||
SDTO | Sand (mass %) | ||
STPC | Silt (mass %) | ||
TAWC | Available water capacity (from -33 to -1500 kPa; cm m-1) | ||
TCEQ | Total carbonate equivalent | ||
TEB | Total exchangeable bases | ||
TOTN | Total nitrogen | ||
Topographic Variable | DEM (Digital Elevation Model) | Aspect | The aspect of samples |
Slope | The slope of samples | ||
Elevation | The elevation of samples |
Appendix B
References
- Masson-Delmotte, V.; Zhai, P.M.; Pirani, A. Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021; pp. 3–31. [Google Scholar]
- Chen, F.H.; Wang, Y.F.; Zhen, X.L.; Sun, J. Research on the Environment Impact of the Qinghai-Tibet Plateau under Global Change and the Countermeasures. China Tibetol. 2021, 4, 21–28. (In Chinese) [Google Scholar]
- Li, B.; He, G.; Guo, S.; Hou, R.; Huang, K.; Zhang, P.; Zhang, H.; Pan, R.; Chapman, C.A. Macaques in China: Evolutionary dispersion and subsequent development. Am. J. Primatol. 2020, 82, e23142. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wang, B.; Chen, C.; Zhou, G. MaxEnt Modeling to Predict the Current and Future Distribution of Pomatosace filicula under Climate Change Scenarios on the Qinghai–Tibet Plateau. Plants 2022, 11, 670. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, Y.; Huang, Y.; Zhang, J.; Mou, Q.; Qiu, J.; Wang, R.; Li, Y.; Zhang, D. Simulation of potential suitable distribution of original species of Fritillariae Cirrhosae Bulbus in China under climate change scenarios. Environ. Sci. Pollut. Res. Int. 2022, 29, 22237–22250. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, J.; Wang, J.; Wang, W. Chinese caterpillar fungus (Ophiocordyceps sinensis) in China: Current distribution, trading, and futures under climate change and overexploitation. Sci. Total Environ. 2020, 755, 142548. [Google Scholar] [CrossRef]
- Huang, X.; Ma, L.; Chen, C.; Zhou, H.; Yao, B.; Ma, Z. Predicting the Suitable Geographical Distribution of Sinadoxa Corydalifolia under Different Climate Change Scenarios in the Three-River Region Using the MaxEnt Model. Plants 2020, 9, 1015. [Google Scholar] [CrossRef]
- Su, J.; Aryal, A.; Nan, Z.; Ji, W. Climate Change-Induced Range Expansion of a Subterranean Rodent: Implications for Rangeland Management in Qinghai-Tibetan Plateau. PLoS ONE 2015, 10, e0138969. [Google Scholar] [CrossRef]
- Li, R. Protecting rare and endangered species under climate change on the Qinghai Plateau, China. Ecol. Evol. 2019, 9, 427–436. [Google Scholar] [CrossRef]
- Smith, A.T.; Badingqiuying; Wilson, M.C.; Hogan, B.W. Functional-trait ecology of the plateau pika (Ochotona curzoniae) in the Qinghai-Tibetan Plateau ecosystem. Integr. Zoöl. 2018, 14, 87–103. [Google Scholar] [CrossRef]
- Smith, A.T.; Foggin, J.M. The plateau pika (Ochotona curzoniae) is a keystone species for biodiversity on the Tibetan plateau. Anim. Conserv. 1999, 2, 235–240. [Google Scholar] [CrossRef]
- Zhang, W.N.; Jing, S.; Yu, C.; Pang, X.P.; Wang, J.; Guo, Z.G. Influence of the density of burrow entrances of plateau pika on the concentration of soil nutrients in a Kobresia pygmaea meadow. Pratacult. Sci. 2018, 35, 1593–1601. [Google Scholar]
- Li, J.; Chen, Y.-Y.; Qiao, F.-Y.; Zhi, D.-G.; Guo, Z.-G. Effects of disturbance by plateau pika on the β diversity of an alpine meadow. Chin. J. Plant Ecol. 2021, 45, 476–486. [Google Scholar] [CrossRef]
- Lai, C.H.; Smith, A.T. Keystone status of plateau pikas (Ochotona curzoniae): Effect of control on biodiversity of native birds. Biodivers. Conserv. 2003, 12, 1901–1912. [Google Scholar] [CrossRef]
