How to Use Live Streaming to Improve Consumer Purchase Intentions: Evidence from China
Abstract
:1. Introduction
2. Literature Review
2.1. Live-Streaming Commerce
2.2. Stimulus–Organism–Response Framework
2.2.1. Live Peculiarities as Environmental Stimuli (S)
2.2.2. Cognitive and Affective Factors as Inner States of the Organism (O)
2.2.3. Engagement and Purchase Intentions as Behavioral Responses (R)
3. Hypothesis Development
3.1. Effect of Live Peculiarities
3.1.1. Effect of Interactivity
3.1.2. Effect of Visualization
3.1.3. Effect of Entertainment
3.1.4. Effect of Professionalization
3.2. Mediating Role of Social Presence
3.3. Mediating Role of Psychological Distance
3.4. Mediating Role of Trust
3.5. Mediating Role of Engagement
3.6. Research Model
4. Method
4.1. Sample
4.2. Measurements
5. Results
5.1. Measurement Model
5.2. Structural Model
5.3. Mediating Effects
5.4. Gender Differences
5.5. Platform Difference
5.6. Path Comparison
6. Discussion
6.1. Theoretical Contribution
6.2. Managerial Implications
6.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IResearch. The Research Report on Chinese Live Streaming E-Commerce Industry in 2021. Available online: https://baijiahao.baidu.com/s?id=1710963499129873379&wfr=spider&for=pc (accessed on 22 September 2021).
- Hilvert-Bruce, Z.; Neill, J.T.; Sjöblom, M.; Hamari, J. Social motivations of live-streaming viewer engagement on Twitch. Comput. Hum. Behav. 2018, 84, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Ye, Y. Who watches live streaming in China? Examining viewers’ behaviors, personality traits, and motivations. Front. Psychol. 2020, 11, 1607. [Google Scholar] [CrossRef]
- Guo, L.Y.; Hu, X.Y.; Lu, J.X.; Ma, L. Effects of customer trust on engagement in live streaming commerce: Mediating role of swift guanxi. Internet Res. 2021, 31, 1718–1744. [Google Scholar] [CrossRef]
- Wongkitrungrueng, A.; Assarut, N. The role of live streaming in building consumer trust and engagement with social commerce sellers. J. Bus. Res. 2020, 117, 543–556. [Google Scholar] [CrossRef]
- Sun, Y.; Shao, X.; Li, X.; Guo, Y.; Nie, K. How live streaming influences purchase intentions in social commerce: An IT affordance perspective. Electron. Commer. Res. Appl. 2019, 37, 100886. [Google Scholar] [CrossRef]
- Xu, X.Y.; Wu, J.H.; Li, Q. What drives consumer shopping in live streaming commerce. J. Electron. Commer. Res. 2020, 21, 144–167. [Google Scholar]
- Xue, J.; Liang, X.; Xie, T.; Wang, H. See now, act now: How to interact with customers to enhance social commerce engagement? Inf. Manag. 2020, 57, 103324. [Google Scholar] [CrossRef]
- Kang, K.; Lu, J.; Guo, L.; Li, W. The dynamic effect of interactivity on customer engagement behavior through tie strength: Evidence from live streaming commerce platforms. Int. J. Inf. Manag. 2021, 56, 102251. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, L.; Qin, F.; Wang, G.A. E-service quality on live streaming platforms: Swift guanxi perspective. J. Serv. Mark. 2021, 35, 312–324. [Google Scholar] [CrossRef]
- Hou, F.F.; Guan, Z.Z.; Li, B.Y.; Chong, A.Y.L. Factors influencing people’s continuous watching intention and consumption intention in live streaming evidence from China. Internet Res. 2020, 30, 141–163. [Google Scholar] [CrossRef]
- Hu, M.Y.; Chaudhry, S.S. Enhancing consumer engagement in e-commerce live streaming via relational bonds. Internet Res. 2020, 30, 1019–1041. [Google Scholar] [CrossRef]
- Su, Q.L.; Zhou, F.; Wu, Y.J. Using virtual gifts on live streaming platforms as a sustainable strategy to stimulate consumers’ green purchase intention. Sustainability 2020, 12, 3783. [Google Scholar] [CrossRef]
- Wei, H.; Gao, J.; Wang, F. The impact of information interaction on user engagement behavior in live streaming commerce. Inf. Sci. 2021, 39, 148–156. [Google Scholar]
