Application of Corn Straw and Woody Peat to Improve the Absorption and Utilization of 15N-Urea by Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. The Tested Materials
2.3. The Applied Fertilizer
2.4. Experiment Setup
2.5. The Sample Collection
- (1)
- On 22 September 2017 and 22 September 2018, the above ground parts of corn were harvest, and the plants were divided into five parts: leaf, stem, bract, cob and grain. All the corns were placed in a 65 °C oven and dried to constant weight. The samples were crushed with a 24,000 rpm mill (FW100 tianjin Test Company), and the samples were screened through 100 mesh and sealed.
- (2)
- After the corn harvest on 22 September 2017 and 22 September 2018, the plant residues were removed from the soil surface, then the soil was divided into 6 layers (0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm, 40–50 cm, 50–60 cm) and sampled with a soil remover with a diameter of 1 cm. The collected soil samples were air-dried in a dust-free room, and then were ground in a mortar, screened through a 100-mesh sieve, and kept sealed.
2.6. Determination of 15N Abundance of Samples
2.7. Calculation and Data Analysis
Npf = NP × Npff
Npff% = Npp/Nppf × 100
Nsf = Ns × Nsff
Nsff% = Nss/Nssf × 100
3. Results
3.1. Effects of Corn Straw and Peat Application on Maize Yield
3.2. Effects of Application of Corn Straw and Peat on Total Nitrogen in Maize Plant
3.3. Proportion of 15N from Urea in Total Nitrogen of Maize Plant
3.4. Effects of Application of Corn Straw and Woody Peat on the Relative Distribution of 15N in Maize
3.5. Effects of Application of Corn Straw and Woody Peat on 15N Urea Utilization “By Maize
3.6. Effects of Corn Straw and Woody Peat Application on 15N Soil Residue
3.7. Effects of Straw and Peat Application on the Whereabouts of 15N
4. Discussion
4.1. Application of Straw and Peat Increased Corn Production
4.2. Application of Straw and Peat Promoted the Absorption of 15N Urea
4.3. The Application of Straw and Peat Increased the Residue of 15N Urea in the Soil and Reduced the Loss
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ju, X.; Gu, B. Problem and trend of nitrogen fertilization in China. Plant Nutr. Fertil. Sci. 2014, 20, 783–795. (In Chinese) [Google Scholar] [CrossRef]
- Yu, G.; Fang, H.; Gao, L.; Zhang, W. Soil organic carbon budget and fertility variation of black soils in Northeast China. Ecol. Res. 2006, 21, 855–867. [Google Scholar] [CrossRef]
- David, F.; Mhairi, C.; Ute, S.; Mark, A.S.; Stefan, R.; Lucy, J.S.; Alan, J.; Bruna, G.; James, N.G.; Peter, V.; et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130164. [Google Scholar] [CrossRef]
- Lutes, K.; Oelbermann, M.; Thevathasan, N.V.; Gordon, A.M. Effect of nitrogen fertilizer on greenhouse gas emissions in two willow clones (Salix miyabeana and S.dasyclados) in southern Ontario, Canada. Agrofor. Syst. 2016, 90, 785–796. [Google Scholar] [CrossRef]
- De, V.W.; Kros, J.; Kroeze, C.; Seitzinger, S.P. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr. Opin. Environ. Sustain. 2013, 5, 392–402. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, X.Z.; Zhao, H.T.; Ke, F. Effect of potassium and C/N ratios on conversion of NH+4 in soils. Pedosphere 2008, 18, 539–544. [Google Scholar] [CrossRef]
