Fertilizer Use, Value, and Knowledge Capital: A Case of Indian Farming
Abstract
:1. Introduction
2. Data and Methods
3. Results and Discussion
3.1. Determinants of Value from Farm
3.2. Determinants of Information Acquisition
3.3. Determinants of Fertilizer Use: A Machine Learning Approach
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Round 1 | Round 2 | ||||||
---|---|---|---|---|---|---|---|---|
Mean | S.D. | Min | Max | Mean | S.D. | Min | Max | |
FRITZ | 7.67 | 1.08 | 1.93 | 15.02 | 7.64 | 1.21 | 2.04 | 14.99 |
ASSETS | 5.55 | 2.03 | −1.10 | 15.89 | 5.32 | 1.94 | −1.10 | 13.92 |
LAB | 8.01 | 1.11 | 1.43 | 15.71 | 7.83 | 1.18 | 1.97 | 15.05 |
SALES | 10.05 | 1.48 | 2.20 | 16.22 | 9.92 | 1.46 | 3.91 | 15.24 |
MPCE | 7.12 | 0.56 | −1.95 | 13.33 | 7.19 | 0.54 | −2.30 | 11.33 |
SURPLUS | 9.36 | 1.46 | 1.73 | 19.29 | 9.11 | 1.48 | 2.23 | 17.03 |
Variables | Categories (%) | |
---|---|---|
Round 1 | Round 2 | |
EXTN | Yes (7.91); No (92.09) | Yes (7.65); No (92.35) |
KVK | Yes (4.3); No (95.7) | Yes (4.61); No (95.39) |
UNIV | Yes (1.85); No (98.15) | Yes (1.89); No (98.11) |
PRGFRM | Yes (19.54); No (80.46) | Yes (20.9); No (79.1) |
PVT | Yes (6.12); No (93.88) | Yes (7.25); No (92.75) |
NGO | Yes (1.16); No (98.84) | Yes (1.46); No (98.54) |
MEDIA | Yes (23.74); No (76.26) | Yes (26.3); No (73.7) |
FORMEX | Yes (12.53); No (87.47) | Yes (12.61); No (87.39) |
PVT | Yes (23.54); No (76.46) | Yes (25.68); No (74.32) |
ST | 18.96 | 19.01 |
SC | 13.24 | 13.25 |
OBC | 40.32 | 40.28 |
OTH | 27.48 | 27.46 |
GEND | Male (91.58); Female (8.42) | Male (91.61); Female (8.39) |
ILT | ILT (34.41) | ILT (34.41) |
PRIM | 26.53 | 26.53 |
SEC | 27.64 | 27.64 |
HSDIP | 6.13 | 6.13 |
GRAD | 5.29 | 5.29 |
Sample Details | Predicted | Number of Cases | Correct Classification Ratio | ||
---|---|---|---|---|---|
Actual | Yes | No | |||
Season 1 | Yes | 12,627 | 6190 | 0.631 | |
No | 5067 | 6583 | |||
Season 2 | Yes | 13,103 | 7477 | 0.631 | |
No | 1846 | 2823 |
Sample Details | Predicted | Number of Cases | Correct Classification Ratio | ||
---|---|---|---|---|---|
Actual | Yes | No | |||
Season 1 | Yes | 13,101 | 4593 | 0.631 | |
No | 6653 | 6120 | |||
Season 2 | Yes | 11,919 | 3029 | 0.639 | |
No | 6098 | 4202 |
References
- Bahinipati, C.S.; Kumar, V.; Viswanathan, P.K. An Evidence based systematic review on farmers’ adaptation strategies in India. Food Secur. 2021, 13, 399–418. [Google Scholar] [CrossRef]
- Agarwal, B.; Agrawal, A. Do farmers really like farming? Indian farmers in transition. Oxf. Dev. Stud. 2017, 45, 460–478. [Google Scholar] [CrossRef]
- Fitzpatrick, I.A.; Millner, N.; Ginn, F. Governing the soil: Natural farming and bio-nationalism in India. Agric. Hum. Values 2022, 1–16. [Google Scholar] [CrossRef]
- Akbari, M.; Foroudi, P.; Shahmoradi, M.; Padash, H.; Parizi, Z.S.; Khosravani, A.; Ataei, P.; Cuomo, M.T. The Evolution of Food Security: Where Are We Now, Where Should We Go Next? Sustainability 2022, 14, 3634. [Google Scholar] [CrossRef]
- Yousaf, M.; Li, J.; Lu, J.; Ren, T.; Cong, R.; Fahad, S.; Li, X. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Sci. Rep. 2017, 7, 1270. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil degradation as a reason inadequate human nutrition. Food Secur. 2009, 1, 45–57. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Lampridi, M.G.; Sorensen, C.G.; Bochtis, D. Agricultural sustainability: A review of concepts and methods. Sustainability 2019, 11, 5120. [Google Scholar] [CrossRef]
