The Regulation of Ion Homeostasis, Growth, and Biomass Allocation in Date Palm Ex Vitro Plants Depends on the Level of Water Salinity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Stress Treatments
2.2. Growth and Morphological Parameters
2.3. Leaf and Root Na+, Cl− and K+ Contents
2.4. XRD Analysis
2.5. Statistical Analysis
3. Results
3.1. Effects of Salinity on Substrate Properties
3.2. Effects of Salinity on Plants’ Morpho-Physiological Parameters
3.3. Salt’s Effects on the Contents of Na+, Cl− and K+ in Leaf and Root
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zohary, D.; Hopf, M.; Weiss, E. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin; Oxford University Press: Oxford, UK, 2012; ISBN 9780191810046. [Google Scholar]
- Rajmohan, K. Date Palm Tissue Culture: A Pathway to Rural Development. In Date Palm Biotechnology; Jain, S.M., Al-Khayri, J.M., Johnson, D.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Al-Khayri, J.M.; Al-Bahrany, A.M. Growth, Water Content, and Proline Accumulation in Drought-Stressed Callus of Date Palm. Biol. Plant. 2004, 48, 105–108. [Google Scholar] [CrossRef]
- Elshibli, S.; Korpelainen, H. Biodiversity of Date Palms (Phoenix dactylifera L.) in Sudan: Chemical, Morphological and DNA Polymorphisms of Selected Cultivars. Plant Genet. Resour. Characterisation Util. 2009, 7, 194–203. [Google Scholar] [CrossRef]
- Shokat, S.; Großkinsky, D.K. Tackling Salinity in Sustainable Agriculture-What Developing Countries May Learn from Approaches of the Developed World. Sustainability 2019, 11, 4558. [Google Scholar] [CrossRef] [Green Version]
- Yaish, M.W.; Kumar, P.P. Salt Tolerance Research in Date Palm Tree (Phoenix dactylifera L.), Past, Present, and Future Perspectives. Front. Plant Sci. 2015, 6, 348. [Google Scholar] [CrossRef] [Green Version]
- Perica, S.; Goreta, S.; Selak, G.V. Growth, Biomass Allocation and Leaf Ion Concentration of Seven Olive (Olea europaea L.) Cultivars under Increased Salinity. Sci. Hortic. 2008, 117, 123–129. [Google Scholar] [CrossRef]
- Rauf, S.; Shahzad, M.; Teixeira da Silva, J.A.; Noorka, I.R. Biomass Partitioning and Genetic Analyses of Salinity Tolerance in Sunflower (Helianthus annuus L.). J. Crop Sci. Biotechnol. 2012, 15, 205–217. [Google Scholar] [CrossRef]
- Ashraf, M.; Ahmad, M.S.A.; Ozturk, M. Plant Adaptation and Phytoremediation; Springer: Berlin/Heidelberg, Germany, 2010; 481p. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, J.A.; Chambers, J.L.; Stine, M. Prospects for Increasing the Salt Tolerance of Forest Trees: A Review. Tree Physiol. 1994, 14, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Munns, R. Comparative Physiology of Salt and Water Stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Hernández, J.A. Salinity Tolerance in Plants: Trends and Perspectives. Int. J. Mol. Sci. 2019, 20, 2408. [Google Scholar] [CrossRef] [Green Version]
- Al-Abdoulhadi, A.; Dinar, H.A.; Ebert, G.; Büttner, C. Influence of Salinity Levels on Nutrient Content in Leaf, Stem and Root of Major Date Palm (Phoenix dactylifera L.) Cultivars. Int. Res. J. Agric. Sci. Soil Sci. 2012, 2, 341–346. [Google Scholar]