- Pan, B.; Lam, S.K.; Mosier, A.; Luo, Y.; Chen, D. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agric. Ecosyst. Environ. 2016, 232, 283–289. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Zhang, J.B.; Tan, J.; Zhang, Z.C.; Yu, Z.H. Chemical composition and structure of humus relative to sources. Acta Pedol. Sin. 2019, 56, 386–397. [Google Scholar] [CrossRef]
- Lal, R. The role of residues management in sustainable agricultural systems. J. Sustain. Agric. 1995, 5, 51–78. [Google Scholar] [CrossRef]
- Duiker, S.W.; Lal, R. Crop residue and tillage effects on carbon sequestration in a Luvisol in central Ohio. Soil Till. Res. 1999, 52, 73–81. [Google Scholar] [CrossRef]
- Liu, B.; Wu, Q.; Wang, F.; Zhang, B. Is straw return-to-field always beneficial? Evidence from an integrated cost-benefit analysis. Energy 2019, 171, 393–402. [Google Scholar] [CrossRef]
- Yu, C.; Wang, X.; Hu, B.; Yang, C.; Sui, N.; Liu, R.; Zhou, Z. Effects of wheat straw incorporation in cotton-wheat double cropping system on nutrient status and growth in cotton. Field Crops Res. 2016, 197, 39–51. [Google Scholar] [CrossRef]
- Nieder, R.; Benbi, D.K.; Scherer, H.W. Fixation and defixation of ammonium in soils: A review. Biol. Fertil. Soils 2011, 47, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Sun, B.; Lu, F.; Zhang, G.; Wang, X.; Ouyang, Z. Straw incorporation strategy on cereal crop yield in China. Crop Sci. 2015, 55, 1773–1781. [Google Scholar] [CrossRef]
- Gorham, E. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Limpens, J.; Berendse, F.; Blodau, C.J.; Canadell, G.; Freeman, C.; Holden, J.; Roulet, N.; Rydin, H.; Schaepman-Strub, G. Peatlands and the carbon cycle: From local processes to global implications—A synthesis. Biogeosciences 2008, 5, 1475–1491. [Google Scholar] [CrossRef] [Green Version]
- Laiho, R. Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol. Biochem. 2006, 38, 2011–2024. [Google Scholar] [CrossRef]
- Abdel-Salam, A.E. Stabilization of peat soil using locally admixture. HBRC J. 2018, 14, 294–299. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Wang, F.; Xie, Y. Maize (Zea mays) growth and nutrient uptake following integrated improvement of vermicompost and humic acid fertilizer on coastal saline soil. App. Soil Ecol. 2019, 142, 147–154. [Google Scholar] [CrossRef]
- Fu, W.; Yong, C.X.; Ma, D.H.; Fan, J.; Zhang, J.B.; Wei, H.; Feng, X.L.; Wei, R.Z.; Liu, X.F.; Wang, G.D.; et al. Rapid fertilization effect in soils after gully control and land reclamation in loess hilly and gully region of China. Trans. Chin. Soc. Agric. Eng. 2019, 35, 252–261, (In Chinese with English abstract). [Google Scholar]
