Response of Rice (Oryza sativa L.) Cultivars to Variable Rate of Nitrogen under Wet Direct Seeding in Temperate Ecology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Treatments, Experimental Design, and Crop Management
2.3. Phenological Observations
2.4. Meteorological Indices
2.4.1. Growing Degree Days (GDD)
2.4.2. Heliothermal Units (HTU)
2.4.3. Heat Use Efficiency (HUE)
2.5. Relative Economics
2.6. Statistical Analysis
3. Results
3.1. Growth and Yield Attributes
3.2. Physiological Parameters
3.3. Phenology
3.4. Agro-Meteorological Indices
3.5. Yield
3.6. Water Productivity
3.7. Relationship of Physiological Parameters and Grain Yield
3.8. Economics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rasheed, A.; Hassan, M.U.; Aamer, M.; Batool, M.; Fang, S.; Wu, Z.; Huijie, L.I. A critical review on the improvement of drought stress tolerance in rice (Oryza sativa L.). Not. Bot. Hort. Agrobot. Cluj. 2020, 48, 1756–1788. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Mahajan, G.; Sardana, V.; Timsina, J.; Jat, M.L. Productivity and sustainability of the rice-wheat cropping system in the Indo–Gangetic Plains of the Indian subcontinent: Problems, opportunities, and strategies. Adv. Agron. 2012, 117, 315–369. [Google Scholar]
- Sihi, O.; Sharma, O.K.; Pathak, H.; Singh, V.V.; Lata; Sharma, C.P.; Chaudhary, A.; Dari, B. Effect of organic farming on productivity and quality of basmati rice. Oryza 2012, 49, 24–29. [Google Scholar]
- Alam, M.; Bell, R.W.; Hasanuzzaman, M.; Salahin, N.; Rashid, M.H.; Akter, N.; Akhter, S.; Islam, M.S.; Islam, S.; Naznin, S.; et al. Rice (Oryza sativa L.) establishment techniques and their implications for soil properties, global warming potential mitigation and crop yields. Agronomy 2020, 10, 888. [Google Scholar] [CrossRef]
- Connor, R. The United Nations World Water Development Report: Water for a Sustainable World; UNESCO Publishing House: Paris, France, 2015; Volume 1, p. 2. [Google Scholar]
- Kumar, V.; Ladha, J.K. Direct seeding of rice. Recent developments and future research needs. Adv. Agron. 2011, 111, 297–413. [Google Scholar]
- Yadav, S.; Gill, M.S.; Kukal, S.S. Performance of direct-seeded basmati rice in loamy sand in semi-arid sub-tropical India. Soil Tillage Res. 2007, 97, 229–238. [Google Scholar] [CrossRef]
- Kalita, J.; Ahmed, P.; Baruah, N. Puddling and its effect on soil physical properties and growth of rice and post rice crops: A review. J. Pharmacogn. Phytochem. 2020, 9, 503–510. [Google Scholar]
- Farooq, M.; Nawaz, A. Weed dynamics and productivity of wheat in conventional and conservation rice-based cropping systems. Soil Tillage Res. 2014, 141, 1–9. [Google Scholar] [CrossRef]
- Dou, Z.; Li, Y.; Guo, H.; Chen, L.; Jiang, J.; Zhou, Y.; Xu, Q.; Xing, Z.; Gao, H.; Zhang, H. Effects of Mechanically Transplanting Methods and Planting Densities on Yield and Quality of Nanjing 2728 under Rice-Crayfish Continuous Production System. Agronomy 2021, 11, 488. [Google Scholar] [CrossRef]
- Khush, G.S. Punjab’s water woes and India’s food security. J. Crop. Improv. 2015, 29, 1–5. [Google Scholar] [CrossRef]
