Phenol Biodegradation and Bioelectricity Generation by a Native Bacterial Consortium Isolated from Petroleum Refinery Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation, Purification, and Screening of Phenol Degraders
2.3. Phenol Estimation
2.4. Bioelectricity Estimation
2.5. Phenol Degraders Identification
2.6. Optimization of Nutritional and Environmental Factors
2.6.1. Plackett–Burman Design (PBD)
2.6.2. Central Composite Design (CCD)
2.6.3. High-Performance Liquid Chromatography (HPLC)
2.7. Detection of Phenol Degradation Metabolites via Gas Chromatography–Mass Spectroscopy (GC-MS)
3. Results and Discussion
3.1. Isolation and Purification of Phenol Degraders
3.2. Screening for Phenol Biodegradation
3.3. Bioelectricity Estimation
3.4. Phenol Degraders Identification
3.5. Optimization of Nutritional and Environmental Factors
3.5.1. Placket–Burman Design (PBD)
3.5.2. Central Composite Design (CCD)
High-Performance Liquid Chromatography (HPLC)
3.6. Detection of Phenol Degradation Metabolites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, Z.H.; Li, N.; Jiang, H.L.; Lin, J.M.; Zhao, R.S. Pretreatment techniques and analytical methods for phenolic endocrine disrupting chemicals in food and environmental samples. TrAC Trends Anal. Chem. 2019, 119, 115592. [Google Scholar] [CrossRef]
- Liu, H.; Chen, L.; Wang, E.T.; Liu, Y.; Zhang, L.; Zhao, K.; Gu, Y.; Yu, X.; Ma, M.; Penttinen, P.; et al. Combined microbial consortium inoculation and black locust planting is effective in the bioremediation of waste drill cuttings. Front. Microbiol. 2020, 11, 536787. [Google Scholar] [CrossRef] [PubMed]
- Navarrete, C.; Jacobsen, I.H.; Martínez, J.L.; Procentese, A. Cell factories for industrial production processes: Current issues and emerging solutions. Processes 2020, 8, 768. [Google Scholar] [CrossRef]
- Karaś, M.A.; Wdowiak-Wróbel, S.; Sokołowski, W. Selection of Endophytic Strains for Enhanced Bacteria-Assisted Phytoremediation of Organic Pollutants Posing a Public Health Hazard. Int. J. Mol. Sci. 2021, 22, 9557. [Google Scholar] [CrossRef]
- Savla, N.; Pandit, S.; Mathuriya, A.S.; Gupta, P.K.; Khanna, N.; Babu, R.P.; Kumar, S. Recent advances in bioelectricity generation through the simultaneous valorization of lignocellulosic biomass and wastewater treatment in microbial fuel cell. Sustain. Energy Technol. Assess. 2021, 48, 101572. [Google Scholar]
- Soria, R.B.; Chinchin, B.D.; Arboleda, D.; Zhao, Y.; Bonilla, P.; Van der Bruggen, B.; Luis, P. Effect of the bio-inspired modification of low-cost membranes with TiO2: ZnO as microbial fuel cell membranes. Chemosphere 2021, 291, 132840. [Google Scholar] [CrossRef] [PubMed]