- Li, L.-X.; Yi, X.-F.; Li, M.-C.; Zhang, X.-A. Analysis of diets of upland buzzards using stable carbon and nitrogen isotopes. Isr. J. Zoöl. 2004, 50, 75–85. [Google Scholar] [CrossRef]
- Hornskov, J.; Foggin, M. Brief notes on the Altai weasel Mustela altaica on the Tibetan Plateau. Small Carniv. Conserv. 2007, 36, 48–49. [Google Scholar]
- Wu, L.; Li, J.; Lu, Z.; Schaller, G.B. Seasonal food habits and human conflict of brown bears in the Sanjiangyuan Nature Reserve, Qinghai–Tibetan Plateau, China. Int. Bear News 2013, 22, 20–21. [Google Scholar]
- Chen, J.; Yi, S.; Qin, Y. The contribution of plateau pika disturbance and erosion on patchy alpine grassland soil on the Qinghai-Tibetan Plateau: Implications for grassland restoration. Geoderma 2017, 297, 1–9. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Hu, F.J.; Wang, Y.; Zhang, D.; Yu, W.; Chen, G.; Xie, T.; Liu, Z.; Ma, Z.; Du, J.; Chao, B.; et al. Mapping the potential of mangrove forest restoration based on species distribution models: A case study in China. Sci. Total Environ. 2020, 748, 142321. [Google Scholar] [CrossRef]
- Sánchez-Mercado, A.; Rodriguez-Clark, K.; Miranda, J.; Ferrer-Paris, J.R.; Coyle, B.; Toro, S.; Cardozo-Urdaneta, A.; Braun, M.J. How to deal with ground truthing affected by human-induced habitat change?: Identifying high-quality habitats for the Critically Endangered Red Siskin. Ecol. Evol. 2018, 8, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Ding, J.; Wang, R.; Wang, J. Drivers of PM2.5 in the urban agglomeration on the northern slope of the Tianshan Mountains, China. Environ. Pollut. 2022, 309, 119777. [Google Scholar] [CrossRef] [PubMed]
- Sand-Jensen, K.; Borum, J.; Møller, C.L.; Baastrup-Spohr, L. Physiological Adaptation and Plant Distribution along a Steep Hydrological Gradient. Plants 2022, 11, 1683. [Google Scholar] [CrossRef] [PubMed]
- Early, R.; Rwomushana, I.; Chipabika, G.; Day, R. Comparing, evaluating and combining statistical species distribution models and CLIMEX to forecast the distributions of emerging crop pests. Pest Manag. Sci. 2021, 78, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.H.; Graham, C.P.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Zhang, D.; An, B.; Chen, L.; Sun, Z.; Mao, R.; Zhao, C.; Zhang, L. Camera Trapping Reveals Spatiotemporal Partitioning Pat-terns and Conservation Implications for Two Sympatric Pheasant Species in the Qilian Mountains, Northwestern China. Animals 2022, 28, 12. [Google Scholar]
- Lu, K.; He, Y.-M.; Mao, W.; Du, Z.-Y.; Wang, L.-J.; Liu, G.-M.; Feng, W.-J.; Duan, Y.-Z. Potential geographical distribution and changes of Artemisia ordosica in China under future climate change. J. Appl. Ecol. 2020, 31, 3758–3766. [Google Scholar]
- Zahoor, B.; Liu, X.; Ahmad, B.; Kumar, L.; Songer, M. Impact of climate change on Asiatic black bear (Ursus thibetanus) and its autumn diet in the northern highlands of Pakistan. Glob. Change Biol. 2021, 27, 4294–4306. [Google Scholar] [CrossRef]
- Xia, X.; Li, Y.; Yang, D.; Pi, Y. Rana hanluica. Potential geographical distribution of in China under climate change. Ying Yong Sheng Tai Xue Bao 2021, 32, 4307–4314. [Google Scholar] [CrossRef]
- Evcin, O.; Kucuk, O.; Akturk, E. Habitat suitability model with maximum entropy approach for European roe deer (Capreolus capreolus) in the Black Sea Region. Environ. Monit. Assess. 2019, 191, 669. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Li, B.Y.; Zheng, D. A discussion on the boundary and area of the Tibetan Plateau in China. Geogr. Res. 2002, 21, 1–9. (In Chinese) [Google Scholar]