- Liu, F.; Meng, L.; Chen, Y.; Duan, K. The impact of network celebrities’ information source charecteristics on purchase intention. Chin. J. Manag. 2020, 17, 94–104. [Google Scholar]
- Pavlou, P.A.; Liang, H.; Xue, Y. Understanding and mitigating uncertainty in online exchange relationships: A principal-agent perspective. MIS Q. 2007, 31, 105–136. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.Y. To shop or not: Understanding Chinese consumers’ live-stream shopping intentions from the perspectives of uses and gratifications, perceived network size, perceptions of digital celebrities, and shopping orientations. Telemat. Inform. 2021, 59, 101562. [Google Scholar] [CrossRef]
- Mou, J.; Benyoucef, M. Consumer behavior in social commerce: Results from a meta-analysis. Technol. Forecast. Soc. Change 2021, 167, 120734. [Google Scholar] [CrossRef]
- Tseng, F.C.; Cheng, T.C.E.; Li, K.; Teng, C.I. How does media richness contribute to customer loyalty to mobile instant messaging? Internet Res. 2017, 27, 520–537. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chen, M.C.; Keng, C.J. Measuring online live streaming of perceived servicescape Scale development and validation on behavior outcome. Internet Res. 2020, 30, 737–762. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.L.; Cai, J.L. How attachment affects user stickiness on live streaming platforms: A socio-technical approach perspective. J. Retail. Consum. Serv. 2021, 60, 102478. [Google Scholar] [CrossRef]
- Sarkar, S.; Chauhan, S.; Khare, A. A meta-analysis of antecedents and consequences of trust in mobile commerce. Int. J. Inf. Manag. 2020, 50, 286–301. [Google Scholar] [CrossRef]
- Pancer, E.; Chandler, V.; Poole, M.; Noseworthy, T.J. How readability shapes social media engagement. J. Consum. Psychol. 2019, 29, 262–270. [Google Scholar] [CrossRef]
- Busalim, A.H.; Hussin, A.R.C.; Iahad, N.A. Factors influencing customer engagement in social commerce websites: A systematic literature review. J. Theor. Appl. Electron. Commer. Res. 2019, 14, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Molinillo, S.; Anaya-Sánchez, R.; Liebana-Cabanillas, F. Analyzing the effect of social support and community factors on customer engagement and its impact on loyalty behaviors toward social commerce websites. Comput. Hum. Behav. 2020, 108, 105980. [Google Scholar] [CrossRef]
- Moon, J.-W.; Kim, Y.-G. Extending the TAM for a World-Wide-Web context. Inf. Manag. 2001, 38, 217–230. [Google Scholar] [CrossRef]
- Yu, X.; Xu, Z. The theoretical model of bullet screen users’ participative behavior in network broadcast platform. Inf. Sci. 2017, 35, 147–151. [Google Scholar]
- Pujiastuti, E.E.; Nimran, U.; Suharyono, S.; Kusumawati, A. The antecedents of behavioral intention regarding rural tourism destination. Asia Pac. J. Tour. Res. 2017, 22, 1169–1181. [Google Scholar] [CrossRef]
- Zhang, M.M.; Xu, P.; Ye, Y.J. Trust in social media brands and perceived media values: A survey study in China. Comput. Hum. Behav. 2022, 127, 107024. [Google Scholar] [CrossRef]
- Biswas, D.; Biswas, A.; Das, N. The differential effects of celebrity and expert endorsements on consumer risk perceptions. The role of consumer knowledge, perceived congruency, and product technology orientation. J. Advert. 2006, 35, 17–31. [Google Scholar] [CrossRef]
- Short, J.; Williams, E.; Christie, B. The Social Psychology of Telecommunications; Wiley: Toronto, ON, Canada; London, UK; New York, NY, USA, 1976. [Google Scholar]
- Ye, S.; Ying, T.Y.; Zhou, L.Q.; Wang, T.Y. Enhancing customer trust in peer-to-peer accommodation: A “soft” strategy via social presence. Int. J. Hosp. Manag. 2019, 79, 1–10. [Google Scholar] [CrossRef]