- Usman, Z.M.; Said, M.A.; Shehu, F.A.; Abdussalam, K.; Abdulrazak, T.M.; Abdullahi, N. Isolation and Identification of Phenol-Degrading Bacteria from Oil-Contaminated Sites. Niger. J. Biotechnol. 2021, 38, 160–165. [Google Scholar] [CrossRef]
- Rea, V.S.G.; Egerland-Bueno, B.; Cerqueda-García, D.; Sierra, J.D.M.; Spanjers, H.; van Lier, J.B. Degradation of p-cresol, resorcinol, and phenol in anaerobic membrane bioreactors under saline conditions. Chem. Eng. J. 2021, 430, 132672. [Google Scholar]
- Poi, G.; Aburto-Medina, A.; Mok, P.C.; Ball, A.S.; Shahsavari, E. Bioremediation of phenol-contaminated industrial wastewater using a bacterial consortium—From laboratory to field. Water Air Soil Pollut. 2017, 228, 89. [Google Scholar] [CrossRef]
- Hassen, W.; Neifar, M.; Cherif, H.; Mahjoubi, M.; Souissi, Y.; Raddadi, N.; Cherif, A. Assessment of genetic diversity and bioremediation potential of pseudomonads isolated from pesticidecontaminated artichoke farm soils. 3 Biotech 2018, 8, 263. [Google Scholar] [CrossRef]
- Boudraa, H.; Kadri, N.; Mouni, L.; Madani, K. Microwave-assisted hydrodistillation of essential oil from fennel seeds: Optimization using Plackett–Burman design and response surface methodology. J. Appl. Res. Med. Aromat. Plants 2021, 23, 100307. [Google Scholar] [CrossRef]
- Du, Y.; Huang, P.; Jin, W.; Li, C.; Yang, J.; Wan, H.; He, Y. Optimization of Extraction or Purification Process of Multiple Components from Natural Products: Entropy Weight Method Combined with Plackett–Burman Design and Central Composite Design. Molecules 2021, 26, 5572. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Deng, J.; Niu, H.; Liang, J.; Arslan, M.; Gamal El-Din, M.; Wang, Q.; Guo, S.; Chen, C. Establishing and Optimizing a Bacterial Consortia for Effective Biodegradation of Petroleum Contaminants: Advancing Classical Microbiology via Experimental and Mathematical Approach. Water 2021, 13, 3311. [Google Scholar] [CrossRef]
- Suleria, H.A.; Barrow, C.J.; Dunshea, F.R. Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods 2020, 9, 1206. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Nie, M.; Diwu, Z.; Wang, L.; Nie, H.; Wang, Y.; Yin, Q.; Zhang, B. Simultaneous biodegradation of phenolics and petroleum hydrocarbons from semi-coking wastewater: Construction of bacterial consortium and their metabolic division of labor. Bioresour. Technol. 2022, 347, 126377. [Google Scholar] [CrossRef]