- Al Kharusi, L.; Assaha, D.V.M.; Al-Yahyai, R.; Yaish, M.W. Screening of Date Palm (Phoenix dactylifera L.) Cultivars for Salinity Tolerance. Forests 2017, 8, 136. [Google Scholar] [CrossRef]
- Alhammadi, M.S.; Kurup, S.S. Impact of Salinity Stress on Date Palm Phoenix dactylifera: A Review. Crop Prod. Technol; IntechOpen: London, UK, 2012; pp. 169–173. [Google Scholar]
- Kharusi, L.; Al Yahyai, R.; Al Yaish, M.W. Antioxidant Response to Salinity in Salt-Tolerant and Salt-Susceptible Cultivars of Date Palm. Agriculture 2019, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Alhammadi, M.S.; Edward, G.P. Effect of Salinity on Growth of Twelve Cultivars of the United Arab Emirates Date Palm. Commun. Soil Sci. Plant Anal. 2009, 40, 2372–2388. [Google Scholar] [CrossRef]
- Sperling, O.; Lazarovitch, N.; Schwartz, A.; Shapira, O. Effects of High Salinity Irrigation on Growth, Gas-Exchange, and Photoprotection in Date Palms (Phoenix dactylifera L., Cv. Medjool). Environ. Exp. Bot. 2014, 99, 100–109. [Google Scholar] [CrossRef]
- Tripler, E.; Ben-Gal, A.; Shani, U. Consequence of Salinity and Excess Boron on Growth, Evapotranspiration and Ion Uptake in Date Palm (Phoenix dactylifera L., Cv. Medjool). Plant Soil 2007, 297, 147–155. [Google Scholar] [CrossRef]
- Youssef, T.; Awad, M.A. Mechanisms of Enhancing Photosynthetic Gas Exchange in Date Palm Seedlings (Phoenix dactylifera L.) under Salinity Stress by a 5-Aminolevulinic Acid-Based Fertilizer. J. Plant Growth Regul. 2008, 27, 1–9. [Google Scholar] [CrossRef]
- Al-Khalifah, N.S.; Askari, E.; Hadi, S.; Al-Wasel, A.S.; Metawei, M. Genetic Analysis of Abnormal Fruiting in Tissue Culture-Derived Trees of Date Palm ‘Barhy’ Grown in Saudi Arabia. Acta Hortic. 2007, 763, 155. [Google Scholar] [CrossRef]
- El Rabey, H.A.; Al-Malki, A.L.; Abulnaja, K.O.; Rohde, W. Proteome Analysis for Understanding Abiotic Stress (Salinity and Drought) Tolerance in Date Palm (Phoenix dactylifera L.). Int. J. Genom. 2015, 2015, 407165. [Google Scholar] [CrossRef] [Green Version]
- Mazri, M.A.; Meziani, R.; Belkoura, I.; Mokhless, B.; Nour, S. A Combined Pathway of Organogenesis and Somatic Embryogenesis for an Efficient Large-Scale Propagation in Date Palm (Phoenix dactylifera L.) Cv. Mejhoul. 3 Biotech 2018, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Amine Mazri, M.; Meziani, R. Micropropagation of Date Palm: A Review. Cell Dev. Biol. 2015, 4, 160. [Google Scholar] [CrossRef] [Green Version]
- Errabii, T.; Gandonou, C.B.; Essalmani, H.; Abrini, J.; Idaomar, M.; Skali-Senhaji, N. Growth, Proline and Ion Accumulation in Sugarcane Callus Cultures under Drought-Induced Osmotic Stress and Its Subsequent Relief. Afr. J. Biotechnol. 2006, 5, 55684001. [Google Scholar] [CrossRef]
- Fki, L.; Bouaziz, N.; Kriaa, W.; Benjemaa-Masmoudi, R.; Gargouri-Bouzid, R.; Rival, A.; Drira, N. Multiple Bud Cultures of ‘Barhee’ Date Palm (Phoenix dactylifera) and Physiological Status of Regenerated Plants. J. Plant Physiol. 2011, 168, 1694–1700. [Google Scholar] [CrossRef] [PubMed]
