Smart Urban Mobility System Evaluation Model Adaptation to Vilnius, Montreal and Weimar Cities
Abstract
:1. Introduction
2. Literature Review
2.1. Methods
2.2. Review of Smart City Mobility System Indicators
3. Evaluation Criteria of the Smart Mobility System
4. Results
4.1. Calculating the Importance of Factors and Indicators
4.2. Evaluation of Smart Urban Mobility System
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharifi, A.; Kawakubo, S.; Milovidova, A. Urban sustainability assessment tools: Toward integrating smart city indicators. In Urban Systems Design; Yamagata, Y., Yang, P.P.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 11; pp. 345–372. [Google Scholar] [CrossRef]
- Quiroga, E.; Gutiérrez, K. Smart mobility: Opportunities and challenges for colombian cities. Adv. Sci. Technol. Eng. Syst. J. 2021, 6, 332–338. [Google Scholar] [CrossRef]
- Ogrodnik, K. Multi-criteria analysis of smart cities in Poland. Geogr. Pol. 2020, 93, 163–181. [Google Scholar] [CrossRef]
- Sojda, A. Smart city index based on topsis method. Sci. Pap. Sil. Univ. Technol. Organ. Manag. Ser. 2020, 148, 709–718. [Google Scholar] [CrossRef]
- Ali, N. Evaluating sustainable urban transport systems: A Review study for the identification of smart mobility indicators. Trans. Transp. Sci. 2021, 12, 16–23. [Google Scholar] [CrossRef]
- Sunardi, H.; Sulistyo, S.; Mustika, I. Analysis of smart mobility readiness in Banjarmasin City. In Proceedings of the International Conference on Creative Economics, Tourism and Information Management (ICCETIM 2019)—Creativity and Innovation Developments for Global Competitiveness and Sustainability 2020, Yogyakarta, Indonesia, 17–18 July 2019; Volume 1, pp. 158–162. [Google Scholar] [CrossRef]
- Paiva, S.; Ahad, M.A.; Tripathi, G.; Feroz, N.; Casalino, G. Enabling technologies for urban smart mobility: Recent trends, opportunities and challenges. Sensors 2021, 21, 2143. [Google Scholar] [CrossRef] [PubMed]
- Nagy, S.; Csiszár, C. The quality of smart mobility: A systematic review. Sci. J. Silesian Univ. Technol. Ser. Transp. 2020, 109, 117–127. [Google Scholar] [CrossRef]
- Bıyık, C.; Abareshi, A.; Paz, A.; Ruiz, R.; Battarra, R.; Rogers, C.; Lizarraga, C. Smart mobility adoption: A review of the literature. J. Open Innov. Technol. Mark. Complex. 2021, 7, 146. [Google Scholar] [CrossRef]
- Pereira, R.C.; Branchi, B.A.; Ferreira, D.H.L. Sustainable urban mobility diagnosis: Applicability of a composite index. RISUS J. Innov. Sustain. 2021, 12, 16–29. [Google Scholar] [CrossRef]
- Benevolo, C.; Dameri, R.P.; D’Auria, B. Smart mobility in smart city. Action taxonomy, ICT intensity and public benefits. In Empowering Organizations. Lecture Notes in Information Systems and Organisation; Torre, T., Braccini, A.M., Spinelli, R., Eds.; Springer: Cham, Switzerland, 2016; Volume 11, pp. 13–28. [Google Scholar] [CrossRef]
- Zapolskytė, S.; Burinskienė, M.; Trépanier, M. Evaluation criteria of smart city mobility system using MCDM method. Balt. J. Road Bridg. Eng. 2020, 15, 196–224. [Google Scholar] [CrossRef]
- Podvezko, V.; Podviezko, A. Kriterijų reikšmingumo nustatymo metodai. Liet. Mat. Rink. Liet. Mat. Draugijos Darb. 2014, 55, 111–116. [Google Scholar]
- Sivilevičius, H. Application of expert evaluation method to determine the importance of operating asphalt mixing plant quality criteria and rank correlation. Balt. J. Road Bridg. Eng. 2011, 6, 48–58. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Antucheviciene, J.; Vilutiene, T.; Adeli, H. Sustainable decision-making in civil engineering, construction and building technology. Sustainability 2018, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Zavadskas, E.K.; Antucheviciene, J.; Turskis, Z.; Adeli, H. Hybrid multiple-criteria decision-making methods: A review of applications in engineering. Sci. Iran. 2016, 23, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Zavadskas, E.K.; Govindan, K.; Antucheviciene, J.; Turskis, Z. Hybrid multiple criteria decision-making methods: A review of applications for sustainability issues. Econ. Res. Ekon. Istraživanja 2016, 29, 857–887. [Google Scholar] [CrossRef] [Green Version]