- Filipowicz, N.; Momotko, M.; Boczkaj, G.; Cieśliński, H. Determination of phenol biodegradation pathways in three psychrotolerant yeasts, Candida subhashii A011, Candida oregonensis B021 and Schizoblastosporion starkeyi-henricii L012, isolated from Rucianka peatland. Enzym. Microb. Technol. 2020, 141, 109663. [Google Scholar] [CrossRef]
- Shong, J.; Diaz, M.R.J.; Collins, C.H. Towards synthetic microbial consortia for bioprocessing. Curr. Opin. Biotechnol. 2012, 23, 798–802. [Google Scholar] [CrossRef]
- Ammeri, R.W.; Di Rauso Simeone, G.; Hassen, W.; Ibrahim, C.; Ammar, R.B.; Hassen, A. Bacterial consortium biotransformation of pentachlorophenol contaminated wastewater. Arch. Microbiol. 2021, 203, 6231–6243. [Google Scholar] [CrossRef]
- Naik, S.; Eswari, J.S. Experimental and validation with neural network time series model of microbial fuel cell bio-sensor for phenol detection. J. Environ. Manag. 2021, 290, 112594. [Google Scholar] [CrossRef]
- Al-Shaikh, A.J.; Jamal, M.T. Bioaugmentation of halophilic consortia for the degradation of petroleum hydrocarbons and petroleum wastewater treatment. Int. J. Adv. Res. Biol. Sci. 2020, 7, 97–112. [Google Scholar]
- Pathak, U.; Banerjee, A.; Roy, T.; Das, S.K.; Das, P.; Kumar, T.; Mandal, T. Evaluation of mass transfer effect and response surface optimization for abatement of phenol and cyanide using immobilized carbon alginate beads in a fixed bio-column reactor. Asia-Pac. J. Chem. Eng. 2020, 15, e2405. [Google Scholar] [CrossRef]
- Samimi, M.; Shahriari Moghadam, M. Phenol biodegradation by bacterial strain O-CH1 isolated from seashore. Glob. J. Environ. Sci. Manag. 2020, 6, 109–118. [Google Scholar]
No. | Factor | Unit | Levels | ||
---|---|---|---|---|---|
−1 | 0 | 1 | |||
1 | Bacterial Inoculum Size | % | 1 | 3 | 5 |
2 | Culture volume | mL | 75 | 100 | 125 |
3 | Phenol concentration | ppm | 6 | 13 | 20 |
4 | pH | - | 6.5 | 7.5 | 8.5 |
5 | Incubation time | day | 3 | 7 | 11 |
6 | KH2PO4 | mg/L | 120.0 | 420.0 | 720.0 |
7 | K2HPO4 | mg/L | 175.0 | 375.0 | 675.0 |
8 | (NH4)2SO4 | mg/L | 144.0 | 244.0 | 344.0 |
9 | NaCl | mg/L | 5.0 | 15.0 | 35.0 |
10 | FeCl3.6H2O | mg/L | 34.0 | 54.0 | 74.0 |
11 | MgSO4.7H2O | mg/L | 30.0 | 50.0 | 70.0 |
12 | CaCl2.2H2O | mg/L | 5.0 | 15.0 | 35.0 |
Parameter | Unit | Levels | ||||
---|---|---|---|---|---|---|
−2 | −1 | 0 | +1 | +2 | ||
Incubation Time | h | 14.9181 | 48.0 | 72.0 | 96.0 | 129.082 |
KH2PO4 | mg/L | 1.07 | 70.0 | 120.0 | 170.0 | 238.9 |
K2HPO4 | mg/L | 56.01 | 125.0 | 175.0 | 225.0 | 293.9 |
FeCl3 | mg/L | 66.86 | 71.0 | 74.0 | 77.0 | 81.1 |
CaCl2 | mg/L | 0.24 | 3.0 | 5.0 | 7.0 | 9.7 |
Isolates | Identification | Identified Accession Number |
---|---|---|
1 | Pseudomonas aeruginosa | MW598285 |
2 | Klebsiella pneumoniae | MW585395 |