- Qiu, J. The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Wilson, E.O. The Diversity of Life; Harvard University Press: Cambridge, MA, USA, 1992; pp. 125–135. [Google Scholar]
- Fu, B.J.; Ouyang, Z.Y.; Shi, P.; Fan, J.; Wang, X.D.; Zheng, H.; Zhao, W.; Wu, F. Current Condition and Protection Strategies of Qinghai-Tibet Plateau. Ecol. Secur. Barrier Policy Manag. Res. 2021, 36, 1298–1306. (In Chinese) [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- He, Y.; Lin, G.; Ci, H.; Liu, C.; Zhang, T.; Su, J. The past population dynamics of Ochotona curzoniae and the response to the climate change. North-West. J. Zool. 2018, 14, 220–225. [Google Scholar]
- Evans, A.; Jacquemyn, H. Impact of mating system on range size and niche breadth in Epipactis (Orchidaceae). Ann. Bot. 2020, 126, 1203–1214. [Google Scholar] [CrossRef]
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- Calkins, M.T.; Beever, E.A.; Boykin, K. Not-so-splendid isolation: Modeling climate-mediated range collapse of a montane mammal (Ochotona princeps) across the Western United States. Ecography 2012, 35, 780–791. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, C.; Mi, C.; Han, L.; Li, M.; Xu, W.; Yang, W. Potential impacts of climate change on suitable habitats of Marco Polo sheep in China. Ying Yong Sheng Tai Xue Bao 2021, 32, 3127–3135. [Google Scholar] [CrossRef]
- Dai, Y. The overlap of suitable tea plant habitat with Asian elephant (Elephus maximus) distribution in southwestern China and its potential impact on species conservation and local economy. Environ. Sci. Pollut. Res. 2021, 29, 5960–5970. [Google Scholar] [CrossRef]
- Dong, X.; Chu, Y.-M.; Gu, X.; Huang, Q.; Zhang, J.; Bai, W. Suitable habitat prediction of Sichuan snub-nosed monkeys (Rhinopithecus roxellana) and its implications for conservation in Baihe Nature Reserve, Sichuan, China. Environ. Sci. Pollut. Res. 2019, 26, 32374–32384. [Google Scholar] [CrossRef] [PubMed]
- Galiano, D.; Bernardo-Silva, J.; De Freitas, T.R.O. Genetic Pool Information Reflects Highly Suitable Areas: The Case of Two Parapatric Endangered Species of Tuco-tucos (Rodentia: Ctenomiydae). PLoS ONE 2014, 9, e97301. [Google Scholar] [CrossRef]
- Boer, G.J.; Smith, D.M.; Cassou, C.; Doblas-Reyes, F.; Danabasoglu, G.; Kirtman, B.; Kushnir, Y.; Kimoto, M.; Meehl, G.A.; Msadek, R.; et al. The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev. 2016, 9, 3751–3777. [Google Scholar] [CrossRef]
- Zhou, T.J.; Zou, L.W.; Chen, X.L. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP 6). Clim. Change Res. 2019, 15, 445–456. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, MA, USA, 2013; pp. 1–1535. [Google Scholar]
- Wang, L.; Bao, Q.; He, H. Short commentary on CMIP6 High Resolution Model Intercomparison Project (HighResMIP). Adv. Clim. Change Res. 2019, 15, 498–502. [Google Scholar]
- Wu, B.; Xin, X.G. Short commentary on CMIP6 Decadal Climate Prediction Project (DCPP). Adv. Clim. Change Res. 2019, 15, 476–480. [Google Scholar]
- Su, B.; Huang, J.; Mondal, S.K.; Zhai, J.; Wang, Y.; Wen, S.; Gao, M.; Lv, Y.; Jiang, S.; Jiang, T.; et al. Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmos. Res. 2020, 250, 105375. [Google Scholar] [CrossRef]
- Batjes, N.H. World Soil Property Estimates for Broad-Scale Modelling (WISE30sec). Report 2015/01, ISRIC—World Soil Information, Wageningen. 2015. Available online: https://www.isric.org/sites/default/files/isric_report_2015_01.pdf (accessed on 6 April 2022).