- Qu, C.C.; Chen, X.M.; Zhang, J.B.; Fan, S.Y.; Tan, J.; Ruan, Y.M.; Zhang, Y.F.; Wu, D.H.; Han, Z.Q.; Zhang, S.L. Technique and effects of quickly constructing high-quality tillage layer newly-cultivated arable land in red soil and paddy field based on woody peat and organic materials. Soil Water Conserv. 2018, 32, 136–142, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Lai, S.; Johansson, M.A.; Yin, W.; Yin, W.; Wardrop, N.A.; Panhuis, W.G.; Wesolowski, A.; Kraemer, M.U.G.; Bogoch, I.I.; Kain, D.; et al. Seasonal and interannual risks of dengue introduction from South-East Asia into China, 2005–2015. PLoS Negl. Trop Dis. 2018, 12, e0006743. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Guan, S.; Dou, S.; Wu, D.; Xie, S.; Ndzelu, B.S. Different rates of biochar application change 15N retention in soil and 15N utilization by maize. Soil Use Manag. 2020, 36, 773–782. [Google Scholar] [CrossRef]
- Beare, M.H.; Wilson, P.E.; Fraser, P.M.; Fraser, P.M.; Butler, R.C. Management effects on barley straw decomposition, nitrogen release, and crop production. Soil Sci. Soc. Am. J. 2002, 66, 848–856. [Google Scholar] [CrossRef]
- Yan, F.; Sun, Y.; Xu, H.; Jiang, M.; Xiang, K.; Wu, Y.; Jun, M. The effect of straw mulchon nitrogen, phosphorus and potassium uptake and use in hybrid rice. Paddy Water Environ. 2019, 17, 23–33. [Google Scholar] [CrossRef]
- Liang, Z.; Cheng, S.; Wu, L. Study on mechanism of interaction between coal humic acid and urea. J. Fuel Chem. Technol. 1999, 27, 176–181. (In Chinese) [Google Scholar] [CrossRef]
- Dong, L.H.; Córdova-Kreylos, A.L.; Yang, J.; Yuan, H.; Scow, K.M. Humic acids buffer the effects of urea on soil ammonia oxidizers and potential nitrification. Soil Biol. Biochem. 2009, 41, 1612–1621. [Google Scholar] [CrossRef] [Green Version]
- Reeza, A.A.; Ahmed, O.H.; Majid, N.; Jalloh, M.B. Reducing ammonia loss from urea by mixing with humic and fulvic acids isolated from coal. Am. J. Environ. Sci. 2009, 5, 420–426. [Google Scholar] [CrossRef]
- Li, Z.; Ma, G.; Wang, S.; Lu, X. Transformation of long-lasting UHA in soil and its effect on maize yield. Chin. J. Eco-Agric. 2005, 13, 121–123. (In Chinese) [Google Scholar]
- Pamela, C.; Louise, N.; Joseph, W.K. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, I.K.; Christensen, B.T. Yields of wheat and soil carbon and nitrogen contents following long-term incorporation of barley straw and ryegrass catch crops. Soil Use Manag. 2010, 20, 432–438. [Google Scholar] [CrossRef]
- Zhao, W.H.; Ma, L.; Xu, J.S.; Tan, J.; Zhang, J.B.; Zhao, B.X. Effects of short-term application of straw and woody peat on composition and function of organic matter and microbial community in aquic soil. J. Soil 2019, 57, 153–164. (In Chinese) [Google Scholar] [CrossRef]
- Asli, S.; Neumann, P.M. Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development. Plant Soil 2010, 336, 313–322. [Google Scholar] [CrossRef]
- Marzadori, C.; Francioso, O.; Ciavatta, C.; Gessa, C. Activity and stability of jack bean urease in the presence of peat humic acids obtained using different extractants. Biol. Fertil. Soils 2000, 32, 415–420. [Google Scholar] [CrossRef]
- Dolan, M.S.; Clapp, C.E.; Allmaras, R.R.; Baker, J.M.; Molina, J.A. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil Till. Res. 2006, 89, 221–231. [Google Scholar] [CrossRef]
- Tong, X.; Xu, M.; Wang, X.; Bhattacharyya, R.; Zhang, W.; Cong, R. Long-term fertilization effects on organic carbon fractions in a red soil of China. Catena 2014, 113, 251–259. [Google Scholar] [CrossRef]