- Alkhateeb, S.A.; Alkhateeb, A.A.; Solliman, M.E.D. In vitro Response of Date Palm (Phoenix dactylifera L.) to K/Na Ratio under Saline Conditions. Biol. Res. 2015, 48, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra, S.; Bandopadhyay, R.; Kumar, V.; Chandra, R. Acclimatization of Tissue Cultured Plantlets: From Laboratory to Land. Biotechnol. Lett. 2010, 32, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Hazarika, B.N. Morpho-Physiological Disorders in in vitro Culture of Plants. Sci. Hortic. 2006, 108, 105–120. [Google Scholar] [CrossRef]
- Lopes, T.; Pinto, G.; Loureiro, J.; Costa, A.; Santos, C. Determination of Genetic Stability in Long-Term Somatic Embryogenic Cultures and Derived Plantlets of Cork Oak Using Microsatellite Markers. Tree Physiol. 2006, 26, 1145–1152. [Google Scholar] [CrossRef] [Green Version]
- Dias, M.C.; Correia, C.; Moutinho-Pereira, J.; Oliveira, H.; Santos, C. Study of the Effects of Foliar Application of ABA during Acclimatization. Plant Cell Tissue Organ Cult. 2014, 117, 213–224. [Google Scholar] [CrossRef]
- Al-Mulla, L.; Bhat, N.R.; Khalil, M. Salt-Tolerance of Tissue-Cultured Date Palm Cultivars under Controlled Environment. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2013, 7, 897–900. [Google Scholar]
- El Rabey, H.A.; Al-Malki, A.L.; Abulnaja, K.O. Proteome Analysis of Date Palm (Phoenix dactylifera L.) under Severe Drought and Salt Stress. Int. J. Genom. 2016, 2016, 7840759. [Google Scholar] [CrossRef] [Green Version]
- Norman, A.G. Advances in Agronomy. Volume 4. Soil Sci. 1953, 75, 167. [Google Scholar] [CrossRef]
- Hammami, S.B.M.; Costagli, G.; Rapoport, H.F. Cell and Tissue Dynamics of Olive Endocarp Sclerification Vary According to Water Availability. Physiol. Plant. 2013, 149, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Ceccato, P.; Leblon, B.; Chuvieco, E.; Flasse, S.; Carlson, J.D. Estimation of Live Fuel Moisture Content. In Wildland Fire Danger Estimation and Mapping: The Role of Remote Sensing Data; Chuvieco, E., Ed.; World Scientific: Singapore, 2003; pp. 63–90. [Google Scholar] [CrossRef]
- Pietragalla, J.; Mullan, D. Leaf Relative Water Content. In Physiological Breeding II: A Field Guide to Wheat Phenotyping; Pask, A., Pietragalla, J., Mullan, D., Reynolds, M.P., Eds.; CIMMYT: Veracruz, Mexico, 2012; pp. 25–27. [Google Scholar]
- Manuscript, A. Plant Stress Tolerance; Humana Press: Totowa, NJ, USA, 2010; Volume 639, pp. 1–14. [Google Scholar] [CrossRef]
- Wang, L.; Liu, L.Y.; Gao, S.Y.; Hasi, E.; Wang, Z. Physicochemical Characteristics of Ambient Particles Settling upon Leaf Surfaces of Urban Plants in Beijing. J. Environ. Sci. 2006, 18, 921–926. [Google Scholar] [CrossRef]
- Al Kharusi, L.; Sunkar, R.; Al-Yahyai, R.; Yaish, M.W. Comparative Water Relations of Two Contrasting Date Palm Genotypes under Salinity. Int. J. Agron. 2019, 2019, 4262013. [Google Scholar] [CrossRef]
- Ramoliya, P.J.; Pandey, A.N. Soil Salinity and Water Status Affect Growth of Phoenix Dactylifera Seedlings. N. Z. J. Crop Hortic. Sci. 2003, 31, 345–353. [Google Scholar] [CrossRef] [Green Version]