- Ishfaq, M.; Akbar, N.; Anjum, S.A.; Anwar-Ijl -Haq, M. Growth, yield and water productivity of dry direct seeded rice and transplanted aromatic rice under different irrigation management regime. J. Integr. Agric. 2020, 19, 2656–2673. [Google Scholar] [CrossRef]
- Jehangir, I.A.; Hussain, A.; Sofi, N.R.; Wani, S.H.; Ali, O.M.; Abdel Latef, A.A.H.; Raja, W.; Bhat, M.A. Crop Establishment Methods and Weed Management Practices Affect Grain Yield and Weed Dynamics in Temperate Rice. Agronomy 2021, 11, 2137. [Google Scholar] [CrossRef]
- Rahman, M.M. Potential benefits of dry direct seeded rice culture: A review. Fundam. Appl. Agric. 2019, 4, 744–758. [Google Scholar]
- Pathak, H.; Tewari, A.N.S.; Sankhyan, D.; Dubey, S.; Mina, U.; Singh, V.K.; Jain, N. Direct-seeded rice: Potential, performance and problems-A review. Current. Adv. Agril. Sci. 2011, 3, 77–88. [Google Scholar]
- Liu, H.S.; Hussain, M.; Zheng, P.S.; Huang, J. Dry direct seeded rice as an alternative to transplanted-flooded rice in Central China. Agron. Sustain. Dev. 2015, 35, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Stevens, G.; Vorie, E.; Heiser, J.; Rhine, M. Experimentation on Cultivation of Rice Irrigated with a Center Pivot System. In irrigation Systems and Practices in Challenging Environments; Lee, T.S., Ed.; IIn Tech: Rijeka, Croatia, 2012; pp. 233–254. [Google Scholar]
- Katsura, K.; Nakaide, Y. Factors that determine grain weight in rice under high-yielding aerobic culture: The importance of husk size. Field Crops Res. 2011, 123, 266–272. [Google Scholar] [CrossRef]
- Kato, Y.; Okami, M.; Katsura, K. Yield potential and water use efficiency of aerobic rice (Oryza sativa L.) in Japan. Field Crops Res. 2009, 113, 328–334. [Google Scholar] [CrossRef]
- Zhang, J.; Tong, T.; Potcho, P.M.; Huang, S.; Ma, L.; Tang, X. Nitrogen Effects on Yield, Quality and Physiological Characteristics of Giant Rice. Agronomy 2020, 10, 1816. [Google Scholar] [CrossRef]
- Djaman, K.; Mel, V.C.; Ametonou, F.Y.; El-Namaky, R.; Diallo, M.D.; Koudahe, K. Effect of nitrogen fertilizer dose and application timing on yield and nitrogen use efficiency of irrigated hybrid rice under semi-arid conditions. J. Agric. Sci. Food Res. 2018, 9, 223. [Google Scholar]
- Rehman, A.; Nawaz, M.; Chattha, M.U.; Khan, I.; Chattha, M.B.; Hussain, F.; Ayub, M.A.; Iqbal, M.M.; Ahmed, F.; Aslam, M.T.; et al. Neem Coated Urea Improves the Productivity, Nitrogen Use Efficiency and Economic Return of Wheat Crop. Int. J. Agric. Biol. 2021, 26, 450–460. [Google Scholar]
- Jahan, A.; Islam, A.; Sarkar, M.I.U.; Iqbal, M.; Ahmed, M.N.; Islam, M.R. Nitrogen response of two high yielding rice varieties as influenced by nitrogen levels and growing seasons. Geol. Ecol. Landsc. 2020. [Google Scholar] [CrossRef] [Green Version]
- Piper, G.S. Soil and Plant Analysis; Academic Press: New York, NY, USA, 1966; Volume 4. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Asia Publishing House: Bombay, New Delhi, 1967. [Google Scholar]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for estimation of nitrogen in soil. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.H.; Cole, C.V.; Watanable, F.S.; Dean, L.A. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. USDA Circ. 1954, 939, 19. [Google Scholar]