- Tanaka, Y.; Yano, K. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ. 2010, 28, 1247–1254. [Google Scholar] [CrossRef]
- Wang, D.; Xu, C.; Yan, J.; Zhang, X.; Chen, S.; Chauhan, B.S.; Zhang, X. 15N tracer-based analysis of genotypic differences in the uptake and partitioning of N applied at different growth stages in transplanted rice. Field Crops Res. 2017, 211, 27–36. [Google Scholar] [CrossRef]
- Walder, F.; Niemann, H.; Natarajan, M.; Lehmann, M.F.; Boller, T.; Wiemken, A. Mycorrhizal networks: Common goods of plants shared under unequal terms of trade. Plant Physiol. 2012, 159, 789–797. [Google Scholar] [CrossRef] [Green Version]
- Miransari, M. Arbuscular mycorrhizal fungi and nitrogen uptake. Arch. Microbiol. 2011, 193, 77–81. [Google Scholar] [CrossRef]
- Cavagnaro, T.R.; Barrios-Masias, F.H.; Jackson, L.E. Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system. Plant Soil 2012, 353, 181–194. [Google Scholar] [CrossRef]
- Dong, L.H.; Yang, J.S.; Wang, E.T.; Chen, W.X. Chemical characteristic and influences of two fractions of Chinese lignite humic acids on urease. Eur. J. Soil Biol. 2008, 44, 166–171. [Google Scholar] [CrossRef]
- Tahir, M.M.; Khurshid, M.; Khan, M.Z.; Abbasi, M.K.; Kazmi, M.H. Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere 2011, 21, 124–131. [Google Scholar] [CrossRef]
- Zhu, Z.L. Research on soil nitrogen in China. Acta Pedol. Sin. 2008, 5, 778–783. (In Chinese) [Google Scholar]
- Ve, N.B.; Olk, D.C.; Cassman, K.G. Nitrogen mineralization from humic acid fractions in rice soils depends on degree of humification. Soil Sci. Soc. Am. J. 2004, 68, 1278–1284. [Google Scholar] [CrossRef] [Green Version]
- Ve, N.B.; Olk, D.C.; Cassman, K.G. Characterization of humic acid fractions improves estimates of nitrogen mineralization kinetics for lowland rice soils. Soil Sci. Soc. Am. J. 2004, 68, 1266–1277. [Google Scholar] [CrossRef] [Green Version]
- Olk, D.C.; Samson, M.I.; Gapas, P. Inhibition of nitrogen mineralization in young humic fractions by anaerobic decomposition of rice crop residues. Eur. J. Soil Sci. 2007, 58, 270–281. [Google Scholar] [CrossRef]
- Koullas, D.P.; Christakopoulos, P.; Kekos, D.; Macris, B.J.; Koukios, E.G. Correlating the effect of pretreatment on the enzymatic hydrolysis of straw. Biotechnol. Bioeng. 1992, 39, 113–116. [Google Scholar] [CrossRef]
- Corbeels, M.; Hofman, G.; Van Cleemput, O. Nitrogen cycling associated with the decomposition of sunflower stalks and wheat straw in a Vertisol. Plant Soil 2000, 218, 71–82. [Google Scholar] [CrossRef]
- Burge, W.D.; Broadbent, F.E. Fixation of ammonia by organic soils. Soil Sci. Soc. Am. J. 1961, 25, 199–204. [Google Scholar] [CrossRef]
- Susilawati, K.; Osumanu, H.A.; Nik, M.; Ab, M.; Mohd, K.Y.; Mohamadu, B.J. Effect of organic based N fertilizer on dry matter (Zea mays L.), ammonium and nitrate recovery in an acid soil of Sarawak, Malaysia. Am. J. Appl. Sci. 2009, 6, 1289–1294. [Google Scholar] [CrossRef]
- Joshua, S.; Teri, C.B.; Matthew, W. Microbial stress-response physiology and its implications for ecosystem function. Ecology 2007, 88, 1386–1394. [Google Scholar] [CrossRef]