- Lim, J.S.; Choe, M.-J.; Zhang, J.; Noh, G.-Y. The role of wishful identification, emotional engagement, and parasocial relationships in repeated viewing of live-streaming games: A social cognitive theory perspective. Comput. Hum. Behav. 2020, 108, 106327. [Google Scholar] [CrossRef]
- Liberman, N.; Trope, Y. The psychology of transcending the here and now. Science 2008, 322, 1201–1205. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Cha, S.Y.; Park, C.; Lee, I.; Kim, J. Getting closer and experiencing together: Antecedents and consequences of psychological distance in social media-enhanced real-time streaming video. Comput. Hum. Behav. 2012, 28, 1365–1378. [Google Scholar] [CrossRef]
- Darke, P.R.; Brady, M.K.; Benedicktus, R.L.; Wilson, A.E. Feeling close from afar: The role of psychological distance in offsetting distrust in unfamiliar online retailers. J. Retail. 2016, 92, 287–299. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, F.; Wang, G.A.; Luo, C. The impact of live video streaming on online purchase intention. Serv. Ind. J. 2020, 40, 656–681. [Google Scholar] [CrossRef]
- Liébana-Cabanillas, F.; Marinković, V.; Kalinić, Z. A SEM-neural network approach for predicting antecedents of m-commerce acceptance. Int. J. Inf. Manag. 2017, 37, 14–24. [Google Scholar] [CrossRef]
- Kim, S.; Park, H. Effects of various characteristics of social commerce (s-commerce) on consumers’ trust and trust performance. Int. J. Inf. Manag. 2013, 33, 318–332. [Google Scholar] [CrossRef]
- Bugshan, H.; Attar, R.W. Social commerce information sharing and their impact on consumers. Technol. Forecast. Soc. Change 2020, 153, 119875. [Google Scholar] [CrossRef]
- Urbach, N.; Ahlemann, F. Structural equation modeling in information systems research using partial least squares. J. Inf. Technol. Theory Appl. 2010, 11, 5–40. [Google Scholar]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Mena, J.A. An assessment of the use of partial least squares structural equation modeling in marketing research. J. Acad. Mark. Sci. 2012, 40, 414–433. [Google Scholar] [CrossRef]
- Chin, W.W.; Marcoulides, G. The partial least squares approach to structural equation modeling. Adv. Hosp. Lsure 1998, 295, 295–336. [Google Scholar]
- Wu, G.; Wu, G. Conceptualizing and measuring the perceived interactivity of websites. J. Curr. Issues Res. Advert. 2006, 28, 87–104. [Google Scholar] [CrossRef]
- Dong, X.; Wang, T.; Benbasat, I. IT affordances in online social commerce: Conceptualization validation and scale development. In Proceedings of the Twenty-Second Americas Conference on Information Systems, San Diego, CA, USA, 11–14 August 2016. [Google Scholar]
- Dong, X.; Wang, T. Social tie formation in Chinese online social commerce: The role of IT affordances. Int. J. Inf. Manag. 2018, 42, 49–64. [Google Scholar] [CrossRef]
- Chen, C.C.; Lin, Y.C. What drives live-stream usage intention? The perspectives of flow, entertainment, social interaction, and endorsement. Telemat. Inform. 2018, 35, 293–303. [Google Scholar] [CrossRef]
- Ohanian, R. Construction and validation of a scale to measure celebrity endorsers’ perceived expertise, trustworthiness, and attractiveness. J. Advert. 1990, 19, 39–52. [Google Scholar] [CrossRef]
- Busalim, A.H.; Ghabban, F. Customer engagement behaviour on social commerce platforms: An empirical study. Technol. Soc. 2021, 64, 101437. [Google Scholar] [CrossRef]
- Edwards, S.M.; Lee, J.K.; Ferle, C.L. Does place matter when shopping online? Perceptions of similarity and familiarity as indicators of psychological distance. J. Interact. Advert. 2009, 10, 35–50. [Google Scholar] [CrossRef]
- Chen, A.; Lu, Y.; Wang, B. Customers’ purchase decision-making process in social commerce: A social learning perspective. Int. J. Inf. Manag. 2017, 37, 627–638. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J.M. SmartPLS 3. Available online: http://www.smartpls.com (accessed on 3 September 2021).