- Sarma, A.A.; Kumar, T.L.; Koteswararao, K. Development of agroclimatic model for estimation of rice yield. J. Ind. Geophys. Union. 2008, 12, 89–96. [Google Scholar]
- Aggarwal, N.; Singh, A.; Singh, S.P. Heat utilization and radiation interception in transplanted rice (Oryzasativa L.) in relation to seedling age. J. Agric. Meteorol. 2016, 18, 93–96. [Google Scholar]
- Gopalan, C.; Rama, S.B.; Balasubramanian, S.C. Nutritive Value of Indian Foods, Revised Edition; National Institute of Nutrition, Indian Council of Medical Research: Hyderabad, Indian, 2004; pp. 47–57. [Google Scholar]
- Cochran, G.C.; Cox, M.M. Experimental Designs; Asia Publishing House: Bombay, India, 1963; pp. 293–316. [Google Scholar]
- Zhong, X.; Zhao, B.; Huang, M.; Hussain, H.A.; Hussain, S.; Cai, L.; Yun, H.; He, G.; Zhang, C. Comparison of growth and yield characteristics of mid-season hybrid rice under different yield levels. Agronomy 2020, 10, 1876. [Google Scholar] [CrossRef]
- Li, S.; Li, W.; Haung, B.; Xuemei, C.; Zhou, X.; Ye, S.; Li, C.; Gao, F.; Zou, T.; Xie, K.; et al. Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth. Nat. Commun. 2013, 4, 2793. [Google Scholar] [CrossRef] [Green Version]
- Souza, N.M.D.; Marschalek, R.; Sangoi, L.; Weber, F.S. Spikelet sterility in rice genotypes affected by temperature at microsporogenesis. Rev. Eng. Ambient. 2017, 21, 817–821. [Google Scholar] [CrossRef] [Green Version]
- Nayak, B.R.; Pramanik, K.; Khanda, C.M.; Panigrahy, N.P.; Samant, K.A.; Mohapatara, K.; Dash, A.K.; Panda, N.; Swain, S.K. Response of aerobic rice (Oryza sativa) to different irrigation regimes and nitrogen levels in western. Odisha. Indian J. Agron. 2016, 61, 321–325. [Google Scholar]
- Singh, H.; Verma, A.; Ansari, M.W.; Shukla, A. Physiological response of rice (Oryza sativa L.) genotypes to elevated nitrogen applied under field conditions. Plant Signal Behav. 2014, 9, 290151–290158. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Pu, S.; Deng, F.; Wang, L.; Hu, H.; Liao, S.; Li, W.; Ren, W. Influence of optimized nitrogen management on the quality of medium hybrid rice under different ecological conditions. Chin. J. Eco-Agric. 2019, 27, 1042–1052. [Google Scholar]
- Chapepa, B.; Mudada, N.; Mapuranga, R. The impact of plant density and spatial arrangement on light interception on cotton crop and seed cotton yield: An overview. J. Cotton Res. 2020, 3, 1–6. [Google Scholar] [CrossRef]
- Salem, A.K.M.; Elkhoby, W.M.; Abou-Khalifa, A.B.; Ceesay, M. Effect of nitrogen fertilizer and seedling age on inbred and hybrid rice varieties. Am.-Eurasian J. Agric. Environ. Sci. 2011, 11, 640–646. [Google Scholar]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.L.; Li, Q.; Zeng, X.P.; Liu, Y.; Li, Y.R. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020, 53, 1–20. [Google Scholar] [CrossRef]