- Christoph, S.; Bruno, G.; Wenceslau, G.T.; Johannes, L.; Winfried, E.H.B.; Wolfgang, Z. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J. Plant Nutr. Soil Sci. 2008, 171, 893–899. [Google Scholar] [CrossRef]
Year | Treatment | Leaves | Stems | Bracts | Corncobs | Grains |
---|---|---|---|---|---|---|
2017 | CK | 5.42 ± 0.23 c | 2.15 ± 0.16 b | 3.07 ± 0.23 b | 2.35 ± 0.24 b | 10.30 ± 0.25 c |
CS | 6.55 ± 0.30 b | 2.88 ± 0.27 a | 3.51 ± 0.24 a,b | 2.78 ± 0.40 a,b | 12.79 ± 0.29 b | |
WP | 10.32 ± 0.27 a | 3.25 ± 0.20 a | 3.64 ± 0.22 a | 3.42 ± 0.35 a | 13.78 ± 0.20 a | |
2018 | CK | 5.88 ± 0.22 c | 2.37 ± 0.35 b | 3.35 ± 0.27 a | 2.21 ± 0.21 a | 10.03 ± 0.90 c |
CS | 7.32 ± 0.56 b | 2.63 ± 0.51 b | 3.52 ± 0.22 a | 2.34 ± 0.22 a | 11.60 ± 0.35 b | |
WP | 9.15 ± 0.41 a | 3.74 ± 0.16 a | 3.92 ± 0.06 a | 2.80 ± 0.18 a | 13.63 ± 0.19 a |
Year | Treatment | Leaves | Stems | Bracts | Corncobs | Grains |
---|---|---|---|---|---|---|
2017 | CK | 18.14 ± 0.27 a | 18.38 ± 0.26 a | 17.51 ± 0.49 a | 18.00 ± 0.21 a | 17.81 ± 0.09 a |
CS | 16.07 ± 0.31 b | 14.24 ± 0.54 b | 13.59 ± 0.29 b | 14.95 ± 0.24 b | 15.99 ± 0.71 b | |
WP | 16.69 ± 0.66 b | 13.80 ± 3.25 b | 12.48 ± 0.88 b | 14.41 ± 1.06 b | 15.65 ± 0.88 b | |
2018 | CK | 0.50 ± 0.05 a | 0.49 ± 0.02 a | 0.33 ± 0.02 a | 0.23 ± 0.05 a | 1.26 ± 0.03 a |
CS | 0.42 ± 0.02 b | 0.40 ± 0.01 b | 0.21 ± 0.04 b | 0.21 ± 0.02 a | 1.08 ± 0.09 b | |
WP | 0.40 ± 0.02 b | 0.34 ± 0.03 c | 0.21 ± 0.01 b | 0.16 ± 0.01 b | 0.93 ± 0.02 c |
Treatments | 2017 Year | 2018 Year | Total Utilization% | Total Loss Rate % | ||
---|---|---|---|---|---|---|
Utilization % | Retention Rate % | Utilization% | Retention Rate% | |||
CK | 15.67 ± 0.74 c | 32.29 ± 0.85 c | 3.23 ± 0.07 c | 3.28 ± 0.03 c | 18.90 ± 1.68 c | 77.82 ± 1.85 a |
CS | 17.47 ± 1.21 b | 37.32 ± 0.45 b | 4.95 ± 0.61 b | 4.65 ± 0.12 b | 22.42 ± 0.89 b | 72.99 ± 1.71 b |
WP | 22.66 ± 1.22 a | 51.41 ± 1.76 b | 7.39 ± 1.15 a | 5.23 ± 0.21 a | 30.05 ± 0.28 a | 64.72 ± 0.93 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.; Dou, S.; El-Rahim, M.G.M.A.; Liu, X.; Wu, D.; Ma, R.; Zhang, Y.; Yin, X.; Tan, C.; Xie, S. Application of Corn Straw and Woody Peat to Improve the Absorption and Utilization of 15N-Urea by Maize. Sustainability 2022, 14, 820. https://doi.org/10.3390/su14020820
Lin C, Dou S, El-Rahim MGMA, Liu X, Wu D, Ma R, Zhang Y, Yin X, Tan C, Xie S. Application of Corn Straw and Woody Peat to Improve the Absorption and Utilization of 15N-Urea by Maize. Sustainability. 2022; 14(2):820. https://doi.org/10.3390/su14020820
Chicago/Turabian StyleLin, Chenming, Sen Dou, Mahmoud Gamal Mohamed Abd El-Rahim, Xin Liu, Dong Wu, Rui Ma, Yifeng Zhang, Xianbao Yin, Cen Tan, and Shuai Xie. 2022. "Application of Corn Straw and Woody Peat to Improve the Absorption and Utilization of 15N-Urea by Maize" Sustainability 14, no. 2: 820. https://doi.org/10.3390/su14020820
APA StyleLin, C., Dou, S., El-Rahim, M. G. M. A., Liu, X., Wu, D., Ma, R., Zhang, Y., Yin, X., Tan, C., & Xie, S. (2022). Application of Corn Straw and Woody Peat to Improve the Absorption and Utilization of 15N-Urea by Maize. Sustainability, 14(2), 820. https://doi.org/10.3390/su14020820