- Nunnally, J.C.; Bernstein, I.H. Psychological Theory; McGraw Hill: New York, NY, USA, 1994. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef]
- Benson, V.; Ezingeard, J.-N.; Hand, C. An empirical study of purchase behaviour on social platforms: The role of risk, beliefs and characteristics. Inf. Technol. People 2019, 32, 876–896. [Google Scholar] [CrossRef]
- Rodgers, S.; Harris, M.A. Gender and e-commerce: An exploratory study. J. Advert. Res. 2003, 43, 322–329. [Google Scholar] [CrossRef]
- Sarstedt, M.; Henseler, J.; Ringle, C.M. Multigroup analysis in partial least squares (PLS) path modeling: Alternative methods and empirical results. In Measurement and Research Methods in International Marketing; Emerald Group Publishing Limited: Bingley, UK, 2011; Volume 22, pp. 159–218. [Google Scholar]
- Cai, J.; Wohn, D.Y.; Mittal, A.; Sureshbabu, D. Utilitarian and hedonic motivations for live streaming shopping. In Proceedings of the 2018 ACM International Conference on Interactive Experiences for TV and Online Video, Seoul, Korea, 26–28 June 2018. [Google Scholar]
- Giovanis, A. Consumer-brand relationships’ development in the mobile internet market: Evidence from an extended relationship commitment paradigm. J. Prod. Brand Manag. 2016, 25, 568–585. [Google Scholar] [CrossRef]
- Wang, W.-T.; Ou, W.-M.; Chen, W.-Y. The impact of inertia and user satisfaction on the continuance intentions to use mobile communication applications: A mobile service quality perspective. Int. J. Inf. Manag. 2019, 44, 178–193. [Google Scholar] [CrossRef]
- Lv, X.; Cao, J. Analysis on the influencing factors of the evolution of consumer trust in social commerce context. J. Commer. Econ. 2021, 16, 69–72. [Google Scholar]
- Sun, J.; Zheng, Y.; Chen, J. The influence of credibility of online reviews on Consumers’ trust: The moderating role of uncertainty. Manag. Rev. 2020, 32, 146–159. [Google Scholar]
- Lu, B.Z.; Fan, W.G.; Zhou, M. Social presence, trust, and social commerce purchase intention: An empirical research. Comput. Hum. Behav. 2016, 56, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Osei-Frimpong, K.; McLean, G. Examining online social brand engagement: A social presence theory perspective. Technol. Forecast. Soc. Change 2018, 128, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Clement Addo, P.; Fang, J.; Asare, A.O.; Kulbo, N.B. Customer engagement and purchase intention in live-streaming digital marketing platforms. Serv. Ind. J. 2021, 41, 11–12. [Google Scholar] [CrossRef]
Construct | Item | References |
---|---|---|
Interactivity (IN) | IN1.The streamers were very happy to communicate with viewers IN2. The streamers actively responded viewers’ questions IN3.The streamers answered viewers’ questions and requests in time IN4.The streamers provided relevant information for viewers’ inquiries. | [8,44] |
Visualization (VI) | VI1. The live streaming made information about how to use products visible to me. VI2. The live streaming made the product attributes visible to me. VI3.The live streaming helped me to visualize products like in the real world. | [45,46] |
Entertainment (ENT) | EN1. The live streaming was interesting. EN1. The live streaming got me relaxed. EN1.The live streaming gave me pleasure. | [47] |
Professionalization (PR) | PR1. The streamers were experts on these products. PR2. The streamers were highly experienced in these products. PR3. The streamers were very knowledgeable about these products | [48] |