- Bhuva, H.M.; Detroja, A.C. Thermal requirement of pearl millet varieties in Saurashtra region. J. Agrometeorol. 2018, 20, 329–331. [Google Scholar]
- Wani, S.A.; Qyoom, S.; Bhat, M.A.; Sheikh, A.A.; Bhat, T.A.; Hussain, S. Effect of varying sowing dates and nitrogen levels on growth and physiology of scented rice. Oryza 2017, 54, 97–106. [Google Scholar]
- Zhang, H.; Chen, T.; Liu, L.; Wang, Z.; Yang, J.; Zhang, J. Performance in grain yield and physiological traits of rice in the Yangtze river basin of China during the last 60 yr. J. Integr. Agric. 2013, 1, 57–66. [Google Scholar] [CrossRef]
- Kumar, A.; Dhar, S.; Dass, A.; Singh, R.K. Effect of zinc application on productivity nutrient uptake and economics of wheat (Triticumaestivum) varieties under different sowing condition. Indian J. Agron. 2016, 61, 342–347. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Sinuer Associates, Inc.: Sunderland, MA, USA, 2002; p. 115. [Google Scholar]
- Ahmad, A.; Iqbal, S.; Ahmad, S.; Khaliq, T.; Nasim, W.; Husnain, Z.; Hussain, A.; Zia-Ul-Haq, M.; Hoogenboom, G. Seasonal growth, radiation interception, its conversion efficiency and biomass production of Oryza sativa L. under diverse agro-environments in Pakistan. Pak. J. Bot. 2009, 41, 1241–1257. [Google Scholar]
- Gautam, P.; Lal, B.; Nayak, A.K.; Raja, R.; Panda, B.B.; Triphati, R.; Shahid, M.; Kumar, U.; Baig, M.J.; Chatterjee, D.; et al. Inter-relationship between intercepted radiation and rice yield influenced by transplanting time, method and variety. Int. J. Biometeorol. 2018, 63, 337–349. [Google Scholar] [CrossRef]
Treatment | Plant Height (cm) | No. of Tillers/m2 | Panicles/m2 | PAR% | SPAD | Panicle wt. (gm) | 1000-Grain wt. (gm) | Filled Grains/Panicle | Sterility (%) |
---|---|---|---|---|---|---|---|---|---|
Varieties | |||||||||
SR 1 | 112.9 b | 322.3 b | 281.15 bc | 91.5 b | 30.3 | 2.5 bc | 27.9 a | 135.6 c | 11.6 a |
SR 3 | 115.2 b | 336.2 ab | 294.65 ab | 93.5 ab | 31.0 | 2.7 ab | 28.0 ab | 146.8 b | 10.3 ab |
SR4 | 122.2 a | 353.4 a | 308.85 a | 94.1 a | 32.1 | 2.8 a | 29.1 a | 156.4 a | 10.2 b |
Jhelum | 111.5 b | 274.15 c | 237.4 c | 88.0 c | 29.9 | 2.4 c | 27.1 b | 132.1 d | 9.8 b |
SEm± | 1.4 | 7.45 | 6.55 | 0.7 | - | 0.08 | 0.4 | 1.0 | 0.3 |
CD (P = 0.05) | 4.0 | 21.5 | 19 | 2.0 | NS | 0.24 | 1.1 | 2.8 | 0.8 |
Nitrogen levels (kg/ha) | |||||||||
N0 | 109.2 c | 278.05 c | 242.9 c | 84.9 d | 27.8 c | 2.2 c | 26.7 c | 123.3 d | 9.2 bc |
N90 | 114.8 b | 320.15 b | 280.45 b | 91.4 bc | 30.6 b | 2.6 b | 27.7 b | 139.2 c | 9.0 c |
N120 | 117.6 b | 339.05 ab | 295.9 ab | 94.6 a | 31.7 ab | 2.8 ab | 28.3 ab | 150.3 b | 9.9 b |
N150 | 120.1 a | 354.15 a | 302.85 a | 96.1 a | 33.3 a | 3.0 a | 29.4 a | 158.1 a | 13.7 a |
SEm± | 1.4 | 7.45 | 6.55 | 0.7 | 0.9 | 0.08 | 0.4 | 1.0 | 0.3 |
CD (P = 0.05) | 4.0 | 21.5 | 19 | 2.0 | 2.5 | 0.24 | 1.1 | 2.8 | 0.8 |
Treatments | GDD (°C day) Tillering | HTU (°C day h) Tillering | GDD (°C day) Flowering | HTU (°C day h) Flowering | GDD Maturity | HTU (°C day h) Maturity | HUE (kg/ha °C/day) |
---|---|---|---|---|---|---|---|
Varieties | |||||||