- Sané, D.; Kneyta, M.O.; Diouf, D.; Diouf, D.; Badiane, F.A.; Sagna, M.; Borgel, A. Growth and Development of Date Palm (Phœnix dactylifera L.) Seedlings under Drought and Salinity Stresses. Afr. J. Biotechnol. 2005, 4, 968–972. [Google Scholar] [CrossRef]
- Ait-El-Mokhtar, M.; Laouane, R.B.; Anli, M.; Boutasknit, A.; Wahbi, S.; Meddich, A. Use of Mycorrhizal Fungi in Improving Tolerance of the Date Palm (Phoenix dactylifera L.) Seedlings to Salt Stress. Sci. Hortic. 2019, 253, 429–438. [Google Scholar] [CrossRef]
- Bouhouch, S.; Eshelli, M.; Slama, H.B.; Bouket, A.C.; Oszako, T.; Okorski, A.; Rateb, M.E.; Belbahri, L. Morphological, Biochemical, and Metabolomic Strategies of the Date Palm (Phoenix dactylifera L., Cv. Deglet Nour) Roots Response to Salt Stress. Agronomy 2021, 11, 2389. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Mohan, S.; Dennis, J.; Johnson, V. The Date Palm Genome; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1, ISBN 9783030737450. [Google Scholar]
- Parida, A.K.; Das, A.B. Salt Tolerance and Salinity Effects on Plants: A Review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef]
- Bañón, S.; Miralles, J.; Ochoa, J.; Sánchez-Blanco, M.J. Hie Effect of Salinity and High Boron on Growth, Photosynthetic Activity and Mineral Contents of Two Ornamental Shrubs. Hortic. Sci. 2012, 39, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Blanco, M.J.; Álvarez, S.; Ortuño, M.F.; Ruiz-Sánchez, M.C. Root System Response to Drought and Salinity: Root Distribution and Water Transport. In Root Engineering: Basic and Applied Concepts; Morte, A., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 325–352. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Li, K.; Sun, F.; Han, C.; Wang, Y.; Li, X. Salt-Induced Plasticity of Root Hair Development Is Caused by Ion Disequilibrium in Arabidopsis thaliana. J. Plant Res. 2008, 121, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zhang, Y.; Testerink, C. Root Dynamic Growth Strategies in Response to Salinity. Plant Cell Environ. 2022, 45, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Julkowska, M.M.; Testerink, C. Tuning Plant Signaling and Growth to Survive Salt. Trends Plant Sci. 2015, 20, 586–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.; Liu, L.; Zhang, Y.; Sun, H.; Zhang, K.; Bai, Z.; Dong, H.; Li, C. Fine Root and Root Hair Morphology of Cotton under Drought Stress Revealed with RhizoPot. J. Agron. Crop Sci. 2020, 206, 679–693. [Google Scholar] [CrossRef]
- Ahmad, P.; Azooz, M.M.; Prasad, M.N.V. Ecophysiology and Responses of Plants under Salt Stress; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9781461447474. [Google Scholar]
- Dinneny, J.R.; Long, T.A.; Wang, J.Y.; Jung, J.W.; Mace, D.; Pointer, S.; Barron, C.; Brady, S.M.; Schiefelbein, J.; Benfey, P.N. Cell Identity Mediates the Response of Arabidopsis Roots to Abiotic Stress. Science 2008, 320, 942–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambastha, V.; Friedmann, Y.; Leshem, Y. Laterals Take It Better—Emerging and Young Lateral Roots Survive Lethal Salinity Longer than the Primary Root in Arabidopsis. Sci. Rep. 2020, 10, 3291. [Google Scholar] [CrossRef] [Green Version]