3 | Bacillus cereus | MW585396 |
4 | Pseudomonas monteilii | MW585595 |
5 | Bacillus subtilis | MW585596 |
6 | Pseudomonas mosselii | MW585691 |
7 | Staphylococcus equorum | MW585694 |
8 | Bacillus benzoevorans | MW597321 |
9 | Bacillus circulans | MW597408 |
10 | Pseudomonas fulva | MW598162 |
11 | Pseudomonas aeruginosa | MW598228 |
12 | Pseudomonas putida | MW598278 |
13 | Burkholderia cepacia | MW579472 |
14 | Bacillus cereus | MW598367 |
15 | Klebsiella pneumoniae | MW598404 |
Run | Inoculum Size | Culture Volume | Phenol Conc. | pH | Incubation Period | KH2PO4 | K2HPO4 | (NH4)2SO4 | NaCl | FeCl3 | MgSo4 | CaCl2 | R1 (% Phenol Degradation) | Phenol Removal Amount Per OD600 (mg/OD600) | R2 (Bioelectricity Generation) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | −1 | −1 | 1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | 88.11 | 11.0 | 9.69 × 10−7 |
2 | −1 | −1 | −1 | 1 | 1 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | 60.02 | 7.5 | 4.00 × 10−8 |
3 | 1 | −1 | 1 | −1 | 1 | 1 | −1 | −1 | 1 | −1 | −1 | 1 | 48.69 | 6.0 | 9.71 × 10−8 |
4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 36.27 | 4.5 | 1.23 × 10−7 |
5 | 1 | −1 | −1 | −1 | −1 | 1 | 1 | −1 | −1 | 1 | −1 | −1 | 79.40 | 9.9 | 8.56 × 10−7 |
6 | 1 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | −1 | 1 | −1 | −1 | 36.35 | 4.5 | 2.02 × 10−7 |
7 | −1 | 1 | 1 | −1 | −1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 89.31 | 11.1 | 8.40 × 10−7 |
8 | −1 | −1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | −1 | −1 | 71.36 | 8.9 | 1.43 × 10−7 |
9 | 1 | −1 | −1 | −1 | −1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | 81.91 | 10.2 | 1.03 × 10−6 |
10 | −1 | −1 | 1 | 1 | −1 | −1 | −1 | −1 | 1 | 1 | 1 | −1 | 90.38 | 11.2 | 1.40 × 10−6 |
11 | 1 | 1 | −1 | 1 | −1 | −1 | −1 | −1 | 1 | −1 | −1 | 1 | 88.10 | 11.0 | 1.31 × 10−6 |
12 | −1 | 1 | −1 | −1 | 1 | −1 | −1 | 1 | −1 | 1 | −1 | 1 | 50.00 | 6.2 | 1.85 × 10−7 |
13 | −1 | 1 | 1 | −1 | −1 | 1 | 1 | −1 | −1 | −1 | 1 | 1 | 88.80 | 11.1 | 1.11 × 10−6 |
14 | −1 | 1 | −1 | −1 | 1 | 1 | −1 | −1 | 1 | 1 | 1 | −1 | 74.79 | 9.3 | 2.05 × 10−7 |
15 | 1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | −1 | 1 | −1 | 81.38 | 10.1 | 9.49 × 10−7 |
16 | 1 | −1 | 1 | −1 | 1 | −1 | −1 | 1 | −1 | −1 | 1 | −1 | 88.36 | 11.0 | 4.10 × 10−7 |
17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 85.99 | 10.7 | 4.21 × 10−7 |
Term | Effect | Coefficient | SE Coefficient | t-Value | p-Value |
---|---|---|---|---|---|
Constant | 0.7276 | 0.03453 | 21.07 | 0.000 | |
Bacterial inoculum size | −0.0904 | −0.0452 | 0.03557 | −1.27 | 0.273 |
Culture volume | −0.0790 | −0.0395 | 0.03557 | −1.11 | 0.329 |