- Rahman, M.M.; Connor, J.D. Impact of Agricultural Extension Services on Fertilizer Use and Farmers’ Welfare: Evidence from Bangladesh. Sustainability 2022, 14, 9385. [Google Scholar] [CrossRef]
- IEG (Independent Evaluation Group). Impact Evaluations in Agriculture: An Assessment of the Evidence; World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Bahinipati, C.S.; Patnaik, U. What motivates farm-level adaptation in India? A systematic review. In Climate Change and Community Resilience: Insights from South Asia; Springer: Berlin/Heidelberg, Germany, 2022; Chapter 4; pp. 49–68. [Google Scholar]
- Foster, A.D.; Rosenzweig, M.R. Microeconomics of technology adoption. Annu. Rev. Econ. 2010, 2, 395–424. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, P.K.; Kavya, K.; Bahinipati, C. Global patterns of climate resilient agriculture: A review of studies and imperatives for empirical research framework for India. Rev. Dev. Change 2020, 25, 169–192. [Google Scholar] [CrossRef]
- Feder, G.; Just, R.E.; Zilberman, D. Adoption of agricultural innovations in developing countries: A survey. Econ. Dev. Cult. Chang. 1985, 33, 255–298. [Google Scholar] [CrossRef]
- Boudot, C.; Butler, A.; Dugal, N. Evaluating technologies for agricultural development: How to capture the true impact? Sci. Changements Planét. Sécheresse 2013, 24, 374–384. [Google Scholar] [CrossRef]
- Patnaik, U.; Das, P.K.; Bahinipati, C.S. Developmental Interventions, Adaptation Decision and Farmers’ Well-being: Evidence from Drought-prone Households in rural India. Clim. Dev. 2019, 11, 302–318. [Google Scholar] [CrossRef]
- Bahinipati, C.S.; Viswanathan, P.K. Can Micro-Irrigation Technologies Resolve India’s Groundwater Crisis? Reflections from Dark-Regions in Gujarat. Int. J. Commons 2019, 13, 848–858. [Google Scholar] [CrossRef]
- Biswal, D.; Bahinipati, C.S. Why are farmers not insuring crops against risks in India? A Review. Prog. Disaster Sci. 2022, 15, 100241. [Google Scholar] [CrossRef]
- Patt, A.; Suarez, P.; Gwata, C. Effects of seasonal climate forecasts and participatory workshops among subsistence farmers in Zimbabwe. Proc. Nat. Acad. Sci. USA 2005, 102, 12623–12628. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, M.S. An evergreen revolution. Crop Sci. 2006, 46, 2293–2303. [Google Scholar] [CrossRef]
- Thakur, D.S.; Sharma, K.D. Organic farming sustainable agriculture and meeting the challenges of food security in 21st century: An economic analysis. Indian J. Agric. Econ. 2005, 60, 1–15. [Google Scholar]
- Prasad, J. Soil health management—A key for sustainable production. J. Indian Soc. Soil Sci. 2015, 63, 6–13. [Google Scholar]
- Shamrao, T.S. A study of fertilizer policy in India. Int. J. Agric. Sci. 2011, 3, 145. [Google Scholar] [CrossRef]
- Gulati, A.; Narayana, S. Demystifying fertilizer and power subsidies in India. Econ. Polit. Wkly. 2000, 35, 784–794. [Google Scholar]