Social presence (SP) | SP1.The interactivity with streamers was personal. SP2.The interactivity with streamers was warm. SP3.The interactivity with streamers was close. SP4.The interactivity with streamers was humanizing. SP5.The interactivity with streamers was emotional. | [31,49] |
Psychological distance (PD) | PD1. The live streaming reduced the distance between me and streamers or products. PD2. The live streaming brings my heart closer to streamers or products. PD3. The live streaming reduced my strangeness to streamers or products. | [8,34,50] |
Trust (TR) | TR1.I believed that the streamers were trustworthy TR2.I believed in the information that the streamers provided. TR3.I trusted that the products I would receive would be the same as those shown on live streaming. | [5] |
Engagement (ENG) | EN1.I would share this live streaming shopping information with my friends. EN2.I would subscribe to and watch the product information recommended by streamers. EN3.I would give a “like” for this live streaming room. | [8] |
Purchase intention (PI) | PI1.I intended to purchase products from this live streaming studio. PI2.I predicted that I would purchase products from this live streaming studio. PI3.If there was a product that I would like to purchase, I would firstly purchase from this live streaming studio. | [51] |
Factor Loadings | T Statistics | Composite Reliability | Cronbach’s Alpha | AVE | ||
---|---|---|---|---|---|---|
IN | IN1 | 0.750 | 29.126 *** | 0.857 | 0.778 | 0.600 |
IN2 | 0.751 | 24.900 *** | ||||
IN3 | 0.802 | 40.416 *** | ||||
IN4 | 0.794 | 38.803 *** | ||||
VI | VI1 | 0.833 | 46.334 *** | 0.874 | 0.784 | 0.698 |
VI2 | 0.825 | 45.753 *** | ||||
VI3 | 0.848 | 57.135 *** | ||||
ENT | ENT1 | 0.833 | 52.841 *** | 0.882 | 0.799 | 0.713 |
ENT2 | 0.834 | 47.433 *** | ||||
ENT3 | 0.866 | 71.254 *** | ||||
PR | PR1 | 0.765 | 29.342 *** | 0.887 | 0.809 | 0.724 |
PR2 | 0.828 | 47.687 *** | ||||
PR3 | 0.873 | 63.189 *** | ||||
SP | SP1 | 0.851 | 52.133 *** | 0.925 | 0.899 | 0.712 |
SP2 | 0.824 | 41.405 *** | ||||
SP3 | 0.862 | 60.909 *** | ||||
SP4 | 0.873 | 71.130 *** | ||||
SP5 | 0.818 | 45.307 *** | ||||
PD | PD1 | 0.841 | 50.513 *** | 0.843 | 0.722 | 0.641 |
PD2 | 0.831 | 56.515 *** | ||||
PD3 | 0.805 | 36.788 *** | ||||
TR | TR1 | 0.896 | 95.335 *** | 0.912 | 0.856 | 0.776 |
TR2 | 0.891 | 74.247 *** | ||||
TR3 | 0.856 | 60.650 *** | ||||
ENG | ENG1 | 0.853 | 45.190 *** | 0.905 | 0.842 | 0.760 |
ENG2 | 0.908 | 105.262 *** | ||||
ENG3 | 0.853 | 51.207 *** | ||||
PI | PI1 | 0.833 | 49.284 *** | 0.884 | 0.804 | 0.718 |
PI2 | 0.868 | 72.818 *** | ||||
PI3 | 0.840 | 47.026 *** |
IN | VI | ENT | PR | SP | PD | TR | ENG | PI | |
---|---|---|---|---|---|---|---|---|---|
IN | 0.775 | ||||||||
VI | 0.499 | 0.835 | |||||||
ENT | 0.501 | 0.58 | 0.844 | ||||||
PR | 0.529 | 0.607 | 0.545 | 0.851 | |||||
SP | 0.596 | 0.600 | 0.592 | 0.545 | 0.844 | ||||
PD | 0.488 | 0.560 | 0.619 | 0.489 | 0.530 | 0.801 | |||
TR | 0.537 | 0.678 | 0.628 | 0.637 | 0.614 | 0.548 | 0.881 | ||
ENG | 0.525 | 0.462 | 0.564 | 0.469 | 0.530 | 0.485 | 0.583 | 0.872 | |
PI | 0.538 | 0.496 | 0.555 | 0.464 | 0.500 | 0.503 | 0.614 | 0.696 | 0.847 |
Coefficient | T Statistics | Hypothesis Result | |
---|---|---|---|
IN -> SP | 0.294 | 5.373 *** | H1a: supported |
VI -> SP | 0.247 | 4.882 *** | H1b: supported |