Phenol concentration | −0.0259 | −0.0129 | 0.03557 | −0.36 | 0.735 |
pH | −0.0616 | −0.0308 | 0.03557 | −0.87 | 0.435 |
Incubation time | −0.2769 | −0.1385 | 0.03557 | −3.89 | 0.018 |
KH2PO4 | −0.0195 | −0.0098 | 0.03557 | −0.27 | 0.797 |
K2HPO4 | −0.0857 | −0.0429 | 0.03553 | −1.21 | 0.294 |
(NH4)2SO4 | 0.0252 | 0.0126 | 0.03557 | 0.35 | 0.741 |
NaCl | 0.0059 | 0.0030 | 0.03546 | 0.08 | 0.937 |
FeCl3.6H2O | −0.0985 | −0.0493 | 0.03557 | −1.38 | 0.238 |
MgSO4.7H2O | 0.0632 | 0.0316 | 0.03557 | 0.89 | 0.424 |
CaCl2.2H2O | −0.0913 | −0.0457 | 0.03546 | −1.29 | 0.267 |
Term | Effect | Coefficient | SE Coefficient | t-Value | p-Value |
---|---|---|---|---|---|
Constant | 0.000001 | 0.000000 | 11.55 | 0.000 | |
Bacterial inoculum size | 0.000000 | 0.000000 | 0.000000 | 0.10 | 0.927 |
Culture volume | −0.000000 | −0.000000 | 0.000000 | −0.03 | 0.979 |
Phenol concentration | 0.000000 | 0.000000 | 0.000000 | 0.50 | 0.641 |
pH | 0.000000 | 0.000000 | 0.000000 | 0.47 | 0.660 |
Incubation time | −0.000000 | −0.000000 | 0.000000 | −8.18 | 0.001 |
KH2PO4 | −0.000000 | −0.000000 | 0.000000 | −1.12 | 0.324 |
K2HPO4 | −0.000000 | −0.000000 | 0.000000 | −1.33 | 0.253 |
(NH4)2SO4 | −0.000000 | −0.000000 | 0.000000 | −0.66 | 0.543 |
NaCl | 0.000000 | 0.000000 | 0.000000 | 0.58 | 0.596 |
FeCl3.6H2O | 0.000000 | 0.000000 | 0.000000 | 0.09 | 0.936 |
MgSO4.7H2O | 0.000000 | 0.000000 | 0.000000 | 0.77 | 0.484 |
CaCl2.2H2O | −0.000000 | −0.000000 | 0.000000 | −0.10 | 0.926 |
Run | x1 Incubation Time | x2 KH2PO4 | x3 K2HPO4 | x4 FeCl3 | x5 CaCl2 | R1 (Phenol Degradation %) | Phenol Removal Amount per OD600 (mg/OD600) | R2 (Bioelectricity Generation (mW/Cm3)) |
---|---|---|---|---|---|---|---|---|
1 | −1 | −1 | +1 | −1 | +1 | 96.83 | 12.1 | 6.91 × 10−7 |
2 | +1 | +1 | +1 | −1 | −1 | 95.24 | 11.9 | 4.14 × 10−8 |
3 | −1 | +1 | +1 | +1 | +1 | 96.39 | 12.0 | 7.77 × 10−7 |
4 | −1 | +1 | −1 | +1 | −1 | 95.20 | 11.9 | 8.03 × 10−7 |
5 | 0 | 0 | 0 | 0 | 0 | 95.32 | 11.9 | 1.77 × 10−7 |
6 | 0 | +2 | 0 | 0 | 0 | 96.71 | 12.0 | 3.50 × 10−7 |
7 | +1 | −1 | −1 | −1 | −1 | 95.20 | 11.9 | 1.69 × 10−7 |
8 | −1 | +1 | −1 | +1 | +1 | 97.10 | 12.1 | 8.80 × 10−7 |
9 | 0 | 0 | 0 | 0 | −2 | 94.45 | 11.8 | 4.14 × 10−7 |
10 | 0 | 0 | 0 | 0 | 0 | 95.44 | 11.9 | 1.11 × 10−7 |
11 | +1 | −1 | +1 | −1 | +1 | 95.8 | 11.9 | 2.33 × 10−7 |
12 | 0 | 0 | +2 | 0 | 0 | 93.31 | 11.6 | 6.26 × 10−7 |
13 | +2 | 0 | 0 | 0 | 0 | 54.47 | 6.8 | 7.29 × 10−9 |
14 | 0 | −2 | 0 | 0 | 0 | 92.75 | 11.5 | 7.54 × 10−7 |
15 | 0 | 0 | 0 | 0 | 0 | 95.05 | 11.8 | 1.73 × 10−7 |
16 | +1 | +1 | −1 | −1 | −1 | 96.91 | 12.1 | 2.89 × 10−7 |
