Selection of Renewables for Economic Regions with Diverse Conditions: The Case of Azerbaijan
Abstract
:1. Introduction
2. Theoretical Background and Methods
2.1. Definitions and Operations with Z-Numbers
2.2. Z-Extension of the TOPSIS Method
3. Results and Discussion
3.1. Karabakh Economic Region
3.2. Guba-Khachmaz Region
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The State Statistical Committee of the Republic of Azerbaijan (SSC). GDP Production in the Section of Oil and Non-Oil of Economy. Available online: https://stat.gov.az/source/system_nat_accounts/en/007_1en.xls (accessed on 21 September 2022).
- The State Statistical Committee of the Republic of Azerbaijan (SSC). Renewable Energy Supply, Thousand TOE. Available online: https://stat.gov.az/source/balance_fuel/en/001_5en.xls (accessed on 21 September 2022).
- The World Development Indicators, the World Bank. Available online: https://api.worldbank.org/v2/en/country/AZE?downloadformat=excel (accessed on 21 September 2022).
- The Ministry of Energy of the Republic of Azerbaijan. Available online: https://minenergy.gov.az/en/alternativ-ve-berpa-olunan-enerji/azerbaycanda-berpa-olunan-enerji-menbelerinden-istifade (accessed on 21 September 2022).
- Kaya, I.; Çolak, M.; Yildiz, F.T. A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making. Energy Strategy Rev. 2019, 24, 207–228. [Google Scholar] [CrossRef]
- Kaya, I.; Çolak, M.; Yildiz, F.T. Use of MCDM techniques for energy policy and decision-making problems: A review. Int. J. Energy Res. 2018, 42, 2344–2372. [Google Scholar] [CrossRef]
- Tasri, A.; Susilawati, A. Selection among renewable energy alternatives based on a fuzzy analytic hierarchy process in Indonesia. Sustain. Energy Technol. Assess. 2014, 7, 34–44. [Google Scholar] [CrossRef]
- Abdullah, L.; Najib, L. Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: Choosing energy technology in Malaysia. Int. J. Sustain. Energy Novemb. 2014, 35, 360–377. [Google Scholar] [CrossRef]
- Papapostolou, A.; Karakosta, C.; Doukas, H. Analysis of policy scenarios for achieving renewable energy sources targets: A fuzzy TOPSIS approach. Energy Environ. 2017, 28, 88–109. [Google Scholar] [CrossRef]
- Pavlović, B.; Ivezić, D.; Živković, M. A multi-criteria approach for assessing the potential of renewable energy sources for electricity generation: Case Serbia. Energy Rep. 2021, 7, 8624–8632. [Google Scholar] [CrossRef]
- Afsordegan, A.; Sánchez, M.; Agell, N.; Zahedi, S.; Cremades, L.V. Decision making under uncertainty using a qualitative TOPSIS method for selecting sustainable energy alternatives. Int. J. Environ. Sci. Technol. 2016, 13, 1419–1432. [Google Scholar] [CrossRef] [Green Version]
- Cengiz, M.T.; Taşkin, H. A fuzzy hybrid decision model for renewable energy sources selection. Int. J. Comput. Exp. Sci. Eng. 2018, 4, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Çolak, M.; Kaya, İ. Prioritization of renewable energy alternatives by using an integrated fuzzy MCDM model: A real case application for Turkey. Renew. Sustain. Energy Rev. 2017, 80, 840–853. [Google Scholar] [CrossRef]
- Das, A.; Shabbiruddin. Renewable energy source selection using analytical hierarchy process and quality function deployment: A case study. In Proceedings of the 2016 Second International Conference on Science Technology Engineering and Management (ICONSTEM), Chennai, India, 30–31 March 2016. [Google Scholar] [CrossRef]