- Zapolskytė, S. Išmaniojo Miesto Susisiekimo Sistemos Infrastruktūros Kompleksinis Vertinimo Modelis (Complex Evaluation Model of Smart City Mobility System Infrastructure). Ph.D. Dissertation, Vilnius Gediminas Technical University, Vilnius, Lithuania, 16 December 2021. [Google Scholar]
- Appleton, B.; Davies., M.; Tansey, J. Green Apple Canada 2008: SMART Transportation Ranking Report; Sauder School of Business, University of British Columbia: Vancouver, BC, Canada, 2008. [Google Scholar]
- Balducci, F.; Ferrara, A. Using urban environmental policy data to understand the domains of smartness: An analysis of spatial autocorrelation for all the Italian chief towns. Ecol. Indic. 2018, 89, 386–396. [Google Scholar] [CrossRef]
- Battarra, R.; Gargiulo, C.; Tremiterra, M.R.; Zucaro, F. Smart mobility in Italian metropolitan cities: A comparative analysis through indicators and actions. Sustain. Cities Soc. 2018, 41, 556–567. [Google Scholar] [CrossRef]
- Battarra, R.; Zucaro, F.; Tremiterra, M.R. Smart mobility and elderly people. Can ICT make city more accessible for everybody? J. Land Use Mobil. Environ. 2018, 2, 23–42. [Google Scholar] [CrossRef]
- Boselli, R.; Cesarini, M.; Mercorio, F.; Mezzanzanica, M. Applying the AHP to smart mobility services: A case study. In Proceedings of the 4th International Conference on Data Management Technologies and Applications 2015, (KomIS-2015), Colmar Alsace, France, 20–22 July 2015. [Google Scholar]
- Costa, P.; Neto, G.M.; Bertolde, A.I. Urban mobility indexes: A brief review of the literature. Transp. Res. Procedia 2017, 25, 3645–3655. [Google Scholar] [CrossRef]
- Debnath, A.K.; Chin, H.C.; Haque, M.; Yuen, B. A methodological framework for benchmarking smart transport cities. Cities 2014, 37, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Garau, C.; Masala, F.; Pinna, F. Cagliari and smart urban mobility: Analysis and comparison. Cities 2016, 56, 35–46. [Google Scholar] [CrossRef]
- Girardi, P.; Temporelli, A. Smartainability: A methodology for assessing the sustainability of the smart city. Energy Procedia 2017, 111, 810–816. [Google Scholar] [CrossRef]
- Jiang, T.; Wu, Z.; Song, Y.; Liu, X.; Liu, H.; Zhang, H. Sustainable transport data collection and application: China urban transport database. Math. Probl. Eng. 2013, 2013, 879752. [Google Scholar] [CrossRef] [Green Version]
- Litman, T. Sustainable Transportation Indicators. A Recommended Program to Define a Standard Set of Indicators for Sustainable Transportation Planning. 2008, p. 13. Available online: https://www.vtpi.org/sustain/sti.pdf (accessed on 10 September 2021).
- Lopez-Carreiro, I.; Monzon, A. Evaluating sustainability and innovation of mobility patterns in Spanish cities. Analysis by size and urban typology. Sustain. Cities Soc. 2018, 38, 684–696. [Google Scholar] [CrossRef]
- Marletto, G.; Mameli, F. A participative procedure to select indicators of policies for sustainable urban mobility. Outcomes of a national test. Eur. Transp. Res. Rev. 2012, 4, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Orlowski, A.; Romanowska, P. Smart cities concept: Smart mobility indicator. Cybern. Syst. 2019, 50, 118–131. [Google Scholar] [CrossRef]
- Pinna, F.; Masala, F.; Garau, C. Urban policies and mobility trends in Italian smart cities. Sustainability 2017, 9, 494. [Google Scholar] [CrossRef] [Green Version]
- Reiber, L.; Huang, G. Comparing study on smart city strategies in Berlin and Shanghai, advances in economics. Bus. Manag. Res. 2018, 56, 419–422. [Google Scholar] [CrossRef]
- Savelson, A.; Colman, R.; Litman, T.; Walker, S.; Parmenter, R. The GPI Transportation Accounts: Sustainable Transportation in Nova Scotia. Canada. 2006. Available online: http://www.gpiatlantic.org/publications/summaries/transportationsumm.pdf (accessed on 15 September 2020).