ENT -> SP | 0.244 | 5.128 *** | H1c: supported |
PR -> SP | 0.106 | 1.958 ns | H1d: not supported |
IN -> PD | −0.124 | 2.279 * | H2a: supported |
VI -> PD | −0.202 | 3.580 *** | H2b: supported |
ENT -> PD | −0.353 | 6.056 *** | H2c: supported |
PR -> PD | −0.056 | 1.136 ns | H2d: not supported |
IN -> TR | 0.076 | 1.701 ns | H3a: not supported |
VI -> TR | 0.284 | 5.131 *** | H3b: supported |
ENT -> TR | 0.193 | 3.995 *** | H3c: supported |
PR -> TR | 0.218 | 4.475 *** | H3d: supported |
ENG- > PI | 0.457 | 10.043 *** | H9: supported |
Total Effect | Direct Effect | Indirect Effect | ||||||
---|---|---|---|---|---|---|---|---|
Coefficient | T Statistics | Coefficient | T Statistics | Coefficient | Bootstrap 95% CI | |||
H4a | IN- > SP- > PI | 0.122 | 4.440 *** | IN- > SP- > ENG- > PI | 0.031 | [0.010:0.057] | ||
IN- > SP- > TR- > PI | 0.010 | [0.002:0.021] | ||||||
IN- > SP- > TR- > ENG- > PI | 0.007 | [0.001:0.015] | ||||||
H4b | VI- > SP- > PI | 0.218 | 8.000 *** | VI- > SP- > ENG- > PI | 0.026 | [0.010:0.043] | ||
VI- > SP- > TR- > PI | 0.009 | [0.002:0.019] | ||||||
VI- > SP- > TR- > ENG- > PI | 0.006 | [0.001:0.014] | ||||||
H4c | ENT- > SP- > PI | 0.212 | 7.666 *** | ENT- > SP- > ENG- > PI | 0.026 | [0.009:0.047] | ||
ENT- > SP- > TR- > PI | 0.008 | [0.002:0.018] | ||||||
ENT- > SP- > TR- > ENG- > PI | 0.006 | [0.001:0.013] | ||||||
H4d | PR- > SP- > PI | 0.127 | 4.916 *** | PR- > SP- > ENG- > PI | 0.011 | [0:0.026] | ||
PR- > SP- > TR- > PI | 0.004 | [0:0.009] | ||||||
PR- > SP- > TR- > ENG- > PI | 0.002 | [0:0.006] | ||||||
H5a | IN- > PD- > PI | 0.122 | 4.440 *** | IN- > PD- > PI | 0.014 | [0.001:0.036] | ||
IN- > PD- > ENG- > PI | 0.010 | [0.001:0.024] | ||||||
H5b | VI- > PD- > PI | 0.218 | 8.000 *** | VI- > PD- > PI | 0.024 | [0.005:0.048] | ||
VI- > PD- > ENG- > PI | 0.017 | [0.005:0.031] | ||||||
H5c | ENT- > PD- > PI | 0.212 | 7.666 *** | ENT- > PD- > PI | 0.041 | [0.009:0.080] | ||
ENT- > PD- > ENG- > PI | 0.030 | [0.009:0.055] | ||||||
H5d | PR > PD- > PI | 0.127 | 4.916 *** | PR > PD- > PI | 0.007 | [−0.005:0.021] | ||
PR- > PD- > ENG- > PI | 0.005 | [−0.003:0.015] | ||||||
H6 | SP- > PD- > TR | 0.142 | 2.720 ** | 0.137 | 2.607 ** | SP- > PD- > TR | 0.005 | [−0.004:0.019] |
H7a | IN- > TR- > PI | 0.122 | 4.440 *** | IN- > TR- > PI | 0.019 | [−0.02:0.047] | ||
IN- > TR- > ENG- > PI | 0.013 | [−0.002:0.029] | ||||||
H7b | VI- > TR- > PI | 0.218 | 8.000 *** | VI- > TR- > PI | 0.072 | [0.033:0.118] | ||
VI- > TR- > ENG- > PI | 0.047 | [0.026:0.071] | ||||||
H7c | ENT- > TR- > PI | 0.212 | 7.666*** | ENT- > TR- > PI | 0.049 | [0.020:0.085] | ||
ENT- > TR- > ENG- > PI | 0.032 | [0.013:0.058] | ||||||
H7d | PR > TR- > PI | 0.127 | 4.916 *** | PR > TR- > PI | 0.055 | [0.028:0.091] | ||
PR- > TR- > ENG- > PI | 0.036 | [0.017:0.063] | ||||||
H8a | SP- > TR- > PI | 0.214 | 3.708 *** | 0.03 | 0.623 | SP- > TR- > PI | 0.035 | [0.009:0.068] |
SP- > TR- > ENG- > PI | 0.023 | [0.005:0.049] | ||||||
SP- > PD- > TR- > PI | 0.001 | [−0.001:0.005] | ||||||
SP- > PD- > TR- > ENG- > PI | 0.001 | [−0.001:0.003] | ||||||
H8b | PD- > TR- > PI | 0.224 | 4.065 *** | 0.117 | 2.578 * | PD- > TR- > PI | 0.014 | [−0.009:0.038] |
PD- > TR- > ENG- > PI | 0.009 | [−0.006:0.026] | ||||||
H10a | SP- > ENG- > PI | 0.214 | 3.708 *** | 0.03 | 0.623 | SP- > ENG- > PI | 0.105 | [0.042:0.169] |
SP- > TR- > ENG- > PI | 0.023 | [0.005:0.049] | ||||||
SP- > PD- > ENG- > PI | 0.008 | [−0.001:0.021] | ||||||