- Erdogan, M.; Kaya, I. An integrated multi-criteria decision-making methodology based on type-2 fuzzy sets for selection among energy alternatives in Turkey. Iran. J. Fuzzy Syst. 2015, 12, 1–25. [Google Scholar] [CrossRef]
- Ervural, B.C.; Zaim, S.; Demirel, O.F.; Aydin, Z.; Delen, D. An ANP and fuzzy TOPSIS-based SWOT analysis for Turkey’s energy planning. Renew. Sustain. Energy Rev. 2017, 82, 1538–1550. [Google Scholar] [CrossRef]
- Kang, H.; Hung, M.; Pearn, W.; Lee, A.; Kang, M. An Integrated Multi-Criteria Decision Making Model for Evaluating Wind Farm Performance. Energies 2011, 4, 2002–2026. [Google Scholar] [CrossRef]
- Şengül, Ü.; Eren, M.; Shiraz, S.; Gezder, V.; Şengül, A. Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renew. Energy 2015, 75, 617–625. [Google Scholar] [CrossRef]
- Shatnawi, N.; Abu-Qdais, H.; Qdais, F.A. Selecting renewable energy options: An application of multi-criteria decision making for Jordan. Sustain. Sci. Pract. Policy 2021, 17, 209–219. [Google Scholar] [CrossRef]
- Wang, C.-N.; Kao, J.-C.; Wang, Y.-H.; Nguyen, V.T.; Nguyen, V.T.; Husain, S.T. A Multicriteria Decision-Making Model for the Selection of Suitable Renewable Energy Sources. Mathematics 2021, 9, 1318. [Google Scholar] [CrossRef]
- Solangi, Y.A.; Tan, Q.; Mirjat, N.H.; Valasai, G.D.; Khan, M.W.; Ikram, M. An Integrated Delphi-AHP and Fuzzy TOPSIS Approach toward Ranking and Selection of Renewable Energy Resources in Pakistan. Processes 2019, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.C.; Chang, C.-T. Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renew. Sustain. Energy Rev. 2018, 92, 883–896. [Google Scholar] [CrossRef]
- Andejany, M. Ranking Renewable Energy Sources in Saudi Arabia. Int. J. Eng. Res. Technol. 2021, 14, 569–581. Available online: http://www.irphouse.com/ijert21/ijertv14n6_12.pdf (accessed on 14 September 2022).
- Zadeh, L.A. A note on Z-numbers. Inf. Sci. 2011, 181, 2923–2932. [Google Scholar] [CrossRef]
- Nuriyev, M. Z-numbers Based Hybrid MCDM Approach for Energy Resources Ranking and Selection. Int. J. Energy Econ. Policy 2020, 10, 22–30. [Google Scholar] [CrossRef]
- Rathore, N.; Debasis, K.; Singh, M.P. Selection of Optimal Renewable Energy Resources Using TOPSIS-Z Methodology. In Advances in Communication and Computational Technology: Select Proceedings of ICACCT 2019; Springer: Singapore, 2020; pp. 967–975. [Google Scholar]
- Aliev, R.A.; Huseynov, O.H.; Aliyev, R.R.; Alizadeh, A.A. The Arithmetic of Z-Numbers: Theory and Applications; World Scientific: Singapore, 2015. [Google Scholar] [CrossRef]
- Aliev, R.A.; Pedrycz, W.; Huseynov, O.H.; Eyupoglu, S.Z. Approximate reasoning on a basis of Z-number valued If-then rules. IEEE Trans. Fuzzy Syst. 2017, 25, 1589–1600. [Google Scholar] [CrossRef]
- Chen, C.T. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Howard, K.; Israfilov, R.; Rashidov, T.; Griffith, A.; Ismailova, M.; Rashidov, T. Use of groundwater models for managing serious urban water issues in Baku, the capital city of Azerbaijan. In Proceedings of the International Symposium on New Directions in Urban Water Management, Paris, France, 12–14 September 2007. [Google Scholar]
- Global Solar Atlas. Available online: https://globalsolaratlas.info/map?c=39.956912,47.04895,7&r=AZE (accessed on 15 September 2022).
- Global Wind Atlas. Available online: https://globalwindatlas.info (accessed on 15 September 2022).