17 | 0 | 0 | 0 | +2 | 0 | 94.57 | 11.8 | 4.03 × 10−7 |
18 | +1 | +1 | −1 | +1 | −1 | 97 | 12.1 | 3.07 × 10−7 |
19 | 0 | 0 | −2 | 0 | 0 | 96.39 | 12.0 | 8.96 × 10−7 |
20 | −2 | 0 | 0 | 0 | 0 | 59.29 | 7.4 | 2.29 × 10−8 |
21 | +1 | −1 | −1 | +1 | −1 | 95.05 | 11.8 | 3.71 × 10−7 |
22 | 0 | 0 | 0 | 0 | 0 | 95.55 | 11.9 | 1.79 × 10−7 |
23 | +1 | −1 | +1 | +1 | +1 | 94.49 | 11.8 | 4.76 × 10−7 |
24 | +1 | −1 | −1 | +1 | +1 | 95.4 | 11.9 | 5.24 × 10−7 |
25 | +1 | +1 | −1 | +1 | +1 | 94.61 | 11.8 | 5.44 × 10−7 |
26 | 0 | 0 | 0 | 0 | +2 | 95.36 | 11.9 | 9.73 × 10−7 |
27 | 0 | 0 | 0 | 0 | 0 | 95.19 | 11.8 | 1.00 × 10−7 |
28 | +1 | +1 | +1 | −1 | +1 | 93.78 | 11.7 | 5.20 × 10−7 |
29 | −1 | +1 | +1 | −1 | +1 | 96 | 12.0 | 9.53 × 10−7 |
30 | +1 | −1 | +1 | +1 | −1 | 95.64 | 11.9 | 5.49 × 10−7 |
31 | −1 | −1 | −1 | +1 | +1 | 96.91 | 12.1 | 2.34 × 10−7 |
32 | −1 | −1 | −1 | −1 | −1 | 97.42 | 12.1 | 9.41 × 10−7 |
33 | +1 | +1 | −1 | −1 | +1 | 95.8 | 11.9 | 5.54 × 10−7 |
34 | −1 | −1 | −1 | −1 | +1 | 96.98 | 12.1 | 1.03 × 10−6 |
35 | 0 | 0 | 0 | 0 | 0 | 95.63 | 11.9 | 1.09 × 10−7 |
36 | −1 | −1 | −1 | +1 | −1 | 97.06 | 12.1 | 1.11 × 10−6 |
37 | −1 | −1 | +1 | +1 | −1 | 96.59 | 12.0 | 1.16 × 10−6 |
38 | −1 | +1 | +1 | −1 | −1 | 95.76 | 11.9 | 1.21 × 10−6 |
39 | 0 | 0 | 0 | 0 | 0 | 95.65 | 11.9 | 1.12 × 10−7 |
40 | −1 | +1 | −1 | −1 | +1 | 95.6 | 11.9 | 1.24 × 10−6 |
41 | 0 | 0 | 0 | −2 | 0 | 96.47 | 12.0 | 1.18 × 10−6 |
42 | +1 | +1 | +1 | +1 | −1 | 95.56 | 11.9 | 5.74 × 10−7 |
43 | −1 | +1 | −1 | −1 | −1 | 97.62 | 12.2 | 1.30 × 10−6 |
44 | −1 | −1 | +1 | −1 | −1 | 97.3 | 12.1 | 1.31 × 10−6 |
45 | +1 | −1 | −1 | −1 | +1 | 94.93 | 11.8 | 5.97 × 10−7 |
46 | −1 | −1 | +1 | +1 | +1 | 96.35 | 12.0 | 1.33 × 10−6 |
47 | 0 | 0 | 0 | 0 | 0 | 95.26 | 11.9 | 1.20 × 10−7 |
48 | −1 | +1 | +1 | +1 | −1 | 96.31 | 12.0 | 1.34 × 10−6 |
49 | +1 | +1 | +1 | +1 | +1 | 95.2 | 11.9 | 6.09 × 10−7 |
50 | +1 | −1 | +1 | −1 | −1 | 95.01 | 11.8 | 5.94 × 10−7 |
Term | Coefficient | Phenol Degradation (R1) | Bioelectricity Generation (R2) | ||||
---|---|---|---|---|---|---|---|
Coefficient’s Estimated Value | F-Value | p-Value | Coefficient’s Estimated Value | F-Value | p-Value | ||
M—Model | b0 | 96.42 | 3.99 | 0.0004 | 1.979 × 10−7 | 4.43 | 0.0002 |
x1—Incubation time | b1 | −0.5627 | 20.15 | 0.0001 | −2.455 × 10−7 | 40.68 | <0.0001 |
x2—KH2PO4 | b2 | −0.0368 | 0.0864 | 0.7709 | −7.741 × 10−9 | 0.0405 | 0.8420 |
x3—K2HPO4 | b3 | −0.1872 | 2.23 | 0.1460 | 1.918 × 10−8 | 0.2483 | 0.6221 |
x4—FeCl3 | b4 | 0.0719 | 0.3291 | 0.5706 | −4.380 × 10−8 | 1.30 | 0.2643 |
x5—CaCl2 | b5 | −0.4817 | 14.73 | 0.0006 | 1.113 × 10−8 | 0.0834 | 0.7748 |
