Climate Change and Food Security in the Northern and Eastern African Regions: A Panel Data Analysis
Abstract
:1. Introduction
2. Climate Change in Africa
3. Materials and Methods
4. Data Source and Data Description
5. Results and Discussions
6. Conclusions and Policy Implications
- the adoption of agricultural methods to better food production and to mitigate the effects of climate change as climate-smart agriculture. [53];
- the implementation of programs of risk management such as agricultural insurance to improve rural households’ ability to cope with losses due to climate variability [54];
- an increased investment in agricultural research that focuses on the reduction of losses in food production caused by climate change [55];
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Algeria | Egypt | Ethiopia | Kenya |
Madagascar | Malawi | Morocco | Uganda |
Rwanda | Tanzania | Tunisia |
References
- Donat, M.G.; Peterson, T.C.; Brunet, M.; King, A.D.; Almazroui, M.; Kolli, R.K.; Boucherf, D.; Al-Mulla, A.Y.; Nour, A.Y.; Aly, A.A.; et al. Changes in extreme temperature and precipitation in the Arab region: Long-term trends and variability related to ENSO and NAO. Int. J. Climatol. 2014, 34, 581–592. [Google Scholar] [CrossRef]
- Elsharkawy, S.G.; Elmallah, E.S. Spatiotemporal investigation of long-term seasonal temperature variability in Libya. Atmos. Res. 2016, 178, 535–549. [Google Scholar] [CrossRef]
- Filahi, S.; Tramblay, Y.; Mouhir, L.; Diaconescu, E.P. Projected changes in temperature and precipitation indices in Morocco from high-resolution regional climate models. Int. J. Climatol. 2017, 37, 4846–4863. [Google Scholar] [CrossRef]
- Zeroual, A.; Assani, A.A.; Meddi, M.; Alkama, R. Assessment of climate change in Algeria from 1951 to 2098 using the Köppen–Geiger climate classification scheme. Clim. Dyn. 2019, 52, 227–243. [Google Scholar] [CrossRef]
- Hertig, E.; Tramblay, Y. Regional downscaling of Mediterranean droughts under past and future climatic conditions. Glob. Planet. Change 2017, 151, 36–48. [Google Scholar] [CrossRef]
- Taibi, S.; Meddi, M.; Mahé, G.; Assani, A. Relationships between atmospheric circulation indices and rainfall in Northern Algeria and comparison of observed and RCM-generated rainfall. Theor. Appl. Climatol. 2017, 127, 241–257. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Shahid, S.; Abd Rahim, N. Unidirectional trends in annual and seasonal climate and extremes in Egypt. Theor. Appl. Climatol. 2019, 136, 457–473. [Google Scholar] [CrossRef]
- Zittis, G. Observed rainfall trends and precipitation uncertainty in the vicinity of the Mediterranean. Middle East and North Africa. Theor. Appl. Climatol. 2018, 134, 1207–1230. [Google Scholar] [CrossRef]
- Tramblay, Y.; Badi, W.; Driouech, F.; El Adlouni, S.; Neppel, L.; Servat, E. Climate change impacts on extreme precipitation in Morocco. Glob. Planet. Change 2012, 82, 104–114. [Google Scholar] [CrossRef]
- Nasri, B.; Tramblay, Y.; El Adlouni, S.; Hertig, E.; Ouarda, T.B. Atmospheric predictors for annual maximum precipitation in North Africa. J. Appl. Meteorol. Climatol. 2016, 55, 1063–1076. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Change 2012, 114, 813–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, B.I.; Anchukaitis, K.J.; Touchan, R.; Meko, D.M.; Cook, E.R. Spatiotemporal drought variability in the Mediterranean over the last 900 years. J. Geophys. Res. Atmos. 2016, 121, 2060–2074. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Proestos, Y.; Hadjinicolaou, P.; Tanarhte, M.; Tyrlis, E.; Zittis, G. Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim. Chang. 2016, 137, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, C.; Lotze-Campen, H.; Gerten, D.; Dietrich, J.P.; Bodirsky, B.; Biewald, A.; Popp, A. Blue water scarcity and the economic impacts of future agricultural trade and demand. Water Resour. Res. 2013, 49, 3601–3617. [Google Scholar] [CrossRef]
- Alboghdady, M.; El-Hendawy, S.E. Economic impacts of climate change and variability on agricultural production in the Middle East and North Africa region. Int. J. Clim. Change Strateg. Manag. 2016, 8, 463–472. [Google Scholar] [CrossRef]
- Haddadin, M.J. Water scarcity impacts and potential conflicts in the MENA region. Water Int. 2001, 26, 460–470. [Google Scholar] [CrossRef]
- Thomas, R.J. Opportunities to reduce the vulnerability of dryland farmers in Central and West Asia and North Africa to climate change. Agriculture. Ecosyst. Environ. 2008, 126, 36–45. [Google Scholar] [CrossRef]