SP- > PD- > TR- > ENG- > PI | 0.001 | [−0.001:0.003] | ||||||
H10b | PD- > ENG- > PI | 0.224 | 4.065 *** | 0.117 | 2.578 * | PD- > ENG- > PI | 0.084 | [0.031:0.138] |
PD- > TR- > ENG- > PI | 0.009 | [−0.006:0.026] | ||||||
H10c | TR- > ENG- > PI | 0.421 | 7.415 *** | 0.254 | 4.659 *** | TR- > ENG- > PI | 0.167 | [0.103:0.243] |
Gender | N | Mean (μ) | Standard Deviation | Standard Error | T Statistics | |
---|---|---|---|---|---|---|
IN | Male | 213 | 6.026 | 0.583 | 0.040 | 3.158 ** |
Female | 241 | 5.829 | 0.743 | 0.048 | ||
VI | Male | 213 | 5.728 | 0.885 | 0.061 | 1.112 ns |
Female | 241 | 5.633 | 0.915 | 0.059 | ||
ENT | Male | 213 | 5.521 | 0.871 | 0.060 | 0.357 ns |
Female | 241 | 5.492 | 0.843 | 0.054 | ||
PR | Male | 213 | 5.729 | 0.927 | 0.063 | 0.540 ns |
Female | 241 | 5.680 | 0.988 | 0.064 |
Path Coefficients-Diff (Male-Female) | p-Value (Male vs. Female) | ||
---|---|---|---|
H1a | IN -> SP | −0.147 ns | 0.158 |
H1b | VI -> SP | 0.029 ns | 0.778 |
H1c | ENT -> SP | 0.146 ns | 0.123 |
H1d | PR -> SP | 0.022 ns | 0.830 |
H2a | IN -> PD | 0.076 ns | 0.455 |
H2b | VI -> PD | 0.092 ns | 0.420 |
H2c | ENT -> PD | −0.141 ns | 0.217 |
H2d | PR -> PD | −0.011 ns | 0.901 |
H3a | IN -> TR | −0.015 ns | 0.854 |
H3b | VI -> TR | 0.017 ns | 0.879 |
H3c | ENT -> TR | −0.019 ns | 0.841 |
H3d | PR -> TR | −0.038 ns | 0.698 |
H4a | IN -> SP - > ENG- > PI | −0.009 ns | 0.743 |
H4b | VI -> SP - > ENG- > PI | 0.010 ns | 0.566 |
H4c | ENT-> SP - > ENG- > PI | 0.022 ns | 0.254 |
H4d | PR -> SP - > ENG- > PI | 0.005 ns | 0.699 |
H5a | IN- > PD- > PI | −0.001 ns | 0.924 |
H5b | VI- > PD- > PI | −0.003 ns | 0.874 |
H5c | ENT- > PD- > PI | −0.037 ns | 0.269 |
H5d | PR- > PD- > PI | −0.001 ns | 0.924 |
H6 | SP- > PD- > TR | 0.015 ns | 0.317 |
H7a | IN- > TR- > PI | 0.003 ns | 0.899 |
H7b | VI- > TR- > PI | 0.011 ns | 0.741 |
H7c | ENT- > TR- > PI | 0.013 ns | 0.674 |
H7d | PR- > TR- > PI | 0.011 ns | 0.741 |
H8a | SP- > TR- > PI | 0.017 ns | 0.527 |
H8b | PD- > TR- > PI | 0.038 ns | 0.104 |
H9 | ENG- > PI | −0.097 ns | 0.292 |
H10a | SP- > ENG- > PI | 0.026 ns | 0.683 |
H10b | PD- > ENG- > PI | −0.044 ns | 0.397 |
H10c | TR- > ENG- > PI | −0.002 ns | 0.988 |
Platform | n | Standard Deviation | Standard Error | T Statistics | ||
---|---|---|---|---|---|---|
IN | e-commerce platforms | 234 | 5.9840 | 0.62795 | 0.62795 | 2.036 * |
social media platforms | 220 | 5.8545 | 0.72574 | 0.72574 | ||
VI | e-commerce platforms | 234 | 5.7778 | 0.82232 | 0.82232 | 2.441 * |
social media platforms | 220 | 5.5712 | 0.96907 | 0.96907 | ||
ENT | e-commerce platforms | 234 | 5.5755 | 0.83967 | 0.83967 | 1.794 ns |
social media platforms | 220 | 5.4318 | 0.86706 | 0.86706 | ||
PR | e-commerce platforms | 234 | 5.8376 | 0.88177 | 0.88177 | 3.105 ** |
social media platforms | 220 | 5.5606 | 1.01729 | 1.01729 |
Path Coefficients-Diff | p-Value | ||
---|---|---|---|
(E-Commerce Platforms-Social Media Platforms) | (E-Commerce Platforms-Social Media Platforms) | ||
H1a | IN -> SP | 0.045 ns | 0.675 |
H1b | VI -> SP | −0.085 ns | 0.390 |
H1c | ENT -> SP | 0.074 ns | 0.445 |
H1d | PR -> SP | −0.056 ns | 0.598 |
H2a | IN -> PD | −0.233 * | 0.027 |
H2b | VI -> PD | 0.062 ns | 0.565 |
H2c | ENT -> PD | 0.129 ns | 0.233 |
H2d | PR -> PD | −0.108 ns | 0.282 |
H3a | IN -> TR | 0.021 ns | 0.815 |
H3b | VI -> TR | 0.077 ns | 0.488 |
H3c | ENT -> TR | 0.14 ns | 0.147 |
H3d | PR -> TR | 0.024 ns | 0.812 |