- Wei, W.; Zhang, L.; Yang, G.; Xu, J.; Fan, X.; Zhang, W. Characteristics and functions of pika burrows in plateau. Acta Pratacult. Sin. 2013, 22, 198–204. [Google Scholar]
- Ying, X.; Hai, X.C. Preliminary assessment of simulations of climate changes over China by CMIP5 multimodels. Atmos. Ocean. Sci. Lett. 2012, 5, 489–494. [Google Scholar] [CrossRef]
- Eyring, V.; Cox, P.M.; Flato, G.M.; Gleckler, P.J.; Abramowitz, G.; Caldwell, P.; Collins, W.D.; Gier, B.K.; Hall, A.D.; Hoffman, F.M.; et al. Taking climate model evaluation to the next level. Nat. Clim. Change 2019, 9, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-Y.; Ko, J.; Kang, S.; Tenhunen, J. Impacts of climate change on paddy rice yield in a temperate climate. Glob. Change Biol. 2013, 19, 548–562. [Google Scholar] [CrossRef]
- Su, P.; Zhang, A.; Wang, R.; Wang, J.; Gao, R.; Liu, F. Prediction of Future Natural Suitable Areas for Rice under Representative Concentration Pathways (RCPs). Sustainability 2021, 13, 1580. [Google Scholar] [CrossRef]
- Ma, W.; Jia, W.; Zhou, Y.; Liu, F.; Wang, J. Prediction of Suitable Future Natural Areas for Highland Barley on the Qinghai-Tibet Plateau under Representative Concentration Pathways (RCPs). Sustainability 2022, 14, 6617. [Google Scholar] [CrossRef]
- Peterson, A.T.; Papeş, M.; Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 2008, 213, 63–72. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef]
- Zhu, G.; Qiao, H. Effect of the Maxent model’s complexity on the prediction of species potential distributions. Biodivers. Sci. 2016, 24, 1189–1196. [Google Scholar] [CrossRef]
- Cobos, M.E.; Townsend Peterson, A.; Barve, N.; Osorio-Olvera, L. kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 2019, 7, e6281. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Tarabon, S.; Bergès, L.; Dutoit, T.; Isselin-Nondedeu, F. Environmental impact assessment of development projects im-proved by merging species distribution and habitat connectivity modelling. J. Environ. Manag. 2019, 241, 439–449. [Google Scholar] [CrossRef]
- Anderson, R.P.; Lew, D.; Peterson, A. Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecol. Model. 2003, 162, 211–232. [Google Scholar] [CrossRef]
- Thapa, A.; Wu, R.; Hu, Y.; Nie, Y.; Singh, P.B.; Khatiwada, J.R.; Yan, L.; Gu, X.; Wei, F. Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecol. Evol. 2018, 8, 10542–10554. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Sun, Y.; Chang, S.; Wang, Z.; Li, G.; Hou, F. Pika burrow and zokor mound density and their relationship with grazing management and sheep production in alpine meadow. Ecosphere 2020, 11, e03088. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, Y.Q.; Wang, J.N.; Zhou, Q.; Liu, F.G.; Chen, Q.; Liu, F. The potential geographical distribution of Lycium ru-thenicum Murr under different climate change scenarios. Chin. J. Appl. Envion. Biol. 2020, 26, 969–978. [Google Scholar]
- Wu, Y.-N.; Ma, Y.-J.; Liu, W.-L.; Zhang, W.-Z. Modeling the Spatial Distribution of Plateau Pika (Ochotona curzoniae) in the Qinghai Lake Basin, China. Animals 2019, 9, 843. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Smith, A.T. The Distribution and Dispersal of Pikas: Influences of Behavior and Climate. Ecology 1974, 55, 1368–1376. [Google Scholar] [CrossRef]