Alternative Restriction Linguistic Term | Criteria ImportanceLinguistic Term | Restrictionand Importance Fuzzy Value | Reliability Linguistic Term | Reliability Fuzzy Value |
---|---|---|---|---|
Very Poor (VP) | Very Low (VL) | (0.0, 0.0, 0.2) | Very Low (VL) | (0.3, 0.3, 0.4) |
Poor (P) | Low (L) | (0.05, 0.2, 0.35) | Low (L) | (0.4, 0.5, 0.6) |
Below Average (BA) | Medium Low (ML) | (0.2, 0.35, 0.5) | Medium Low (ML) | (0.5, 0.6, 0.7) |
Average (A) | Medium (M) | (0.35, 0.5, 0.65) | Medium (M) | (0.6, 0.7, 0.8) |
Above average (AA) | Medium High (MH) | (0.5, 0.65, 0.8) | Medium High (MH) | (0.7, 0.8, 0.9) |
Good (G) | High (H) | (0.65, 0.8, 0.95) | High (H) | (0.8, 0.9, 1.0) |
Very Good (VG) | Very High (VH) | (0.8, 1.0, 1.0) | Very High (VH) | (0.9, 1.0, 1.0) |
Alternative | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
A1—Solar | VG, VH | AA, H | A, H | AA, H | A, H | A, VH |
A2—Wind | G, H | G, H | A, H | A, H | BA, H | A, H |
A3—Hydro | VG, VH | G, H | G, H | AA, H | A, H | G, VH |
Criterion | Alternatives | Part A of Z-Number Based Value | Part B of Z-Number Based Value | ||||
---|---|---|---|---|---|---|---|
C1 | A1 | 0.8 | 0.99 | 1 | 0.9 | 1 | 1 |
A2 | 0.65 | 0.8 | 0.95 | 0.9 | 1 | 1 | |
A3 | 0.8 | 0.99 | 1 | 0.8 | 0.9 | 1 | |
C2 | A1 | 0.526 | 0.684 | 0.842 | 0.8 | 0.9 | 1 |
A2 | 0.684 | 0.842 | 1 | 0.8 | 0.9 | 1 | |
A3 | 0.684 | 0.842 | 1 | 0.8 | 0.9 | 1 | |
C3 | A1 | 0.368 | 0.526 | 0.684 | 0.8 | 0.9 | 1 |
A2 | 0.368 | 0.526 | 0.684 | 0.7 | 0.8 | 0.9 | |
A3 | 0.684 | 0.842 | 1 | 0.8 | 0.9 | 1 | |
C4 | A1 | 0.625 | 0.813 | 1 | 0.8 | 0.9 | 1 |
A2 | 0.438 | 0.625 | 0.813 | 0.8 | 0.9 | 1 | |
A3 | 0.625 | 0.813 | 1 | 0.8 | 0.9 | 1 | |
C5 | A1 | 0.538 | 0.769 | 1 | 0.8 | 0.9 | 1 |
A2 | 0.308 | 0.538 | 0.769 | 0.8 | 0.9 | 1 | |
A3 | 0.538 | 0.769 | 1 | 0.8 | 0.9 | 1 | |
C6 | A1 | 0.368 | 0.526 | 0.684 | 0.9 | 1 | 1 |
A2 | 0.368 | 0.526 | 0.684 | 0.8 | 0.9 | 1 | |
A3 | 0.684 | 0.842 | 1 | 0.9 | 1 | 1 |
Criterion | Part A of Z-Number Based Value | Part B of Z-Number Based Value | ||||
---|---|---|---|---|---|---|
C1 | 0.592 | 0.733 | 0.808 | 0.732 | 0.891 | 0.971 |
C2 | 0.242 | 0.367 | 0.492 | 0.503 | 0.62 | 0.745 |
C3 | 0.217 | 0.342 | 0.467 | 0.564 | 0.692 | 0.827 |
C4 | 0.575 | 0.7 | 0.792 | 0.133 | 0.177 | 0.228 |
C5 | 0.592 | 0.733 | 0.808 | 0.585 | 0.721 | 0.883 |
C6 | 0.617 | 0.767 | 0.817 | 0.72 | 0.873 | 0.96 |
Criterion | Alternatives | Part A of Z-Number Based Value | Part B of Z-Number Based Value | Closeness ZPIS | Closeness ZNIS | ||||
---|---|---|---|---|---|---|---|---|---|
C1 | A1 | 0.474 | 0.726 | 0.808 | 0.659 | 0.87 | 0.948 | 0.9595 | 3.0405 |
A2 | 0.385 | 0.586 | 0.768 | 0.659 | 0.882 | 0.961 | 1.1455 | 2.8545 | |