- Correa, J.; Postma, J.A.; Watt, M.; Wojciechowski, T. Soil Compaction and the Architectural Plasticity of Root Systems. J. Exp. Bot. 2019, 70, 6019–6034. [Google Scholar] [CrossRef] [PubMed]
- Wahome, P.K.; Jesch, H.H.; Grittner, I. Mechanisms of Salt Stress Tolerance in Two Rose Rootstocks: Rosa Chinensis ‘Major’ and R. Rubiginosa. Sci. Hortic. 2001, 87, 207–216. [Google Scholar] [CrossRef]
- De Lacerda, C.F.; Cambraia, J.; Oliva, M.A.; Ruiz, H.A. Osmotic Adjustment in Roots and Leaves of Two Sorghum Genotypes under NaCl Stress. Braz. J. Plant Physiol. 2003, 15, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Aung, M.S.; Masuda, H.; Kobayashi, T.; Nishizawa, N.K. Physiological and Transcriptomic Analysis of Responses to Different Levels of Iron Excess Stress in Various Rice Tissues. Soil Sci. Plant Nutr. 2018, 64, 370–385. [Google Scholar] [CrossRef]
- Johnson, I.R. A Model of the Partitioning of Growth between the Shoots and Roots of Vegetative Plants. Ann. Bot. 1985, 55, 421–431. [Google Scholar] [CrossRef]
- Robinson, D. Compensatory Changes in the Partitioning of Dry Matter in Relation to Nitrogen Uptake and Optimal Variations in Growth. Ann. Bot. 1986, 58, 841–848. [Google Scholar] [CrossRef]
- Johnson, I.R.; Thornley, J.H.M. A Model of Shoot: Root Partitioning with Optimal Growth. Ann. Bot. 1987, 60, 133–142. [Google Scholar] [CrossRef]
- Van der Werf, A.; Visser, A.J.; Schieving, F.; Lambers, H. Erratum: Evidence for Optimal Partitioning of Biomass and Nitrogen at a Range of Nitrogen Availabilities for a Fast- and Slow-Growing Species. Funct. Ecol. 1993, 7, 383. [Google Scholar] [CrossRef]
- Gedroc, J.J.; Mcconnaughay, K.D.M.; Coleman, J.S. Plasticity in Root/Shoot Partitioning: Optimal, Ontogenetic, or Both? Funct. Ecol. 1996, 10, 44–50. [Google Scholar] [CrossRef]
- Alarcón, J.J.; Morales, M.A.; Ferrández, T.; Sánchez-Blanco, M.J. Effects of Water and Salt Stresses on Growth, Water Relations and Gas Exchange in Rosmarinus officinalis. J. Hortic. Sci. Biotechnol. 2006, 81, 845–853. [Google Scholar] [CrossRef]
- Abbasi, G.H.; Akhtar, J.; Ahmad, R.; Jamil, M.; Anwar-ul-Haq, M.; Ali, S.; Ijaz, M. Potassium Application Mitigates Salt Stress Differentially at Different Growth Stages in Tolerant and Sensitive Maize Hybrids. Plant Growth Regul. 2015, 76, 111–125. [Google Scholar] [CrossRef]
- Stavridou, E.; Hastings, A.; Webster, R.J.; Robson, P.R.H. The Impact of Soil Salinity on the Yield, Composition and Physiology of the Bioenergy Grass Miscanthus × Giganteus. GCB Bioenergy 2017, 9, 92–104. [Google Scholar] [CrossRef]