- Scheffran, J.; Link, P.M.; Schilling, J. Climate and Conflict in Africa. In Oxford Research Encyclopedia of Climate Science; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Schilling, J.; Krause, L. Climate Change and Conflict in Northern Africa. In Oxford Bibliographies in Environmental Science; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Milano, M.; Ruelland, D.; Fernandez, S.; Dezetter, A.; Fabre, J.; Servat, E. Facing climatic and anthropogenic changes in the Mediterranean basin: What will be the medium-term impact on water stress? Comptes Rendus Geosci. 2012, 344, 432–440. [Google Scholar] [CrossRef]
- Fusco, G.; Coluccia, B.; de Leo, F. Effect of Trade Openness on Food Security in the EU: A Dynamic Panel Analysis. Int. J. Environ. Res. Public Health 2020, 17, 4311. [Google Scholar] [CrossRef]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Farahani, E.; Kadner, S.; Seyboth, K.; Minx, J.C. Summary for policymakers. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- McGuire, S. FAO The State of Food Insecurity in the World 2015. Meeting the 2015 International Hunger 2015. Targets: Taking Stock of Uneven Progress. FAO. Rome. Adv. Nutr. 2015, 6, 623–624. [Google Scholar] [CrossRef]
- Hall, C.; Dawson, T.P.; Macdiarmid, J.I.; Matthews, R.B.; Smith, P. The impact of population growth and climate change on food security in Africa: Looking ahead to 2050. Int. J. Agric. Sustain. 2017, 15, 124–135. [Google Scholar] [CrossRef] [Green Version]
- FAO. Regional Overview of Food Security and Nutrition in Africa 2016, The Challenges of Building Resilience to Shocks and Stresses; FAO: Accra, Ghana, 2017. [Google Scholar]
- FAO. Declaration on World Food Security and World Food Summit Plan of Action. In Proceedings of the World Food Summit, Rome, Italy, 13–17 November 1996. [Google Scholar]
- Seo, S.N.; Mendelsohn, R.; Dinar, A.; Hassan, R.; Kurukulasuriya, P. A Ricardian analysis of the distribution of climate change impacts on agriculture across agro-ecological zones in Africa. Environ. Resour. Econ. 2009, 43, 313–332. [Google Scholar] [CrossRef] [Green Version]
- White, C. Analyse comparative des systèmes agro-alimentaires et des politiques agricoles dans les pays méditerranéens. MEDIT 2009, 2, 13–23. [Google Scholar]
- Bonny, S. L’agriculture écologiquement intensive: Nature et défis. Cah. Agric. 2011, 20, 451–462. [Google Scholar]
- Kurukulasuriya, P.; Mendelsohn, R.; Hassan, R.; Benhin, J.; Deressa, T.; Diop, M.; Eid, H.M.; K. Fosu, Y.; Gbetibouo, G.; Jain, S.; et al. Will African agriculture survive climate change? World Bank Econ. Rev. 2006, 20, 367–388. [Google Scholar] [CrossRef] [Green Version]
- Philandras, C.M.; Nastos, P.T.; Kapsomenakis, J.; Douvis, K.C.; Tselioudis, G.; Zerefos, C.S. Long term precipitation trends and variability within the Mediterranean region. Nat. Hazards Earth Syst. Sci. 2011, 11, 3235–3250. [Google Scholar] [CrossRef] [Green Version]
- Massoud, E.; Massoud, T.; Guan, B.; Sengupta, A.; Espinoza, V.; de Luna, M.; Raymond, C.; Waliser, D. Atmospheric rivers and precipitation in the middle east and north africa (Mena). Water 2020, 12, 2863. [Google Scholar] [CrossRef]
- Badolo, F.; Kinda, S. Climatic variability and food security in developing countries. Etudes Doc. 2014, 5, 2721986. [Google Scholar]
- Kinda, S. Climatic Shocks and Food Security: The Role of Foreign Aid. 2016. Available online: https://ssrn.com/abstract=2741725 (accessed on 1 October 2020).
- Singh, A.K. Influence of climate and Non-Climatic factors on global food security index: A cross-sectional country-wise analysis. Soc. J. 2018, 1, 22–35. [Google Scholar]
- Mahrous, W. Climate change and food security in EAC region: A panel data analysis. Rev. Econ. Political Sci. 2019, 4, 270–284. [Google Scholar] [CrossRef] [Green Version]
- Frees, E.W. Longitudinal and Panel Data: Analysis and Applications in the Social Sciences; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Plümper, T.; Troeger, V.E.; Manow, P. Panel data analysis in comparative politics: Linking method to theory. Eur. J. Political Res. 2005, 44, 327–354. [Google Scholar] [CrossRef]
- Arellano, M. Panel Data Econometrics; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Rothwell, P.M.; Eliasziw, M.; Gutnikov, S.A.; Fox, A.J.; Taylor, D.W.; Mayberg, M.R.; Warlow, F.R.C.; Barnett, H.J.M.; Carotid Endarterectomy Trialists’ Collaboration. Analysis of pooled data from the randomised controlled trials of endarterectomy for symptomatic carotid stenosis. Lancet 2003, 361, 107–116. [Google Scholar] [CrossRef]
- World Bank Climate Change Knowledge Portal. 2018. Available online: http://sdwebx.worldbank.org/climateportal/index.cfm?page=why_climate_change (accessed on 1 October 2020).