- Solari, K.A.; Hadly, E.A. Evolution for extreme living: Variation in mitochondrial cytochrome c oxidase genes correlated with elevation in pikas (genus Ochotona). Integr. Zool. 2018, 13, 517–535. [Google Scholar] [CrossRef]
- Richalet, J.P.; Voituron, N.; Hermand, E. Chemoreflexes: A Major Component of Adaptation to High Altitude/Hypoxic En-vironment. FASEB J. 2017, 31, 841–849. [Google Scholar]
- Li, Y.; Wang, Z.; Zhang, X.; Shi, L. Analysis of dominant factors affecting microhabitat selection of plateau pika (Ochotona curzoniae) during summer in Altun Mountain National Nature Reserve, Xinjiang Uygur Autonomous Region, China. Chin. J. Vector Biol. Control. Febr. 2014, 25, 1. [Google Scholar] [CrossRef]
- Andersen, D.C. Geomys Bursarius Burrowing Patterns: Influence of Season and Food Patch Structure. Ecology 1987, 68, 1306–1318. [Google Scholar] [CrossRef]
- Fissore, C.; Giardina, C.P.; Kolka, R.K.; Trettin, C.C.; King, G.M.; Jurgensen, M.F.; Barton, C.D.; McDowell, S.D. Temperature and vegetation effects on soil organic carbon quality along a forested mean annual temperature gradient in North America. Glob. Change Biol. 2007, 14, 193–205. [Google Scholar] [CrossRef]
- Wei, W.R. The Study of Habitat Burrow Features and Functions of the Plateau Pika. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2013. (In Chinese). [Google Scholar]
- Tang, Z.H.; Luo, H.L.; Wang, J.H.; Liu, J.L.; You, Z.Q. Potential suitable habitat and protection gap analysis of White-lipped deer (Cervus albirosrostris) based on GIS and MaxEnt model. Acta Ecol. Sin. 2022, 22, 1–10. [Google Scholar]
- Wu, X.; Dong, S.; Liu, S. Predicting the shift of threatened ungulates’ habitats with climate change in Altun Mountain National Nature Reserve of the Northwestern Qinghai-Tibetan Plateau. Clim. Change 2017, 142, 331–344. [Google Scholar] [CrossRef]
- Song, C.-Q.; You, S.-C.; Ke, L.-H.; Liu, G.-H.; Zhong, X.-K. Spatio-temporal variation of vegetation phenology in the Northern Tibetan Plateau as de-tected by MODIS remote sensing. Chin. J. Plant Ecol. 2011, 35, 853–863. [Google Scholar] [CrossRef]
- Liu, Z.; Li, S.; Wei, W.; Song, X. Research progress on alpine wetland changes and driving forces in Qinghai-Tibet Plateau during the last three decades. Chin. J. Ecol. 2019, 38, 856–862. (In Chinese) [Google Scholar] [CrossRef]
- Luo, Z.; Jiang, Z.G.; Tang, S. Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau. Ecol. Appl. 2015, 25, 24–38. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Chen, H.; Liu, L.; Qi, M.; Zhang, J.; Du, T.; Jin, L. The Impact of Climate Change on the Distribution Pattern of the Suitable Growing Region for Endangered Tibetan Medicine Meconopsis punicea. Chin. Pharm. J. 2021, 56, 16. (In Chinese) [Google Scholar]
Data Name | Time Resolution | Spatial Resolution | Data Source |
---|---|---|---|
Global Digital Elevation Model Data | 2010 | 30 m × 30 m | United States Geological Survey https://topotools.cr.usgs.gov (accessed on 1 October 2019) |
Geographic Information System Data of the Scope and Boundary of the Qinghai–Tibet Plateau | 2014 | - | Global Change Scientific Research Data Publishing System http://www.geodoi.ac.cn (accessed on 1 April 2020) |
Global Soil Data | 2015 | 30 s × 30 s | International Soil Reference and Information Centre https://data.isric.org (accessed on 6 April 2022) |
Climate Model Data | 1971–2099 | 30 s × 30 s | WorldClim https://www.worldclim.org (accessed on 4 April 2022) |
Variable | KL Divergence |