- Ali, M.; Afzal, S.; Parveen, A.; Kamran, M.; Javed, M.R.; Abbasi, G.H.; Malik, Z.; Riaz, M.; Ahmad, S.; Chattha, M.S.; et al. Silicon Mediated Improvement in the Growth and Ion Homeostasis by Decreasing Na+ Uptake in Maize (Zea mays L.) Cultivars Exposed to Salinity Stress. Plant Physiol. Biochem. 2021, 158, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, D.; Martínez, V.; Cerdá, A. Citrus Response to Salinity: Growth and Nutrient Uptake. Tree Physiol. 1997, 17, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Schmidhalter, U. Drought and Salinity: A Comparison of Their Effects on Mineral Nutrition of Plants. J. Plant Nutr. Soil Sci. 2005, 168, 541–549. [Google Scholar] [CrossRef]
- Nemati, I.; Moradi, F.; Gholizadeh, S.; Esmaeili, M.A.; Bihamta, M.R. The Effect of Salinity Stress on Ions and Soluble Sugars Distribution in Leaves, Leaf Sheaths and Roots of Rice (Oryza sativa L.) Seedlings. Plant Soil Environ. 2011, 57, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Karimi, H.R.; Hasanpour, Z. Effects of Salinity and Water Stress on Growth and Macro Nutrients Concentration of Pomegranate (Punica granatum L.). J. Plant Nutr. 2014, 37, 1937–1951. [Google Scholar] [CrossRef]
- Wakeel, A. Potassium-Sodium Interactions in Soil and Plant under Saline-Sodic Conditions. J. Plant Nutr. Soil Sci. 2013, 176, 344–354. [Google Scholar] [CrossRef]
- Horie, T.; Hauser, F.; Schroeder, J.I. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci. 2009, 14, 660–668. [Google Scholar] [CrossRef] [Green Version]
- Plett, D.C.; Møller, I.S. Na+ Transport in Glycophytic Plants: What We Know and Would like to Know. Plant Cell Environ. 2010, 33, 612–626. [Google Scholar] [CrossRef]
- Puppe, D.; Sommer, M. Experiments, Uptake Mechanisms, and Functioning of Silicon Foliar Fertilization—A Review Focusing on Maize, Rice, and Wheat; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; Volume 152, ISBN 9780128151716. [Google Scholar]
- Tester, M.; Davenport, R. Na+ Tolerance and Na+ Transport in Higher Plants. Ann. Bot. 2003, 91, 503–527. [Google Scholar] [CrossRef]
- Dassanayake, M.; Larkin, J.C. Making Plants Break a Sweat: The Structure, Function, and Evolution of Plant Salt Glands. Front. Plant Sci. 2017, 8, 406. [Google Scholar] [CrossRef]
- Caperta, A.D.; Róis, A.S.; Teixeira, G.; Garcia-Caparros, P.; Flowers, T.J. Secretory Structures in Plants: Lessons from the Plumbaginaceae on Their Origin, Evolution and Roles in Stress Tolerance. Plant Cell Environ. 2020, 43, 2912–2931. [Google Scholar] [CrossRef]
- Luo, Q.; Yu, B.; Liu, Y. Differential Sensitivity to Chloride and Sodium Ions in Seedlings of Glycine Max and G. Soja under NaCl Stress. J. Plant Physiol. 2005, 162, 1003–1012. [Google Scholar] [CrossRef]
- Alemán, F.; Nieves-Cordones, M.; Martínez, V.; Rubio, F. Root K + Acquisition in Plants: The Arabidopsis Thaliana Model. Plant Cell Physiol. 2011, 52, 1603–1612. [Google Scholar] [CrossRef] [PubMed]
- Botella, M.A.; Martinez, V.; Nieves, M.; Cerdá, A. Effect of Salinity on the Growth and Nitrogen Uptake by Wheat Seedlings. J. Plant Nutr. 1997, 20, 793–804. [Google Scholar] [CrossRef]
- Rengel, Z.; Damon, P.M. Crops and Genotypes Differ in Efficiency of Potassium Uptake and Use. Physiol. Plant. 2008, 133, 624–636. [Google Scholar] [CrossRef] [PubMed]
