An Intelligent Visualisation Tool to Analyse the Sustainability of Road Transportation
Abstract
:1. Introduction & Previous Work
1.1. Sustainability in Transportation
1.2. Previous Work on Digitisation
2. Materials and Methods
2.1. Dataset
- The Ministry of Transport, Mobility and Urban Agenda (Ministerio de Transportes, Movilidad y Agenda Urbana) of Spain, through its General Sub-Directorate of Economic Studies and Statistics.
- The European Road Freight Transport survey (ERFT). This survey relates to the activity of heavy goods vehicles licenced in Spain for the transport of goods. It has a sufficiently high sampling level to be of statistical representativeness for each Autonomous Region, in order to measure their transport operations. With this aim, the survey registers the movement of a single class of goods, from a departure point to a destination. The research was conducted in accordance with the corresponding regulation [35] and its subsequent revision [36]. The total number of records included on that database was 1,932,671 that has a sampling representativeness of 1,259,938,252 transport operations.
- Transportation costs (B): based on a 100 percent increase above the average yearly prices in 2000, as determined by the Ministry of Development’s quarterly research studies.
- Fuel costs in Spain: quarterly midpoints weighted in centimes of a euro, as indicated by the data gathered by the Ministry of Development.
- Fuel costs in the EU: quarterly midpoints weighted in centimes of a euro, as indicated by the data gathered by the Ministry of Development.
- Number of tons transported (A, B, C): weight of transported goods.
- Completed trips (A, B, C): number of transport operations and empty distance.
- Empty distance (A, B): kilometres travelled without goods.
- Maximum load for transport operations (A, B): upper weight limit for completed trips in tons.
- Maximum load for empty distance (A, B): upper weight limit for empty distance covered in tons.
- Haulage distance (A, B): kilometres travelled.
- Empty haulage distance (A, B): kilometres travelled without goods.
- Quantity of vehicles represented (A): number of vehicles represented.
- Represented load capacity (A): upper load limit of the represented vehicles.
- Tons-kms (A, B, C): total tons transported, and distance covered in each haulage operation.
- Average fleet age (A, B): average amount of years elapsed since the registration of the vehicles. As previously indicated in Section 1.1, this is an important data finding in regard to sustainability. Owing to this, it is also used in the glyph metaphor.
- Average fleet age for empty distance (A, B): average amount of years elapsed since the registration of the vehicles travelling without goods.
- (A)
- Type of transport: (A1) All transport; (A2) Own transport; (A3) Hire or reward.
- (B)
- Distance range: (B1) All distances; (B2) < 50 km; (B3) 51–100 km; (B4) 101–200 km; (B5) 201–300 km; (B6) > 300 km.
- (C)
- Geographic catchment: (C1) All catchments; (C2) Municipal; (C3) Regional; (C4) National; (C5) Importation; (C6) Exportation; (C7) Cabotage.
2.2. Hybrid Unsupervised Exploratory Plots
- 2D projection of the vector is obtained by the applied EPP method (, ).
- The output of the clustering method (i.e., the assigned cluster number) is calculated ().
- The two previous outputs are combined in a 3D vector that is located in the output space ().
- Optionally, further information (sustainability data in the present study) is added to the visualisation by using the glyph metaphor.
2.3. Mehtodology
- Number of principal components to be obtained: 2.
- Number of projected dimensions to be obtained: 2.
- Learning rate: [0.01, 0.05].
- p parameter: [1, 2].
- Number of projected dimensions to be obtained: 2.
- Learning rate: [0.01, 0.05].
- p parameter: [1, 2].
- tau parameter: [0.00000001, 0.01].
- Number of projected dimensions to be obtained: 2, 3.
- Kernel: linear, polynomial, gaussian.
- Number of projected dimensions to be obtained: 2, 3.
- k-means.
- Number of clusters: 2, 3, 4, 6, 8.
- Distance: sqEuclidean, Cityblock, Cosine, Correlation.
- Number of clusters (cutoff): 2, 3, 4, 6, 8.