x1x2 | b12 | 0.3450 | 5.60 | 0.0249 | −2.415 × 10−8 | 0.2909 | 0.5938 |
x1x3 | b13 | 0.0994 | 0.4644 | 0.5010 | −3.094 × 10−8 | 0.4773 | 0.4951 |
x1x4 | b14 | 0.2150 | 2.17 | 0.1511 | 6.272 × 10−8 | 1.96 | 0.1719 |
x1x5 | b15 | −0.2969 | 4.14 | 0.0510 | 1.002 × 10−7 | 5.01 | 0.0331 |
x2x3 | b23 | −0.1144 | 0.6152 | 0.4392 | −3.942 × 10−8 | 0.7749 | 0.3859 |
x2x4 | b24 | 0.1138 | 0.6085 | 0.4417 | −1.433 × 10−8 | 0.1024 | 0.7512 |
x2x5 | b25 | −0.1419 | 0.9466 | 0.3386 | 4.121 × 10−8 | 0.8467 | 0.3651 |
x3x4 | b34 | 0.0606 | 0.1728 | 0.6807 | 8.103 × 10−8 | 3.27 | 0.0808 |
x3x5 | b35 | 0.0800 | 0.3010 | 0.5875 | −4.719 × 10−8 | 1.11 | 0.3007 |
x4x5 | b45 | 0.3681 | 6.37 | 0.0173 | −2.513 × 10−8 | 0.3150 | 0.5789 |
x12 | b11 | −0.1435 | 1.68 | 0.2050 | 3.655 × 10−8 | 1.16 | 0.2909 |
x22 | b22 | 0.0067 | 0.0037 | 0.9521 | 8.537 × 10−8 | 6.32 | 0.0178 |
x32 | b33 | −0.0604 | 0.2980 | 0.5893 | 1.222 × 10−7 | 12.95 | 0.0012 |
x42 | b44 | −0.1154 | 1.10 | 0.3038 | 1.279 × 10−7 | 14.27 | 0.0007 |
x52 | b55 | −0.4991 | 19.94 | 0.0001 | 1.114 × 10−7 | 10.53 | 0.0030 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shebl, S.; Hussien, N.N.; Elsabrouty, M.H.; Osman, S.M.; Elwakil, B.H.; Ghareeb, D.A.; Ali, S.M.; Ghanem, N.B.E.D.; Youssef, Y.M.; Moussad, E.E.D.A.; et al. Phenol Biodegradation and Bioelectricity Generation by a Native Bacterial Consortium Isolated from Petroleum Refinery Wastewater. Sustainability 2022, 14, 12912. https://doi.org/10.3390/su141912912
Shebl S, Hussien NN, Elsabrouty MH, Osman SM, Elwakil BH, Ghareeb DA, Ali SM, Ghanem NBED, Youssef YM, Moussad EEDA, et al. Phenol Biodegradation and Bioelectricity Generation by a Native Bacterial Consortium Isolated from Petroleum Refinery Wastewater. Sustainability. 2022; 14(19):12912. https://doi.org/10.3390/su141912912
Chicago/Turabian StyleShebl, Sara, Nourhan N. Hussien, Mohab H. Elsabrouty, Sarah M. Osman, Bassma H. Elwakil, Doaa A. Ghareeb, Safaa M. Ali, Nevine Bahaa El Din Ghanem, Yehia M. Youssef, Essam El Din A. Moussad, and et al. 2022. "Phenol Biodegradation and Bioelectricity Generation by a Native Bacterial Consortium Isolated from Petroleum Refinery Wastewater" Sustainability 14, no. 19: 12912. https://doi.org/10.3390/su141912912
APA StyleShebl, S., Hussien, N. N., Elsabrouty, M. H., Osman, S. M., Elwakil, B. H., Ghareeb, D. A., Ali, S. M., Ghanem, N. B. E. D., Youssef, Y. M., Moussad, E. E. D. A., & Olama, Z. A. (2022). Phenol Biodegradation and Bioelectricity Generation by a Native Bacterial Consortium Isolated from Petroleum Refinery Wastewater. Sustainability, 14(19), 12912. https://doi.org/10.3390/su141912912