- Sustr, M.; Soukup, A.; Tylova, E. Potassium in Root Growth and Development. Plants 2019, 8, 435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The Critical Role of Potassium in Plant Stress Response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [PubMed]
Treatments (NaCl) | Shoot Fresh Weight (g) | Shoot Dry Weight (g) | Leaf Area (mm2) | Water Content per Leaf Area (g cm−2) | Leaf Number | Relative Water Content | Leaf Thickness (mm) |
---|---|---|---|---|---|---|---|
0 mM | 5.60 ± 0.2 b | 1.56 ± 0.14 b | 104.0 ± 4.7 a | 0.038 ± 0.003 c | 7.01 ± 0.51 a | 83.7 ± 4.2 a | 0.37 ± 0.05 b |
150 mM | 7.72 ± 0.42 a | 2.11 ± 0.11 a | 97.6 ± 3.5 a | 0.058 ± 0.004 a | 6.88 ± 0.37 a | 79.3 ± 5.1 a | 0.54 ± 0.04 a |
300 mM | 4.54 ± 0.43 c | 1.12 ± 0.07 c | 71.2 ± 2.1 b | 0.048 ± 0.003 ab | 5.25 ± 0.21 b | 63.7 ± 3.6 b | 0.51 ± 0.03 a |
450 mM | 2.93 ± 0.22 d | 0.82 ± 0.08 d | 48.4 ± 5.0 c | 0.043 ± 0.006 bc | 4.25 ± 0.13 c | 46.4 ± 3.5 c | 0.53 ± 0.03 a |
Treatments (NaCl) | Root Fresh Weight (g) | Root Dry Weight (g) | Root Length (cm) | Root System Area (mm2) | Root-Branching Intensity (%) | Root-Hair Density | Shoot: Root Ratio DW |
---|---|---|---|---|---|---|---|
0 mM | 5.48 ± 0.2 b | 0.92 ± 0.02 b | 30.23 ± 2.6 a | 142.08 ± 11 a | 51.55 ± 3 b | 3.42 ± 0.31 b | 1.70 ± 0.04 c |
150 mM | 6.84 ± 0.42 a | 1.33 ± 0.05 a | 28.92 ± 1.3 a | 139.29 ± 7 a | 63.67 ± 5 a | 4.62 ± 0.28 a | 1.58 ± 0.05 d |
300 mM | 3.34 ± 0.55 c | 0.55 ± 0.07 c | 21.33 ± 2.1 b | 81.44 ± 3 b | 36.49 ± 8 c | 3.33 ± 0.24 b | 2.04 ± 0.06 b |
450 mM | 1.91 ± 0.22 d | 0.33 ± 0.10 d | 20.77 ± 3.5 b | 48.37 ± 5 c | 17.81 ± 3 d | 2.27 ± 0.30 c | 2.48 ± 0.04 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammami, S.B.M.; Chaari, S.; Baazaoui, N.; Drira, R.; Drira, N.; Aounallah, K.; Maazoun, A.; Antar, Z.; Jorrín Novo, J.V.; Bettaieb, T.; et al. The Regulation of Ion Homeostasis, Growth, and Biomass Allocation in Date Palm Ex Vitro Plants Depends on the Level of Water Salinity. Sustainability 2022, 14, 12676. https://doi.org/10.3390/su141912676
Hammami SBM, Chaari S, Baazaoui N, Drira R, Drira N, Aounallah K, Maazoun A, Antar Z, Jorrín Novo JV, Bettaieb T, et al. The Regulation of Ion Homeostasis, Growth, and Biomass Allocation in Date Palm Ex Vitro Plants Depends on the Level of Water Salinity. Sustainability. 2022; 14(19):12676. https://doi.org/10.3390/su141912676
Chicago/Turabian StyleHammami, Sofiene B. M., Sami Chaari, Narjes Baazaoui, Riadh Drira, Noureddine Drira, Karim Aounallah, Asma Maazoun, Zied Antar, Jesús V. Jorrín Novo, Taoufik Bettaieb, and et al. 2022. "The Regulation of Ion Homeostasis, Growth, and Biomass Allocation in Date Palm Ex Vitro Plants Depends on the Level of Water Salinity" Sustainability 14, no. 19: 12676. https://doi.org/10.3390/su141912676
APA StyleHammami, S. B. M., Chaari, S., Baazaoui, N., Drira, R., Drira, N., Aounallah, K., Maazoun, A., Antar, Z., Jorrín Novo, J. V., Bettaieb, T., Rapoport, H. F., & Sghaier-Hammami, B. (2022). The Regulation of Ion Homeostasis, Growth, and Biomass Allocation in Date Palm Ex Vitro Plants Depends on the Level of Water Salinity. Sustainability, 14(19), 12676. https://doi.org/10.3390/su141912676