- Singh, B. Are nitrogen fertilizers deleterious to soil health? Agronomy 2018, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Chander, G.; Wani, S.P.; Krishnappa, K.; Sahrawat, K.L.; Parthasaradhi, G.; Jangawad, L.S. Soil mapping and variety-based entry-point interventions strengthening agriculture-based livelihoods-exemplar case of ‘Bhoochetana’ in India. Curr. Sci. 2016, 110, 1683–1691. [Google Scholar] [CrossRef]
- Chander, G.; Wani, S.P.; Sahrawat, K.L.; Dixit, S.; Venkateswarlu, B.; Rajesh, C.; Pardhasaradhi, G. Soil test-based nutrient balancing improved crop productivity and rural livelihoods: Case study from rainfed semi-arid tropics in Andhra Pradesh, India. Arch. Agron. Soil Sci. 2014, 60, 1051–1066. [Google Scholar] [CrossRef]
- Chander, G.; Wani, S.P.; Sahrawat, K.L.; Kamdi, P.J.; Pal, C.K.; Pal, D.K.; Mathur, T.P. Balanced and integrated nutrient management enhanced and economic food production: Case study from rainfed semi-arid tropics in India. Arch. Agron. Soil Sci. 2013, 59, 1643–1658. [Google Scholar] [CrossRef]
- Murari, K.K.; Jayaraman, T.; Chakraborty, S. Fertilizer Use and the Small Scale Farms. How Do Small Farmer Fare? Evidence from Village Studies in India; Tulika Books: Chennai, India, 2017; pp. 201–229. [Google Scholar]
- National Sample Survey Organization (NSSO). Government of India, Income, Expenditure, Productive Assets and Indebtedness of Agricultural Households in India; NSS Report No.576; National Sample Survey Organization: New Delhi, India, 2013.
- Chavas, J.P.; Chambers, R.G.; Pope, R.D. Production economics and farm management: A century of contributions. Am. J. Agric. Econ. 2010, 92, 356–375. [Google Scholar] [CrossRef]
- Cornia, G.A. Farm size, land yields and the agricultural production function: An analysis for fifteen developing countries. World Dev. 1985, 13, 513–534. [Google Scholar] [CrossRef]
- Joshi, P.K.; Pal, S.; Birthal, P.S.; Bantilan, M.C.S. Impact of Agricultural Research: Post-Green Revolution Evidence from India; National Centre for Agricultural Economics and Policy, Research, New Delhi International Crops Research Institute for Semi-Arid Tropics: Patancheru, India, 2005. [Google Scholar]
- Evenson, R.E.; Jha, D. The contribution of agricultural research system to agricultural production in India. Indian J. Agric. Econ. 1973, 28, 212–230. [Google Scholar]
- Garforth, G.; Jones, C.; Jones, G.; Garforth, C. The history, development, and future of agricultural extension. In Improving Agricultural Extension: A Reference Manual; Swanson, B.E., Bentz, R.P., Sofranko, A.J., Eds.; FAO: Rome, Italy, 1997. [Google Scholar]
- Omvedt, G. Capitalist Agriculture and rural classes in India. Econ. Polit. Wkly. 1981, 15, A140–A159. [Google Scholar] [CrossRef]
- Huffman, W.E. Human capital: Education and agriculture. Handb. Agric. Econ. 2001, 1, 333–381. [Google Scholar]
- Murari, K.K.; Mahato, S.; Jayaraman, T.; Swaminathan, M. Extreme temperatures and crop yield in Karnataka, India. Rev. Agrar. Stud. 2019, 8. Available online: http://ras.org.in/91036314fb4c1338277b3da6a01a6a36 (accessed on 20 June 2022).
- Koenker, R.; Hallock, K.F. Quantile regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y. Random Forest for Bioinformatics. 2012, pp. 307–323. Available online: http://www.cs.cmu.edu/~qyj/papersA08/11-rfbook.pdf (accessed on 20 May 2022).