- Tafidis, P.; Sdoukopoulos, A.; Pitsiava-Latinopoulou, M. Sustainable urban mobility indicators: Policy versus practice in the case of Greek cities. Transp. Res. Procedia 2017, 24, 304–312. [Google Scholar] [CrossRef]
- Wibowo, S.; Grandhi, S. A multicriteria analysis approach for benchmarking smart transport cities. In Proceedings of the Science and Information Conference 2015, London, UK, 28–30 July 2015; pp. 94–101. [Google Scholar] [CrossRef]
- Adiyarta, K.; Napitupulu, D.; Mohammad Syafrullah, M.; Mahdiana, D.; Rusdah, R. Analysis of smart city indicators based on prisma: Systematic review. In Proceedings of the IOP Conference Series, Materials Science and Engineering, 3rd Nommensen International Conference on Technology and Engineering 2019 (3rd NICTE), Nommensen HKBP University, Medan, Indonesia, 25–26 July 2019. [Google Scholar] [CrossRef]
- Chao, A.L.; Gallego, A.C.; Lopez-Chao, V.; Alvarellos, A. Indicators framework for sustainable urban design. Atmosphere 2020, 11, 1143. [Google Scholar] [CrossRef]
- Kusumawardani, D.; Saintika, Y.; Romadlon, F. The smart mobility insight of bus rapid transit (BRT) trans jateng purwokerto-purbalingga ridership. In Proceedings of the International Conference on ICT for Smart Society (ICISS) 2021, Bandung, Indonesia, 2–4 August 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Castillo, H.; Pitfield, D.E. ELASTIC—A methodological framework for identifying and selecting sustainable transport indicators. Transp. Res. Part D Transp. Environ. 2010, 15, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulos, C.; Pereira, G.V.; Charalabidis, Y.; Madrid, L. A taxonomy of smart cities initiatives. In Proceedings of the 12th International Conference on Theory and Practice of Electronic Governance 2019 (ICEGOV2019), Melbourne, VIC, Australia, 3–5 April 2019; pp. 281–290. [Google Scholar] [CrossRef]
- Carli, R.; Dotoli, M.; Pellegrino, R.; Ranieri, L. Measuring and managing the smartness of cities: A framework for classifying performance indicators. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics 2013, Washington, DC, USA, 13–16 October 2013; pp. 1288–1293. [Google Scholar] [CrossRef]
- Boukerche, A.; Coutinho, R.W.L. Crowd management: The overlooked component of smart transportation systems. IEEE Commun. Mag. 2019, 57, 48–53. [Google Scholar] [CrossRef]
- Farooq, A.; Xie, M.; Stoilova, S.; Ahmad, F. Multicriteria evaluation of transport plan for high-speed rail: An application to Beijing-Xiongan. Math. Probl. Eng. 2019, 2019, 8319432. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Fong, P.S.; Dai, S.; Li, Y. Towards sustainable smart cities: An empirical comparative assessment and development pattern optimization in China. J. Clean. Prod. 2019, 215, 730–743. [Google Scholar] [CrossRef]
- Macedo, J.; Rodrigues, F.; Tavares, F. Urban sustainability mobility assessment: Indicators proposal. Energy Procedia 2017, 134, 731–740. [Google Scholar] [CrossRef]
- Sdoukopoulos, A.; Nikolaidou, A.; Pitsiava-Latinopoulou, M.; Papaioannou, P. A methodological approach for the assessment of sustainable urban mobility indicators using social media data. In Proceedings of the Sixth International Conference on Environmental Management, Engineering, Planning & Economics 2017, Thessaloniki, Greece, 25–30 June 2017; pp. 1015–1024. Available online: https://www.researchgate.net/publication/320614937 (accessed on 13 November 2020).