- World Bank World Development Indicators. 2018. Available online: www.worldbank.org (accessed on 1 October 2020).
- Mason, C.H.; Perreault, W.D., Jr. Collinearity, power, and interpretation of multiple regression analysis. J. Mark. Res. 1991, 28, 268–280. [Google Scholar] [CrossRef]
- Amjath-Babu, T.S.; Krupnik, T.J.; Aravindakshan, S.; Arshad, M.; Kaechele, H. Climate change and indicators of probable shifts in the consumption portfolios of dryland farmers in Sub-Saharan Africa: Implications for policy. Ecol. Indic. 2016, 67, 830–838. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Changes in temperature and precipitation extremes in Ethiopia. Kenya. and Tanzania. Int. J. Climatol. 2019, 39, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Cultivated land conversion and potential agricultural productivity in China. Land Use Policy 2006, 23, 372–384. [Google Scholar] [CrossRef]
- Barrios, S.; Ouattara, B.; Strobl, E. The impact of climatic change on agricultural production: Is it different for Africa? Food Policy 2008, 33, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Wiebe, K.; Robinson, S.; Cattaneo, A. Climate change, agriculture and food security: Impacts and the potential for adaptation and mitigation. In Sustainable Food and Agriculture; Academic Press: Cambridge, MA, USA, 2019; pp. 55–74. [Google Scholar]
- FAO. Trade Reforms and Food Security: Conceptualizing the Linkages; FAO: Rome, Italy, 2003. [Google Scholar]
- Ali, A.; Erenstein, O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim. Risk Manag. 2017, 16, 183–194. [Google Scholar] [CrossRef]
- Bocchiola, D.; Brunetti, L.; Soncini, A.; Polinelli, F.; Gianinetto, M. Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal. Agric. Syst. 2019, 171, 113–125. [Google Scholar] [CrossRef]
- Denny, R.C.; Marquart-Pyatt, S.T.; Ligmann-Zielinska, A.; Olabisi, L.S.; Rivers, L.; Du, J.; Liverpool-Tasie, L.S.O. Food security in Africa: A cross-scale, empirical investigation using structural equation modeling. Environ. Syst. Decis. 2018, 38, 6–22. [Google Scholar] [CrossRef]
- Fusco, G.; Melgiovanni, M.; Porrini, D.; Ricciardo, T.M. How to improve the diffusion of climate-smart agriculture: What the literature tells us. Sustainability 2020, 12, 5168. [Google Scholar] [CrossRef]
- Miglietta, P.P.; Porrini, D.; Fusco, G.; Capitanio, F. Crowding out agricultural insurance and the subsidy system in Italy: Empirical evidence of the charity hazard phenomenon. Agric. Financ. Rev. 2020, 81, 237–249. [Google Scholar] [CrossRef]
- Adenle, A.A.; Wedig, K.; Azadi, H. Sustainable agriculture and food security in Africa: The role of innovative technologies and international organizations. Technol. Soc. 2019, 58, 101143. [Google Scholar] [CrossRef]
- Delgado, C.L.; Siamwalla, A. Rural Economy and Farm Income Diversification in Developing Countries. In Food Security. Diversification and Resource Management: Refocusing the Role of Agriculture? Routledge: Oxfordshire, UK, 2018; pp. 126–143. [Google Scholar]
- Toma, P.; Manta, F.; Morrone, D.; Campobasso, F. Familiar worldwide: How PDO products reflect quality in consumers’ appraisal and behaviour. TQM J. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Qi, Q.; Marwa, J.; Mwamila, T.B.; Gwenzi, W.; Noubactep, C. Making Rainwater Harvesting a Key Solution for Water Management: The Universality of the Kilimanjaro Concept. Sustainability 2019, 11, 5606. [Google Scholar] [CrossRef] [Green Version]
- Manta, F.; Morrone, D.; Toma, P.; Campobasso, F. Determining paths of innovation: The role of culture on the adoption on organic farming management. Bus. Strategy Environ. 2022; ahead-of-print. [Google Scholar] [CrossRef]
Variables | Unit | Data Source | Time Period |
---|---|---|---|