- Distance: Euclidean, sEuclidean, sqEuclidean, Cityblock, Hamming, Jaccard, Minkowski, Chebychev, Spearman, Cosine, Correlation.
- Linkage: Average, Centroid, Complete, Median, Single, Ward, Weighted.
3. Results
Results including the Glyph Metaphor
4. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD/IFT. International Transport Forum: Global Dialogue for Better Transport The Carbon Footprint of Global Trade Tackling Emissions from International Freight Transport; Organisation for Economic Co-operation and Development-IFT: Leipzig, Germany, 2015. [Google Scholar]
- Ministerio para la Transición Ecologica y el Reto demográfico. Secretaría de Estado De Medio Ambiente Dirección General De Calidad Y Evaluación Ambiental. Centro virtual de publicaciones del Ministerio de Transporte. In Inventario Nacional de Emisiones a la Atmósfera Emisiones de Gases de Efecto Invernadero; Movilidad y Agenda Urbana: Madrid, Spain, 2021. [Google Scholar]
- European-Commission. Reducing CO2 Emissions from Heavy-Duty Vehicles | Climate Action. Available online: https://ec.europa.eu/clima/policies/transport/vehicles/heavy_en (accessed on 16 June 2021).
- Consejo-Europeo. Reglamento del Parlamento Europeo y del Consejo Por el Que se Establecen Normas de Comportamiento en Materia de Emisiones de CO2 Para Vehículos Pesados Nuevos; Official Journal of the European Union: Brussels, Belgium, 2019; Volume 198. [Google Scholar]
- Tob-Ogu, A.; Kumar, N.; Cullen, J.; Ballantyne, E.E.F. Sustainability Intervention Mechanisms for Managing Road Freight Transport Externalities: A Systematic Literature Review. Sustainability 2018, 10, 1923. [Google Scholar] [CrossRef] [Green Version]
- Shankar, R.; Pathak, D.K.; Choudhary, D. Decarbonizing freight transportation: An integrated EFA-TISM approach to model enablers of dedicated freight corridors. Technol. Forecast. Soc. Change 2019, 143, 85–100. [Google Scholar] [CrossRef]
- Agbo, A.A.; Li, W.; Zheng, L.; Zhang, Y.; Atombo, C. Optimisation of intermodal freight transport network. Eur. Transp. Trasp. Eur. 2017, 63, 1. [Google Scholar]
- Kelle, P.; Song, J.; Jin, M.; Schneider, H.; Claypool, C. Evaluation of operational and environmental sustainability tradeoffs in multimodal freight transportation planning. Int. J. Prod. Econ. 2019, 209, 411–420. [Google Scholar] [CrossRef]
- Meyer, T. Decarbonizing road freight transportation—A bibliometric and network analysis. Transp. Res. Part D Transp. Environ. 2020, 89, 102619. [Google Scholar] [CrossRef]
- Rossi, T.; Pozzi, R.; Pirovano, G.; Cigolini, R.; Pero, M. A new logistics model for increasing economic sustainability of perishable food supply chains through intermodal transportation. Int. J. Logist. Res. Appl. 2021, 24, 346–363. [Google Scholar] [CrossRef]
- De Campos, R.S.; Simon, A.T.; Martins, F.d. Assessing the impacts of road freight transport on sustainability: A case study in the sugar-energy sector. J. Clean. Prod. 2019, 220, 995–1004. [Google Scholar] [CrossRef]
- Macioszek, E. Essential techniques for fastening loads in road transport. Zesz. Nauk. Transp. Politech. Śląska 2021, 110, 97–104. [Google Scholar] [CrossRef]
- Macioszek, E. Oversize cargo transport in road transport ⇓ Problems and issues. Sci. J. Silesian Univ. Technol. Ser. Transp. 2020, 108, 133–140. [Google Scholar] [CrossRef]
- Corlu, C.G.; de la Torre, R.; Serrano-Hernandez, A.; Juan, A.A.; Faulin, J. Optimizing Energy Consumption in Transportation: Literature Review, Insights, and Research Opportunities. Energies 2020, 13, 1115. [Google Scholar] [CrossRef] [Green Version]
- Hassani, A.; Safavi, S.R.; Hosseini, V. A comparison of light-duty vehicles’ high emitters fractions obtained from an emission remote sensing campaign and emission inspection program for policy recommendation. Environ. Pollut. 2021, 286, 117396. [Google Scholar] [CrossRef]
- Ang-Olson, J.; Schroeer, W. Energy Efficiency Strategies for Freight Trucking: Potential Impact on Fuel Use and Greenhouse Gas Emissions. Transp. Res. Rec. J. Transp. Res. Board 2002, 1815, 11–18. [Google Scholar] [CrossRef]
- Comisión_Europea. Directiva 2002/80/CE de la Comisión de 3 de Octubre de 2002 por la que se Adapta al Progreso Técnico la Directiva 70/220/CEE del Consejo Relativa a Las Medidas Que Deben Adoptarse Contra la Contaminación Atmosférica Causada Por Las Emisiones de Los Vehícu; OPOCE: Brussels, Belgium, 2002. [Google Scholar]
- Comisión_Europea. Emisiones de los vehículos pesados (Euro VI): Normas de certificación Diario Oficial de la Comisión Europea; 2005. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/HTML/?uri=LEGISSUM:mi0029&from=ES (accessed on 30 July 2021).