Layer | Variable | Definition |
---|---|---|
Factors of Production | LAB | Average labor cost per hectare of land (in natural logs) |
ASSETS | Agricultural assets of the household normalized by members of the household (in natural logs) | |
Fertilizer Consumption | FRITZ | Average consumption of fertilizer per hectare of land (in natural logs) |
Knowledge Capital (Extension) | EXTN | Access to technical advice for crops from Extension Agent |
KVK | Access to technical advice for crops from Krishi Vigyan Kendra | |
UNIV | Access to technical advice for crops from Agricultural University | |
PRGFRM | Access to technical advice for crops from Progressive Farmer | |
PVT | Access to technical advice for crops from Private Commercial Agents | |
NGO | Access to technical advice for crops from Non-Governmental Organizations | |
MEDIA | Access to technical advice for crops from Radio/Newspaper / Television / Internet | |
FORMEX | EXTN + KVK + UNIV | |
PVTEX | PRGFRM + PVT + NGO | |
Identity | ST | Households belonging to the social category of Scheduled Tribes (Reference Category) |
SC | Households belonging to the social category of Scheduled Castes | |
OBC | Households belonging to the social category of Other Backward Classes | |
OTH | Household belonging to the social category Others | |
GEND | Whether the head of the household is female or male | |
Human Capital | IT | No general education (Reference Category) |
PRIM | The primary level of general education | |
SEC | Secondary level of general education | |
HSDIP | The level of general education is either Higher Secondary or Diploma | |
GRAD | The level of general education is Graduate and above | |
Others | MPCE | Monthly per capita consumption expenditure (in natural logs) |
SURPLUS | Value of Output minus Value of Input | |
FE | NSS State Region (Proxy for Agro-Climatic Conditions) | |
Outcome | SALES | Total output sold per hectare of land (in natural logs) |
FRITZ | Expenditure on fertilizer per hectare categorized into below median and median and above | |
EXTN | MEDIA, FORMEX, PVTEX |
Predicted | False | True | |
---|---|---|---|
Actual | |||
False | True Negative (TN) | False Positive (FP) | |
True | False Negative (FN) | True Positive (TP) |
Question | Variables (Model) | Method | |
---|---|---|---|
Outcome | Explanatory | ||
Determinants of value from farming | Sales per hectare | FP, FU, KC, ID, HC | OLS, SQREG |
Linkage with knowledge capital | KC | FP, FU, ID, HC, MPCE | LOGIT |
Principal drivers of fertilizer use | FU (above median & below median) | FP, ID, HC, KC, SURP | CTRE, Forest |
Variables | OLS | Quantile | |||
---|---|---|---|---|---|
20th | 40th | 60th | 80th | ||
FRITZ | 0.211 *** (0.199) | 0.369 *** (0.042) | 0.347 *** (0.027) | 0.288 *** (0.020) | 0.268 *** (0.016) |
ASSETS | 0.093 *** (0.008) | 0.147 *** (0.011) | 0.149 *** (0.009) | 0.153 *** (0.009) | 0.172 *** (0.009) |