- Sureshchandra, S.M.; Bhavsar, J.J.; Pitroda, J.R. Review on identification of success factors for designing of smart cities. IJSTE Int. J. Sci. Technol. Eng. 2016, 2, 125–133. [Google Scholar]
- Kristiningrum, E.; Kusumo, H. Indicators of smart city using SNI ISO 37122:2019. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1096, 012013. [Google Scholar] [CrossRef]
- Razmjoo, A.; Nezhad, M.; Kaigutha, L.; Marzband, M.; Mirjalili, S.; Pazhoohesh, M.; Memon, S.; Ehyaei, M.; Piras, G. Investigating smart city development based on green buildings, electrical vehicles and feasible indicators. Sustainability 2021, 13, 7808. [Google Scholar] [CrossRef]
- Petrova-Antonova, D.; Ilieva, S. Smart cities evaluation—A survey of performance and sustainability indicators. In Proceedings of the 44th Euromicro Conference on Software Engineering and Advanced Applications, Prague, Czech Republic, 29–31 August 2018. [Google Scholar] [CrossRef]
- Mohmmed, A.G.M.; Osman, S.E.F. Smart city & internet of things. Int. Res. J. Comput. Sci. (IRJCS) 2017, 5, 238–241. [Google Scholar]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
Factors | Method | Value | Position | Indicators | Method | Generalised | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AHP | Direct | Ranking | ||||||||||
Value | Place | Value | Place | Value | Place | Value | Place | |||||
A | AHP | 0.2645 | 1 | A1 | 0.1703 | 4 | 0.2020 | 3 | 0.1911 | 4 | 0.1878 | 4 |
Direct | 0.2360 | 1 | A2 | 0.2163 | 2 | 0.2080 | 2 | 0.2178 | 2 | 0.2140 | 2 | |
Ranking | 0.2488 | 1 | A3 | 0.1825 | 3 | 0.1887 | 4 | 0.2000 | 3 | 0.1904 | 3 | |
Generalised | 0.2498 | 1 | A4 | 0.0962 | 5 | 0.1380 | 5 | 0.1378 | 5 | 0.1240 | 5 | |
A5 | 0.3347 | 1 | 0.2633 | 1 | 0.2533 | 1 | 0.2838 | 1 | ||||
B | AHP | 0.1506 | 4 | B1 | 0.3840 | 2 | 0.3520 | 2 | 0.3333 | 2 | 0.3564 | 2 |
Direct | 0.1547 | 4 | B2 | 0.4359 | 1 | 0.3593 | 1 | 0.3467 | 1 | 0.3806 | 1 | |
Ranking | 0.1600 | 4 | B3 | 0.0924 | 3 | 0.1360 | 4 | 0.1533 | 4 | 0.1272 | 4 | |
Generalised | 0.1551 | 4 | B4 | 0.0877 | 4 | 0.1527 | 3 | 0.1667 | 3 | 0.1357 | 3 | |
C | AHP | 0.2045 | 3 | C1 | 0.3065 | 2 | 0.3037 | 2 | 0.2867 | 2 | 0.2806 | 2 |
Direct | 0.2073 | 3 | C2 | 0.3253 | 1 | 0.3711 | 1 | 0.3133 | 1 | 0.3098 | 1 | |
Ranking | 0.2044 | 3 | C3 | 0.1664 | 4 | 0.1371 | 4 | 0.1933 | 4 | 0.1886 | 4 | |
Generalised | 0.2054 | 3 | C4 | 0.2018 | 3 | 0.1881 | 3 | 0.2067 | 3 | 0.2211 | 3 | |
D | AHP | 0.2422 | 2 | D1 | 0.3936 | 1 | 0.3093 | 1 | 0.3333 | 1 | 0.3454 | 1 |
Direct | 0.2367 | 2 | D2 | 0.3613 | 2 | 0.3007 | 2 | 0.3067 | 2 | 0.3229 | 2 | |
Ranking | 0.2356 | 2 | D3 | 0.1424 | 3 | 0.2127 | 3 | 0.2000 | 3 | 0.1850 | 3 | |
Generalised | 0.2382 | 2 | D4 | 0.1026 | 4 | 0.1773 | 4 | 0.1600 | 4 | 0.1466 | 4 | |
E | AHP | 0.1383 | 5 | E1 | 0.3296 | 1 | 0.2733 | 1 | 0.2400 | 1 | 0.2810 | 1 |
Direct | 0.1653 | 5 | E2 | 0.2137 | 2 | 0.2233 | 2 | 0.2356 | 2 | 0.2242 | 2 | |