H4a | IN -> SP - > ENG- > PI | 0.009 ns | 0.643 |
H4b | VI -> SP - > ENG- > PI | −0.005 ns | 0.777 |
H4c | ENT-> SP - > ENG- > PI | 0.011 ns | 0.544 |
H4d | PR -> SP - > ENG- > PI | −0.004 ns | 0.772 |
H5a | IN- > PD- > PI | 0.053 * | 0.01 |
H5b | VI- > PD- > PI | 0.025 ns | 0.271 |
H5c | ENT- > PD- > PI | 0.041 ns | 0.246 |
H5d | PR- > PD- > PI | 0.024 ns | 0.13 |
H6 | SP- > PD- > TR | −0.019 ns | 0.172 |
H7a | IN- > TR- > PI | 0.004 ns | 0.886 |
H7b | VI- > TR- > PI | 0.014 ns | 0.735 |
H7c | ENT- > TR- > PI | 0.032 ns | 0.325 |
H7d | PR- > TR- > PI | 0.002 ns | 0.927 |
H8a | SP- > TR- > PI | −0.02 ns | 0.563 |
H8b | PD- > TR- > PI | 0.051 * | 0.02 |
H9 | ENG -> PI | −0.178 ns | 0.069 |
H10a | SP- > ENG- > PI | −0.116 ns | 0.105 |
H10b | PD- > ENG- > PI | 0.038 ns | 0.481 |
H10c | TR- > ENG- > PI | −0.116 ns | 0.105 |
Total Effect | Indirect Effect | ||||||
---|---|---|---|---|---|---|---|
Coefficient | T Statistics | Coefficient | Bootstrap 95% CI | Results | |||
Percentile | Bias Corrected | ||||||
IN -> PI | 0.122 | 4.440 *** | IN- > SP- > ENG- > PI | 0.031 | [0.010:0.057] | [0.011:0.059] | optimum |
IN- > SP- > TR- > PI | 0.01 | [0.002:0.021] | [0.003:0.022] | ||||
IN- > SP- > TR- > ENG- > PI | 0.007 | [0.001:0.015] | [0.002:0.016] | ||||
IN- > PD- > PI | 0.014 | [0.001:0.036] | [0.001:0.037] | ||||
IN- > PD- > ENG- > PI | 0.01 | [0.001:0.024] | [0.002:0.026] | ||||
VI- > PI | 0.218 | 8.000 *** | VI- > SP- > ENG- > PI | 0.026 | [0.010:0.043] | [0.012:0.047] | |
VI- > SP- > TR- > PI | 0.009 | [0.002:0.019] | [0.002:0.020] | ||||
VI- > SP- > TR- > ENG- > PI | 0.006 | [0.001:0.014] | [0.001:0.015] | ||||
VI- > PD- > PI | 0.006 | [0.001:0.014] | [0.001:0.015] | ||||
VI- > PD- > ENG- > PI | 0.017 | [0.005:0.031] | [0.006:0.035] | ||||
VI- > TR- > PI | 0.072 | [0.033:0.118] | [0.036:0.122] | optimum | |||
VI- > TR- > ENG- > PI | 0.047 | [0.026:0.071] | [0.029:0.075] | ||||
ENT- > PI | 0.212 | 7.666 *** | ENT- > SP- > ENG- > PI | 0.026 | [0.009:0.047] | [0.010:0.050] | |
ENT- > SP- > TR- > PI | 0.008 | [0.002:0.018] | [0.002:0.019] | ||||
ENT- > SP- > TR- > ENG- > PI | 0.006 | [0.001:0.013] | [0.001:0.013] | ||||
ENT- > PD- > PI | 0.041 | [0.009:0.080] | [0.01:0.0810] | ||||
ENT- > PD- > ENG- > PI | 0.03 | [0.009:0.055] | [0.011:0.058] | ||||
ENT- > TR- > PI | 0.049 | [0.020:0.085] | [0.02:0.0860] | optimum | |||
ENT- > TR- > ENG- > PI | 0.032 | [0.013:0.058] | [0.014:0.059] | ||||
PR- > PI | 0.127 | 4.916 *** | PR- > TR- > PI | 0.055 | [0.028:0.091] | [0.029:0.093] | optimum |
PR- > TR- > ENG- > PI | 0.036 | [0.017:0.063] | [0.017:0.065] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Gao, S.; Zhang, X. How to Use Live Streaming to Improve Consumer Purchase Intentions: Evidence from China. Sustainability 2022, 14, 1045. https://doi.org/10.3390/su14021045
Ma L, Gao S, Zhang X. How to Use Live Streaming to Improve Consumer Purchase Intentions: Evidence from China. Sustainability. 2022; 14(2):1045. https://doi.org/10.3390/su14021045
Chicago/Turabian StyleMa, Linye, Shuqing Gao, and Xiaoyan Zhang. 2022. "How to Use Live Streaming to Improve Consumer Purchase Intentions: Evidence from China" Sustainability 14, no. 2: 1045. https://doi.org/10.3390/su14021045
APA StyleMa, L., Gao, S., & Zhang, X. (2022). How to Use Live Streaming to Improve Consumer Purchase Intentions: Evidence from China. Sustainability, 14(2), 1045. https://doi.org/10.3390/su14021045