A3 | 0.474 | 0.726 | 0.808 | 0.589 | 0.802 | 0.948 | 1.0625 | 2.9375 | |
C2 | A1 | 0.127 | 0.251 | 0.414 | 0.402 | 0.558 | 0.735 | 2.352 | 1.648 |
A2 | 0.166 | 0.309 | 0.492 | 0.402 | 0.558 | 0.737 | 2.2345 | 1.7655 | |
A3 | 0.166 | 0.309 | 0.492 | 0.402 | 0.558 | 0.737 | 2.2345 | 1.7655 | |
C3 | A1 | 0.08 | 0.18 | 0.319 | 0.475 | 0.641 | 0.813 | 2.3355 | 1.6645 |
A2 | 0.08 | 0.18 | 0.319 | 0.428 | 0.583 | 0.766 | 2.4405 | 1.5595 | |
A3 | 0.148 | 0.288 | 0.467 | 0.463 | 0.628 | 0.818 | 2.136 | 1.864 | |
C4 | A1 | 0.359 | 0.569 | 0.792 | 0.106 | 0.159 | 0.225 | 2.531 | 1.469 |
A2 | 0.252 | 0.438 | 0.644 | 0.126 | 0.17 | 0.224 | 2.769 | 1.231 | |
A3 | 0.359 | 0.569 | 0.792 | 0.106 | 0.159 | 0.225 | 2.531 | 1.469 | |
C5 | A1 | 0.318 | 0.564 | 0.808 | 0.468 | 0.649 | 0.868 | 1.556 | 2.444 |
A2 | 0.182 | 0.394 | 0.621 | 0.468 | 0.649 | 0.862 | 1.8905 | 2.1095 | |
A3 | 0.318 | 0.564 | 0.808 | 0.468 | 0.649 | 0.868 | 1.556 | 2.444 | |
C6 | A1 | 0.227 | 0.403 | 0.559 | 0.648 | 0.858 | 0.944 | 1.55 | 2.45 |
A2 | 0.227 | 0.403 | 0.559 | 0.576 | 0.786 | 0.944 | 1.658 | 2.342 | |
A3 | 0.422 | 0.646 | 0.817 | 0.648 | 0.864 | 0.95 | 1.0715 | 2.9285 |
Alternative | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
A1—Solar | VG, VH | G, MH | AA, MH | AA, MH | AA, MH | A,VH |
A2—Wind | AA, MH | AA, MH | A, ML | G, MH | BA, MH | G, MH |
A3—Hydro | VG, VH | G, MH | AA, MH | A, MH | A, MH | AA, MH |
Criterion | Alternatives | Part A of Z-Number Based Value | Part B of Z-Number Based Value | ||||
---|---|---|---|---|---|---|---|
C1 | A1 | 0.8 | 0.99 | 1 | 0.9 | 1 | 1 |
A2 | 0.5 | 0.65 | 0.8 | 0.8 | 0.9 | 1 | |
A3 | 0.8 | 0.99 | 1 | 0.9 | 1 | 1 | |
C2 | A1 | 0.684 | 0.842 | 1 | 0.8 | 0.9 | 1 |
A2 | 0.526 | 0.684 | 0.842 | 0.8 | 0.9 | 1 | |
A3 | 0.684 | 0.842 | 1 | 0.8 | 0.9 | 1 | |
C3 | A1 | 0.625 | 0.813 | 1 | 0.8 | 0.9 | 1 |
A2 | 0.438 | 0.625 | 0.813 | 0.8 | 0.9 | 1 | |
A3 | 0.625 | 0.813 | 1 | 0.8 | 0.9 | 1 | |
C4 | A1 | 0.526 | 0.684 | 0.842 | 0.8 | 0.9 | 1 |
A2 | 0.684 | 0.842 | 1 | 0.8 | 0.9 | 1 | |
A3 | 0.368 | 0.526 | 0.684 | 0.8 | 0.9 | 1 | |
C5 | A1 | 0.625 | 0.813 | 1 | 0.8 | 0.9 | 1 |
A2 | 0.25 | 0.438 | 0.625 | 0.8 | 0.9 | 1 | |
A3 | 0.438 | 0.625 | 0.813 | 0.8 | 0.9 | 1 | |
C6 | A1 | 0.368 | 0.526 | 0.684 | 0.9 | 1 | 1 |
A2 | 0.684 | 0.842 | 1 | 0.8 | 0.9 | 1 | |
A3 | 0.526 | 0.684 | 0.842 | 0.8 | 0.9 | 1 |
Criterion | Alternatives | Part A of Z-Number Based Value | Part B of Z-Number Based Value | Closeness ZPIS | Closeness ZNIS | ||||
---|---|---|---|---|---|---|---|---|---|
C1 | A1 | 0.474 | 0.726 | 0.808 | 0.659 | 0.87 | 0.948 | 0.9595 | 3.0405 |
A2 | 0.296 | 0.476 | 0.646 | 0.586 | 0.802 | 0.959 | 1.4785 | 2.5215 | |