- Haugen, M.J.; Bishop, G.A. Long-Term Fuel-Specific NOx and Particle Emission Trends for In-Use Heavy-Duty Vehicles in California. Environ. Sci. Technol. 2018, 52, 6070–6076. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.A.; McDonald, B.C.; Harley, R.A. Evaluation of Nitrogen Oxide Emission Inventories and Trends for On-Road Gasoline and Diesel Vehicles. Environ. Sci. Technol. 2021, 55, 6655–6664. [Google Scholar] [CrossRef] [PubMed]
- Pernestål, A.; Engholm, A.; Bemler, M.; Gidofalvi, G. How Will Digitalization Change Road Freight Transport? Scenarios Tested in Sweden. Sustainability 2021, 13, 304. [Google Scholar] [CrossRef]
- Mangina, E.; Narasimhan, P.K.; Saffari, M.; Vlachos, I. Data analytics for sustainable global supply chains. J. Clean. Prod. 2020, 255, 120300. [Google Scholar] [CrossRef]
- Soysal, M.; Bloemhof-Ruwaard, J.M.; Haijema, R.; van der Vorst, J.G. Modeling a green inventory routing problem for perishable products with horizontal collaboration. Comput. Oper. Res. 2018, 89, 168–182. [Google Scholar] [CrossRef]
- Montreuil, B. Toward a Physical Internet: Meeting the global logistics sustainability grand challenge. Logist. Res. 2011, 3, 71–87. [Google Scholar] [CrossRef]
- Dadsena, K.K.; Sarmah, S.P.; Naikan, V.N.A. Risk evaluation and mitigation of sustainable road freight transport operation: A case of trucking industry. Int. J. Prod. Res. 2019, 57, 6223–6245. [Google Scholar] [CrossRef]
- Wong, E.Y.C.; Tai, A.H.; So, S. Container drayage modelling with graph theory-based road connectivity assessment for sustainable freight transportation in new development area. Comput. Ind. Eng. 2020, 149, 106810. [Google Scholar] [CrossRef]
- Budak, A.; Sarvari, P.A. Profit margin prediction in sustainable road freight transportation using machine learning. J. Clean. Prod. 2021, 314, 127990. [Google Scholar] [CrossRef]
- Alonso de Armiño, C.; Manzanedo, M.Á.; Herrero, Á. Analysing the intermeshed patterns of road transportation and macroeconomic indicators through neural and clustering techniques. Pattern Anal. Appl. 2020, 23, 1059–1070. [Google Scholar] [CrossRef]
- Desarbo, W.; Jedidi, K.; Cool, K.; Schendel, D. Simultaneous multidimensional unfolding and cluster analysis: An investigation of strategic groups. Mark. Lett. 1991, 22, 129–146. [Google Scholar] [CrossRef] [Green Version]
- Vichi, M.; Kiers, H.A.L. Factorial k-means analysis for two-way data. Comput. Stat. Data Anal. 2001, 37, 49–64. [Google Scholar] [CrossRef]
- Sánchez, R.; Herrero, Á.; Corchado, E. Visualization and clustering for SNMP intrusion detection. Cybern. Syst. 2013, 44, 505–532. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, Á.; Herrero, Á.; Corchado, E.; Tricio, V. A hybrid intelligent system for the analysis of atmospheric pollution: A case study in two European regions. Log. J. IGPL 2017, 25, 915–937. [Google Scholar] [CrossRef]