SR-1 | 516 a | 4377 a | 996.5 a | 7985 a | 1488 a | 11,089 a | 3.86 b |
SR-3 | 499.5 b | 4263 b | 979 a | 7885 b | 1471.5 b | 11,009 b | 4.12 b |
SR-4 | 476.0 c | 4104 c | 931 b | 7557 c | 1439.5 c | 10,807 c | 4.44 a |
Jhelum | 493.5 b | 3970 d | 866.5 c | 7026 d | 1382.5 d | 10,496 d | 3.80 b |
SEm± | 4.335 | 42.55 | 3.46 | 26.35 | 2.825 | 44.9 | 0.12 |
CD (P = 0.05) | 12.53 | 64.15 | 10.01 | 76.15 | 8.17 | 15.5 | 0.35 |
Nitrogen levels (kg/ha) | |||||||
N0 | 466.5 c | 4050 d | 915.5 d | 7423 c | 1424 d | 10,731 d | 3.31 c |
N90 | 482.0 b | 4158 cd | 936.0 c | 7686 a | 1440 c | 10,822 c | 4.02 b |
N120 | 491.5 b | 4202 bc | 953.5 b | 7654 b | 1449.5 b | 10,877 b | 4.33 ab |
N150 | 504.5 a | 4304 a | 967.5 a | 7443 c | 1467.5 a | 10,974 a | 4.55 c |
SEm± | 4.335 | 42.55 | 3.46 | 26.35 | 2.825 | 44.9 | 0.12 |
CD (P = 0.05) | 12.53 | 64.15 | 10.01 | 76.15 | 8.17 | 15.5 | 0.35 |
Treatments | Grain Yield (t/ha) | Straw Yield (t/ha) | Carbohydrate Equivalent (t/ha) | Water Productivity (kg/m3) | B:C Ratio |
---|---|---|---|---|---|
Varieties | |||||
SR 1 | 5.74 ab | 6.44 ab | 4.48 | 0.44 ab | 1.43 |
SR 3 | 6.06 a | 6.60 ab | 4.73 | 0.46 a | 1.55 |
SR4 | 6.39 a | 7.07 a | 4.99 | 0.49 a | 1.68 |
Jhelum | 5.26 b | 5.88 b | 4.11 | 0.40 b | 1.24 |
SEm± | 0.19 | 0.28 | 0.01 | - | |
CD (P = 0.05) | 0.67 | 0.81 | 0.05 | - | |
Nitrogen levels (kg/ha) | |||||
N0 | 4.71 c | 5.27 c | 3.68 | 0.36 c | 1.08 |
N90 | 5.75 b | 6.25 b | 4.49 | 0.44 b | 1.44 |
N120 | 6.35 a | 7.03 a | 4.96 | 0.49 ab | 1.63 |
N150 | 6.68 a | 7.43 a | 5.21 | 0.51 a | 1.75 |
SEm± | 0.19 | 0.28 | 0.01 | - | |
CD (P = 0.05) | 0.67 | 0.81 | 0.05 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jehangir, I.A.; Hussain, A.; Wani, S.H.; Mahdi, S.S.; Bhat, M.A.; Ganai, M.A.; Sofi, N.R.; Teeli, N.A.; Raja, W.; Soufan, W.; et al. Response of Rice (Oryza sativa L.) Cultivars to Variable Rate of Nitrogen under Wet Direct Seeding in Temperate Ecology. Sustainability 2022, 14, 638. https://doi.org/10.3390/su14020638
Jehangir IA, Hussain A, Wani SH, Mahdi SS, Bhat MA, Ganai MA, Sofi NR, Teeli NA, Raja W, Soufan W, et al. Response of Rice (Oryza sativa L.) Cultivars to Variable Rate of Nitrogen under Wet Direct Seeding in Temperate Ecology. Sustainability. 2022; 14(2):638. https://doi.org/10.3390/su14020638
Chicago/Turabian StyleJehangir, Intikhab Aalum, Ashaq Hussain, Shabir H. Wani, Syed Sheraz Mahdi, Mohammad Anwar Bhat, Manzoor A. Ganai, Najeeb R. Sofi, Nazir Ahmad Teeli, Waseem Raja, Walid Soufan, and et al. 2022. "Response of Rice (Oryza sativa L.) Cultivars to Variable Rate of Nitrogen under Wet Direct Seeding in Temperate Ecology" Sustainability 14, no. 2: 638. https://doi.org/10.3390/su14020638
APA StyleJehangir, I. A., Hussain, A., Wani, S. H., Mahdi, S. S., Bhat, M. A., Ganai, M. A., Sofi, N. R., Teeli, N. A., Raja, W., Soufan, W., Ueda, A., Skalicky, M., Brestic, M., & EL Sabagh, A. (2022). Response of Rice (Oryza sativa L.) Cultivars to Variable Rate of Nitrogen under Wet Direct Seeding in Temperate Ecology. Sustainability, 14(2), 638. https://doi.org/10.3390/su14020638