LAB | 0.261 *** (0.019) | 0.027 (0.028) | 0.093 *** (0.022) | 0.146 *** (0.022) | 0.205 *** (0.020) |
FORMEX | 0.149 *** (0.041) | 0.231 *** (0.056) | 0.164 *** (0.057) | 0.141 *** (0.048) | 0.101 *** (0.039) |
PVTEX | 0.111 *** (0.131) | 0.090 *** (0.037) | 0.043 (0.031) | 0.056 (0.035) | 0.075 * (0.042) |
MEDIA | 0.192 *** (0.033) | 0.144 ** (0.065) | 0.185 *** (0.054) | 0.167 *** (0.044) | 0.132 *** (0.053) |
SC | −0.106 (0.069) | −0.190 ** (0.095) | −0.149 ** (0.073) | −0.215 *** (0.077) | −0.208 ** (0.088) |
OBC | 0.134 ** (0.054) | 0.199 *** (0.063) | 0.134 ** (0.059) | 0.119 ** (0.063) | 0.083 (0.056) |
OTH | 0.265 *** (0.057) | 0.299 *** (0.058) | 0.266 *** (0.059) | 0.315 *** (0.053) | 0.329 *** (0.046) |
PRIM | 0.111 *** (0.039) | 0.135 ** (0.063) | 0.028 (0.055) | 0.055 (0.048) | 0.071 (0.064) |
SEC | 0.151 *** (0.039) | 0.053 (0.059) | 0.040 (0.045) | 0.039 (0.045) | 0.073 (0.057) |
HSDIP | 0.194 *** (0.059) | 0.052 (0.089) | −0.023 (0.085) | 0.012 (0.068) | 0.139 * (0.079) |
GRAD | 0.392 *** (0.058) | 0.269 *** (0.079) | 0.116 (0.104) | 0.126 (0.109) | 0.171 ** (0.083) |
GEND | −0.045 (0.066) | −0.033 (0.123) | −0.019 (0.108) | −0.053 (0.092) | −0.154 ** (0.073) |
CONST | 5.683 *** (0.219) | 5.068 *** (0.343) | 5.566 *** (0.203) | 6.169 *** (0.174) | 6.683 *** (0.182) |
OUTCOME | SALES | ||||
FE | YES | NO | NO | NO | NO |
R2/Pseudo R2 | 0.375 | 0.079 | 0.101 | 0.116 | 0.129 |
N | 6568 | 6568 | 6568 | 6568 | 6568 |
Variables | OLS | Quantile | |||
---|---|---|---|---|---|
20th | 40th | 60th | 80th | ||
FRITZ | 0.177 *** (0.020) | 0.321 *** (0.017) | 0.275 *** (0.018) | 0.259 *** (0.020) | 0.244 *** (0.015) |
ASSETS | 0.112 *** (0.008) | 0.160 *** (0.012) | 0.166 *** (0.009) | 0.159 *** (0.006) | 0.171 *** (0.007) |
LAB | 0.215 *** (0.019) | 0.078 ** (0.032) | 0.159 *** (0.024) | 0.171 *** (0.021) | 0.163 *** (0.016) |
FORMEX | 0.171 *** (0.039) | 0.195 *** (0.065) | 0.176 *** (0.045) | 0.146 *** (0.044) | 0.205 *** (0.043) |
PVTEX | 0.068 ** (0.029) | 0.084 (0.054) | 0.025 (0.043) | 0.023 (0.034) | 0.001 (0.043) |
MEDIA | 0.110 *** (0.031) | 0.058 (0.048) | 0.018 (0.038) | 0.016 (0.038) | 0.042 (0.044) |
SC | −0.049 (0.064) | −0.254 *** (0.065) | −0.258 *** (0.083) | −0.166 ** (0.065) | −0.215 *** (0.065) |
OBC | 0.082 (0.053) | 0.022 (0.064) | 0.006 (0.069) | 0.032 (0.052) | 0.016 (0.068) |
OTH | 0.178 *** (0.055) | −0.030 (0.071) | 0.057 (0.076) | 0.15 *** (0.056) | 0.213 *** (0.061) |
PRIM | 0.105 *** (0.037) | 0.071 (0.052) | 0.007 (0.044) | 0.062 (0.054) | 0.033 (0.034) |
SEC | 0.157 *** (0.035) | 0.095 * (0.045) | −0.017 (0.058) | 0.016 (0.034) | 0.012 (0.034) |
HSDIP | 0.172 *** (0.052) | 0.185 *** (0.067) | 0.048 (0.072) | 0.035 (0.063) | 0.016 (0.047) |
GRAD | 0.234 *** (0.055) | 0.129 (0.109) | −0.039 (0.068) | −0.012 (0.047) | −0.017 (0.079) |
GEND | −0.084 (0.059) | 0.036 (0.099) | −0.131 (0.096) | −0.067 (0.075) | −0.183 ** (0.082) |
CONST | 5.926 *** (0.185) | 5.285 *** (0.192) | 5.793 *** (0.171) | 6.342 *** (0.168) | 7.076 *** (0.166) |