---|---|
Precipitation of wettest quarter (BIO 16) | 5.67 |
Temperature seasonality (standard deviation × 100) (BIO 4) | 5.02 |
Annual precipitation (BIO 12) | 4.35 |
Cation exchange capacity (CECsoil) (CECS) | 3.89 |
Elevation | 3.30 |
Slope | 2.56 |
Annual mean temperature (BIO 1) | 2.34 |
Mean diurnal range (Mean of monthly (max temp–min temp)) (BIO 2) | 2.01 |
Precipitation of driest quarter (BIO 17) | 1.56 |
Exchangeable sodium percentage (ESP) | 1.32 |
Soil reaction (pHH2O) (PHAQ) | 1.31 |
Mean temperature of warmest quarter (BIO 10) | 1.29 |
Precipitation of coldest quarter (BIO 19) | 1.27 |
Bulk density (BULK) | 1.23 |
Aspect | 1.18 |
Base saturation (as % of CECsoil) (BSAT) | 1.12 |
Total nitrogen (TOTN) | 1.06 |
Total exchangeable bases (TEB) | 1.02 |
Variable | Contribution | Variable | Contribution | Variable | Contribution | Variable | Contribution |
---|---|---|---|---|---|---|---|
BIO 16 | 26.2 | BULK | 10.5 | BIO 4 | 2.3 | BIO 1 | 0.7 |
BIO 2 | 15.2 | CECS | 5.7 | TEB | 1.5 | ESP | 0.7 |
Slope | 15 | BIO 17 | 4.8 | BIO 12 | 1.2 | BIO 10 | 0.6 |
Elevation | 11.9 | Aspect | 2.3 | TOTN | 0.8 | BIO 19 | 0.4 |
Variable | Contribution | Variable | Contribution | Variable | Contribution | Variable | Contribution |
---|---|---|---|---|---|---|---|
BIO 16 | 29.8 | Elevation | 15.5 | BIO 17 | 3.1 | BULK | 0.4 |
BIO 2 | 19.7 | BIO 4 | 8 | CECS | 2.1 | ESP | 0.3 |
Slope | 17 | BIO 1 | 3.5 | Aspect | 0.6 | TEB | 0.2 |
FC | RM | Mean_AUC_Ratio | Pval_pROC | Omission_Rate_at_5% | Delta_AICc |
---|---|---|---|---|---|
QT * | 1.1 | 1.609203 | 0 | 0 | 0 |
QT * | 1.2 | 1.599023 | 0 | 0 | 1.922811 |
Default | 1 | 1.514370355 | 0 | 0.125 | 296.294 |
Time | TSA | U-SA | Mi-SA | Mo-SA | H-SA | |
---|---|---|---|---|---|---|
Historical Period | 29.90% | 70.10% | 16.24% | 8.20% | 5.45% | |
Near term | SSP 1-2.6 | 31.02% | 68.98% | 16.5% | 8.73% | 5.79% |
SSP 2-4.5 | 32.97% | 67.03% | 16.88% | 9.43% | 6.67% | |
SSP 5-8.5 | 26.09% | 73.91% | 14.15% | 6.97% | 4.96% | |
Medium term | SSP 1-2.6 | 28.78% | 71.22% | 15.01% | 7.99% | 5.78% |
SSP 2-4.5 | 28.87% | 71.13% | 15.26% | 7.81% | 5.8% | |
SSP 5-8.5 | 28.15% | 71.85% | 15.98% | 7.2% | 4.97% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Pu, X.; Li, Y.; Li, D.; Huang, M.; Zheng, X.; Guo, J.; Chen, Z. Prediction of Suitable Distribution Area of Plateau pika (Ochotona curzoniae) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs). Sustainability 2022, 14, 12114. https://doi.org/10.3390/su141912114
Qi Y, Pu X, Li Y, Li D, Huang M, Zheng X, Guo J, Chen Z. Prediction of Suitable Distribution Area of Plateau pika (Ochotona curzoniae) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs). Sustainability. 2022; 14(19):12114. https://doi.org/10.3390/su141912114
Chicago/Turabian StyleQi, Yinglian, Xiaoyan Pu, Yaxiong Li, Dingai Li, Mingrui Huang, Xuan Zheng, Jiaxin Guo, and Zhi Chen. 2022. "Prediction of Suitable Distribution Area of Plateau pika (Ochotona curzoniae) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs)" Sustainability 14, no. 19: 12114. https://doi.org/10.3390/su141912114
APA StyleQi, Y., Pu, X., Li, Y., Li, D., Huang, M., Zheng, X., Guo, J., & Chen, Z. (2022). Prediction of Suitable Distribution Area of Plateau pika (Ochotona curzoniae) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs). Sustainability, 14(19), 12114. https://doi.org/10.3390/su141912114