- Bolton, R.J.; Krzanowski, W.J. Projection Pursuit Clustering for Exploratory Data Analysis. J. Comput. Graph. Stat. 2003, 12, 121–142. [Google Scholar] [CrossRef]
- Yatracos, Y.G. Detecting Clusters in the Data from Variance Decompositions of Its Projections. J. Classif. 2013, 30, 30–55. [Google Scholar] [CrossRef]
- Consejo-Europeo. Reglamento (CE) N° 1172/98 del Consejo de 25 de Mayo de 1998 Sobre la Relación Estadística de los Transportes de Mercancías por Carretera; OPOCE: Brussels, Belgium, 1998. [Google Scholar]
- Consejo-Europeo. Reglamento (UE) No 70/2012 del Parlamento Europeo y Del Consejo de 18 de Enero de 2012 Sobre la Relación Estadística de Los Transportes de Mercancías Por Carretera; Official Journal of the European Union: Brussels, Belgium, 2012. [Google Scholar]
- Herrero, Á.; Jiménez, A.; Bayraktar, S. Hybrid Unsupervised Exploratory Plots: A Case Study of Analysing Foreign Direct Investment. Complexity 2019, 2019, 6271017. [Google Scholar] [CrossRef]
- Schölkopf, B.; Smola, A.; Müller, K.-R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Comput. 1998, 10, 1299–1319. [Google Scholar] [CrossRef] [Green Version]
- Sammon, J.W. A Nonlinear Mapping for Data Structure Analysis. IEEE Trans. Comput. 1969, 100, 401–409. [Google Scholar] [CrossRef]
Emission Standards for Diesel Cars | ||||
---|---|---|---|---|
Standard | Date | CO g/Km | NOX g/Km | PM g/Km |
Euro 4 | 2005 | 0.50 | 0.30 | 0.025 |
Euro 5 | 2010 | 0.50 | 0.23 | 0.005 |
Euro 6 | 2015 | 0.50 | 0.17 | 0.005 |
Emission Standards for Heavy Goods Vehicles | ||||
Standard | Date | CO g/KWh | NOX g/KWh | PM g/KWh |
Euro IV | 2005 | 1.50 | 3.50 | 0.020 |
Euro V | 2008 | 1.50 | 2.00 | 0.020 |
Euro VI | 2013 | 1.50 | 0.40 | 0.010 |
Q | Glyph |
---|---|
1 | |
2 | |
3 | |
4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso de Armiño, C.; Urda, D.; Alcalde, R.; García, S.; Herrero, Á. An Intelligent Visualisation Tool to Analyse the Sustainability of Road Transportation. Sustainability 2022, 14, 777. https://doi.org/10.3390/su14020777
Alonso de Armiño C, Urda D, Alcalde R, García S, Herrero Á. An Intelligent Visualisation Tool to Analyse the Sustainability of Road Transportation. Sustainability. 2022; 14(2):777. https://doi.org/10.3390/su14020777
Chicago/Turabian StyleAlonso de Armiño, Carlos, Daniel Urda, Roberto Alcalde, Santiago García, and Álvaro Herrero. 2022. "An Intelligent Visualisation Tool to Analyse the Sustainability of Road Transportation" Sustainability 14, no. 2: 777. https://doi.org/10.3390/su14020777
APA StyleAlonso de Armiño, C., Urda, D., Alcalde, R., García, S., & Herrero, Á. (2022). An Intelligent Visualisation Tool to Analyse the Sustainability of Road Transportation. Sustainability, 14(2), 777. https://doi.org/10.3390/su14020777