OUTCOME | SALES | ||||
FE | YES | NO | NO | NO | NO |
R2/Pseudo R2 | 0.358 | 0.085 | 0.10 | 0.114 | 0.122 |
N | 6510 | 6510 | 6510 | 6510 | 6510 |
Variables | Round 1 | Round 2 | ||||
---|---|---|---|---|---|---|
ASSETS | 1.078 *** (0.013) | 1.108 *** (0.018) | 1.028 ** (0.012) | 1.141 *** (0.015) | 1.209 *** (0.021) | 1.087 *** (0.014) |
MPCE | 1.307 *** (0.066) | 1.243 *** (0.079) | 1.299 *** (0.064) | 1.207 *** (0.063) | 1.138 * (0.082) | 1.190 *** (0.062) |
FRITZ | 1.190 *** (0.029) | 1.099 *** (0.035) | 1.161 *** (0.027) | 1.056 *** (0.024) | 1.066 ** (0.034) | 1.157 *** (0.026) |
SC | 1.111 (0.122) | 1.383 ** (0.197) | 1.109 (0.110) | 0.873 (0.095) | 0.983 (0.147) | 1.344 *** (0.141) |
OBC | 1.298 *** (0.115) | 1.413 *** (0.152) | 1.253 *** (0.099) | 1.101 (0.098) | 1.059 (0.126) | 1.567 *** (0.141) |
OTH | 1.725 *** (0.162) | 1.674 *** (0.194) | 1.234 ** (0.106) | 1.297 *** (0.119) | 1.042 (0.129) | 1.465 *** (0.141) |
PRIM | 1.539 *** (0.099) | 1.345 *** (0.111) | 1.133 ** (0.067) | 1.331 *** (0.085) | 1.144 (0.103) | 1.031 (0.064) |
SEC | 1.929 *** (0.123) | 1.901 *** (0.154) | 1.276 *** (0.074) | 1.704 *** (0.104) | 1.598 *** (0.137) | 1.098 (0.064) |
HSDIP | 2.571 *** (0.255) | 2.144 *** (0.276) | 1.345 *** (0.127) | 1.786 *** (0.166) | 1.609 *** (0.215) | 1.004 (0.092) |
GRAD | 2.391 *** (0.237) | 2.569 *** (0.318) | 1.101 (0.109) | 2.054 *** (0.198) | 2.173 *** (0.278) | 0.953 (0.091) |
GEND | 0.826 * (0.082) | 0.984 (0.125) | 0.997 (0.107) | 0.839 * (0.084) | 0.887 (0.124) | 0.815 ** (0.079) |
CONST | 0.005 *** (0.002) | 0.115 *** (0.006) | 0.003 *** (0.001) | 0.031 *** (0.015) | 0.02 *** (0.013) | 0.004 *** (0.002) |
Outcome | MEDIA | FORMEX | PVT | MEDIA | FORMEX | PVT |
FE | YES | |||||
Wald Chi2 | 1663.17 *** | 1368.07 *** | 1248.20 *** | 1400.66 *** | 1317.46 *** | 1540.84 *** |
Pseudo R2 | 0.174 | 0.178 | 0.116 | 0.145 | 0.185 | 0.151 |
N | 11884 | 11875 | 11821 | 11538 | 11540 | 11467 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, B.; Patnaik, U.; Sasidharan, S.; Murari, K.K.; Bahinipati, C.S. Fertilizer Use, Value, and Knowledge Capital: A Case of Indian Farming. Sustainability 2022, 14, 12491. https://doi.org/10.3390/su141912491
Paul B, Patnaik U, Sasidharan S, Murari KK, Bahinipati CS. Fertilizer Use, Value, and Knowledge Capital: A Case of Indian Farming. Sustainability. 2022; 14(19):12491. https://doi.org/10.3390/su141912491
Chicago/Turabian StylePaul, Bino, Unmesh Patnaik, Subash Sasidharan, Kamal Kumar Murari, and Chandra Sekhar Bahinipati. 2022. "Fertilizer Use, Value, and Knowledge Capital: A Case of Indian Farming" Sustainability 14, no. 19: 12491. https://doi.org/10.3390/su141912491
APA StylePaul, B., Patnaik, U., Sasidharan, S., Murari, K. K., & Bahinipati, C. S. (2022). Fertilizer Use, Value, and Knowledge Capital: A Case of Indian Farming. Sustainability, 14(19), 12491. https://doi.org/10.3390/su141912491