A3 | 0.474 | 0.726 | 0.808 | 0.659 | 0.87 | 0.948 | 0.9595 | 3.0405 | |
C2 | A1 | 0.166 | 0.309 | 0.492 | 0.402 | 0.558 | 0.737 | 2.2345 | 1.7655 |
A2 | 0.127 | 0.251 | 0.414 | 0.402 | 0.558 | 0.735 | 2.352 | 1.648 | |
A3 | 0.166 | 0.309 | 0.492 | 0.402 | 0.558 | 0.737 | 2.2345 | 1.7655 | |
C3 | A1 | 0.136 | 0.278 | 0.467 | 0.451 | 0.623 | 0.816 | 2.164 | 1.836 |
A2 | 0.095 | 0.214 | 0.38 | 0.475 | 0.641 | 0.813 | 2.2635 | 1.7365 | |
A3 | 0.136 | 0.278 | 0.467 | 0.451 | 0.623 | 0.816 | 2.164 | 1.836 | |
C4 | A1 | 0.302 | 0.479 | 0.667 | 0.106 | 0.159 | 0.225 | 2.712 | 1.288 |
A2 | 0.393 | 0.589 | 0.792 | 0.106 | 0.159 | 0.226 | 2.4935 | 1.5065 | |
A3 | 0.212 | 0.368 | 0.542 | 0.106 | 0.159 | 0.224 | 2.931 | 1.069 | |
C5 | A1 | 0.37 | 0.596 | 0.808 | 0.468 | 0.649 | 0.872 | 1.496 | 2.504 |
A2 | 0.148 | 0.321 | 0.505 | 0.468 | 0.649 | 0.862 | 2.0385 | 1.9615 | |
A3 | 0.259 | 0.458 | 0.657 | 0.468 | 0.649 | 0.868 | 1.767 | 2.233 | |
C6 | A1 | 0.227 | 0.403 | 0.559 | 0.648 | 0.858 | 0.944 | 1.55 | 2.45 |
A2 | 0.422 | 0.646 | 0.817 | 0.576 | 0.786 | 0.95 | 1.1855 | 2.8145 | |
A3 | 0.325 | 0.525 | 0.688 | 0.576 | 0.786 | 0.948 | 1.4205 | 2.5795 |
Parts of Region | Alternatives | C1 Government Policy and Regulation | C2 Social Acceptance | C3 Labor Impact | C4 Cost Efficiency | C5 Environmental Effect | C6 Resource Availability |
---|---|---|---|---|---|---|---|
1st | A1—Solar | VG, VH | G, VH | AA, H | AA, H | G, VH | AA, VH |
A2—Wind | VG, VH | G, VH | AA, H | G, VH | G, H | G, VH | |
A3—Hydro | G, H | AA, H | G, H | AA, H | A, H | AA, H | |
2nd | A1—Solar | VG, VH | G, H | AA, H | G, VH | G, H | VG, VH |
A2—Wind | G, VH | A, H | A, H | A, H | A, H | AA, H | |
A3—Hydro | AA, H | AA, H | A, H | AA, H | AA, H | G, H |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuriyev, M.; Mammadov, J.; Nuriyev, A.; Mammadov, J. Selection of Renewables for Economic Regions with Diverse Conditions: The Case of Azerbaijan. Sustainability 2022, 14, 12548. https://doi.org/10.3390/su141912548
Nuriyev M, Mammadov J, Nuriyev A, Mammadov J. Selection of Renewables for Economic Regions with Diverse Conditions: The Case of Azerbaijan. Sustainability. 2022; 14(19):12548. https://doi.org/10.3390/su141912548
Chicago/Turabian StyleNuriyev, Mahammad, Jeyhun Mammadov, Aziz Nuriyev, and Joshgun Mammadov. 2022. "Selection of Renewables for Economic Regions with Diverse Conditions: The Case of Azerbaijan" Sustainability 14, no. 19: 12548. https://doi.org/10.3390/su141912548
APA StyleNuriyev, M., Mammadov, J., Nuriyev, A., & Mammadov, J. (2022). Selection of Renewables for Economic Regions with Diverse Conditions: The Case of Azerbaijan. Sustainability, 14(19), 12548. https://doi.org/10.3390/su141912548