Food Production Index (FPI) | N° | World Development Indicators | 2000–2012 |
Average protein supply | (g/cap/day) | FAOSTAT | 2000–2012 |
Precipitation | mm | Climate Change Knowledge Portal | 2000–2012 |
Temperature | °C | Climate Change Knowledge Portal | 2000–2012 |
Population growth | Annual Percentage % | World Development Indicators | 2000–2012 |
Land under cereal production | hectares | World Development Indicators | 2000–2012 |
GDP growth | Percentage % | World Development Indicators | 2000–2012 |
GDP per capita | USD | World Development Indicators | 2000–2012 |
Quality of Government | N° | Worldwide Governance Indicators | 2000–2012 |
Variables | Mean | Standard Deviation | Maximum | Minimum |
---|---|---|---|---|
Food Production Index (FPI) | 104.372 | 20.063 | 180.33 | 66.13 |
Average protein supply | 63.440 | 18.837 | 102.7 | 36.4 |
Precipitation | 68.277 | 45.210 | 180.597 | 1.568 |
Temperature | 23.292 | 2.129 | 27.761 | 18.059 |
Population growth | 2.331 | 0.865 | 5.604 | 0.233 |
Land under cereal production | 2,062,097 | 2,132,024 | 9,690,734 | 14,354 |
GDP growth | 4.540 | 4.433 | 19.675 | −17.668 |
GDP per capita | 1307.575 | 1217.187 | 4777.427 | 194.873 |
Quality of Government | 36.17 | 14.222 | 72.45 | 2.87 |
Variables | Precipt | Temp | Pop Growth | LC | GDP Growth | GDP per Capita | Quality of Government |
---|---|---|---|---|---|---|---|
Precipt | 1 | ||||||
Temp | −0.0735 | 1 | |||||
Pop growth | 0.4432 | 0.2053 | 1 | ||||
LC | −0.3103 | −0.0585 | −0.0811 | 1 | |||
GDP growth | 0.0815 | 0.0469 | 0.1861 | 0.2289 | 1 | ||
GDP per capita | −0.6075 | −0.1805 | −0.6349 | 0.0446 | −0.1195 | 1 | |
Quality of Government | −0.4568 | −0.0448 | −0.1980 | −0.0018 | −0.0277 | 0.431 | 1 |
Dependent Variable: Ln FPI | FE Estimation (1) | RE Estimation (2) | Dependent Variable: Ln Av. Protein Supply | FE Estimation (3) | RE Estimation (4) |
---|---|---|---|---|---|
Constant | 3.18705 *** (0.304070) | 3.41200 *** (0.305904) | 0.922328 (0.568455) | 1.35550 (1.10431) | |
Ln Precipt | (0.108008) *** (0.0403668) | 0.0536363 *** (0.0108284) | 0.0393907 *** (0.148237) | −0.035746 ** (0.01635) | |
LnTemp | −0.430779 * (0.0836571) | −0.6486935 ** (0.256981) | 0.546343 ** (0.274371) | −0.295450 * (0.314625) | |
Pop growth | 0.0474747 * (0.0450011) | 0.0398197 ** (0.0184540) | 0.00390901 (0.0126538) | 0.0099765 (0.0109567) | |
Ln LC | 0.235136 ** (0.0434515) | 0.0240474 *** (0.0108883) | 0.0139367 ** (0.0186582) | 0.0555214 ** (0.035356) | |
GDP growth | −0.00446078 (0.00346057) | 0.00254876 (0.00204747) | 0.0003158 (0.0009826) | 0.0009358 (0.0009868) | |
Ln GDP per capita | 0.708465 *** (0.147963) | 0.0801060 *** (0.0181190) | 0.192221 *** (0,0315943) | 0.181851 *** (0.0388945) | |
Ln Quality of Government | 0.0348776 * (0.0730188) | 0.105895 ** (0.0620979) | 0.0051399 (0.0153350) | 0.00317527 (0.0158576) | |
R2 | 0.712 | 0.776 | |||
SER | 0.20234 | 0.216997 | 0.27718 | 0.16098 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fusco, G. Climate Change and Food Security in the Northern and Eastern African Regions: A Panel Data Analysis. Sustainability 2022, 14, 12664. https://doi.org/10.3390/su141912664
Fusco G. Climate Change and Food Security in the Northern and Eastern African Regions: A Panel Data Analysis. Sustainability. 2022; 14(19):12664. https://doi.org/10.3390/su141912664
Chicago/Turabian StyleFusco, Giulio. 2022. "Climate Change and Food Security in the Northern and Eastern African Regions: A Panel Data Analysis" Sustainability 14, no. 19: 12664. https://doi.org/10.3390/su141912664
APA StyleFusco, G. (2022). Climate Change and Food Security in the Northern and Eastern African Regions: A Panel Data Analysis. Sustainability, 14(19), 12664. https://doi.org/10.3390/su141912664