Ranking | 0.1511 | 5 | E3 | 0.176 | 3 | 0.1713 | 4 | 0.2044 | 3 | 0.1839 | 3 | |
Generalised | 0.1516 | 5 | E4 | 0.16297 | 4 | 0.1707 | 5 | 0.1244 | 5 | 0.1527 | 5 | |
E5 | 0.1177 | 5 | 0.1613 | 73 | 0.1956 | 4 | 0.1582 | 4 |
Parameters | Vilnius | Weimar | Montreal |
---|---|---|---|
Population | 559,421 | 65,098 | 2,014,221 |
Population density (inhabitants/km2) | 1395.1 | 770.4 | 4259.4 |
Area (km2) | 401 | 84.5 | 473 |
Factor | City | MCDM Method | Average Value | General Position | |||||
---|---|---|---|---|---|---|---|---|---|
SAW | COPRAS | TOPSIS | |||||||
Value | Place | Value | Place | Value | Place | ||||
A | Vilnius | 0.4959 | 1 | 0.3343 | 2 | 0.3387 | 2 | 0.3896 | 2 |
Weimar | 0.3155 | 3 | 0.3177 | 3 | 0.5432 | 3 | 0.3921 | 3 | |
Montreal | 0.4432 | 2 | 0.3480 | 1 | 0.5268 | 1 | 0.4393 | 1 | |
B | Vilnius | 1,0000 | 1 | 0.6764 | 1 | 1.0000 | 1 | 0.8921 | 1 |
Weimar | 0.1943 | 3 | 0.1026 | 3 | 0.0000 | 3 | 0.0990 | 3 | |
Montreal | 0.4042 | 2 | 0.2210 | 2 | 0.2524 | 2 | 0.2925 | 2 | |
C | Vilnius | 0.5505 | 2 | 0.2211 | 3 | 0.2880 | 3 | 0.3532 | 3 |
Weimar | 0.5335 | 3 | 0.3139 | 2 | 0.3691 | 2 | 0.4055 | 2 | |
Montreal | 0.8114 | 1 | 0.4650 | 1 | 0.8526 | 1 | 0.7097 | 1 | |
D | Vilnius | 0.8924 | 1 | 0.3841 | 1 | 0.6137 | 2 | 0.6300 | 1 |
Weimar | 0.6734 | 3 | 0.2800 | 3 | 0.3155 | 3 | 0.4230 | 3 | |
Montreal | 0.7688 | 2 | 0.3360 | 2 | 0.6194 | 1 | 0.5747 | 2 | |
E | Vilnius | 0.6002 | 2 | 0.3986 | 1 | 0.2570 | 3 | 0.4186 | 2 |
Weimar | 0.4748 | 3 | 0.2095 | 3 | 0.2630 | 2 | 0.3158 | 3 | |
Montreal | 0.6605 | 1 | 0.3919 | 2 | 0.5566 | 1 | 0.5364 | 1 |
City | MCDM Method | Average | ||||||
---|---|---|---|---|---|---|---|---|
SAW | COPRAS | TOPSIS | ||||||
Value | Place | Value | Place | Value | Place | Value | Place | |
Vilnius | 0.6908 | 2 | 0.3751 | 2 | 0.4634 | 2 | 0.5098 | 2 |
Weimar | 0.5111 | 3 | 0.2463 | 3 | 0.3810 | 3 | 0.3795 | 3 |
Montreal | 0.6979 | 1 | 0.3786 | 1 | 0.5805 | 1 | 0.5523 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapolskytė, S.; Trépanier, M.; Burinskienė, M.; Survilė, O. Smart Urban Mobility System Evaluation Model Adaptation to Vilnius, Montreal and Weimar Cities. Sustainability 2022, 14, 715. https://doi.org/10.3390/su14020715
Zapolskytė S, Trépanier M, Burinskienė M, Survilė O. Smart Urban Mobility System Evaluation Model Adaptation to Vilnius, Montreal and Weimar Cities. Sustainability. 2022; 14(2):715. https://doi.org/10.3390/su14020715
Chicago/Turabian StyleZapolskytė, Simona, Martin Trépanier, Marija Burinskienė, and Oksana Survilė. 2022. "Smart Urban Mobility System Evaluation Model Adaptation to Vilnius, Montreal and Weimar Cities" Sustainability 14, no. 2: 715. https://doi.org/10.3390/su14020715
APA StyleZapolskytė, S., Trépanier, M., Burinskienė, M., & Survilė, O. (2022). Smart Urban Mobility System Evaluation Model Adaptation to Vilnius, Montreal and Weimar Cities. Sustainability, 14(2), 715. https://doi.org/10.3390/su14020715