GIS-Based Decision Support System for Safe and Sustainable Building Construction Site in a Mountainous Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Data and Material Used
2.3. Generation of Thematic Maps
2.3.1. Geo-Environment Aspect for Safe Site Selection
2.3.2. Geo-Physical Aspect for Safe Site Selection
2.3.3. Socio-Economic Aspect for Safe Site Selection
2.4. MCDM: Fuzzy Set Theory
2.5. Fuzzy Membership Function (FMF)
2.6. Feature Data Standardization Using FMFs
2.7. Weights Assignments and Normalization
2.8. Group Fuzzy AHP
2.9. Safe Site Potential Zone (SSPZ) Map Development
2.10. Sensitivity Analysis
3. Results
3.1. Geophysical Aspect for Safe Site Selection of Residential Building Constrcution
3.2. Geoenvironmental Aspect for Safe Site Selection of Building Construction
3.3. Socio Economic Aspect for Safe Sile Selection of Building Construction
3.4. Weights Normalization for Thematic Maps of Geo-Physical, Geo-Environmental and Socio-Economic Aspect for Safe Site Selection
Analysis of Safe Site Selection Classification Map Based on Geophysical, Geo-Environmental and Socio-Economic Aspects
3.5. Weights Normalization for Thematic Maps of All Aspect for Final Safe Site Selection
3.6. Analysis of Safe Site Selection Classification Map Based on All Three Aspects Such Geophysical, Socio-Economic and Geoenvironmental
3.7. Sensitivity Analysis
4. Discussion
5. Conclusions
- MCDA may be used to find potential building sites for residential homes.
- Fuzzy-AHP incoupled with GIS technology methods appears to be the robust method for identifying areas of high suitability.
- Other considerations and restrictions, such as social, economic, and environmental factors, must be taken into account when deciding where to construct residential houses. Schools, parks, and other social services and amenities should be considered.
- Other infrastructures, such as power and water, may be considered when determining the best locations for residential housing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International—U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/international/analysis/country/SAU (accessed on 19 April 2021).
- Lahn, G.; Stevens, P. Burning Oil to Keep Cool The Hidden Energy Crisis in Saudi Arabia Charity Registration Number: 208223 Burning Oil to Keep Cool: The Hidden Energy Crisis in Saudi Arabia; Catham house: London, UK, 2011; ISBN 9781862032590. [Google Scholar]
- Naqash, M.T.; Farooq, Q.U. Saudi Building Code. Available online: https://www.sbc.gov.sa/En/Pages/default.aspx (accessed on 19 April 2021).
- p_1001E.pdf. Available online: https://www.sbc.gov.sa/resources/PdfPreview/web/viewer.html?avx=p_1001E (accessed on 19 April 2021).
- Cheng, E.W.; Li, H.; Yu, L. A GIS approach to shopping mall location selection. Build. Environ. 2007, 42, 884–892. [Google Scholar] [CrossRef]
- Molenaar, K.R.; Songer, A.D. Model for public sector design-build project selection. J. Constr. Eng. Manag. 1998, 124, 467–479. [Google Scholar] [CrossRef]
- Ghobarah, A. Civil Engineers’ Role in Site?Selection Studies. J. Prof. Issues Eng. 1987, 113, 351–359. [Google Scholar] [CrossRef]
- Paradis, R.; Tran, B. Balancing Security/Safety and Sustainability Objectives|WBDG—Whole Building Design Guide. Available online: https://www.wbdg.org/resources/balancing-securitysafety-and-sustainability-objectives (accessed on 19 April 2021).
- Carsjens, G.J.; Ligtenberg, A. A GIS-based support tool for sustainable spatial planning in metropolitan areas. Landsc. Urban Plan. 2007, 80, 72–83. [Google Scholar] [CrossRef]
- Kumar, M.; Shaikh, V.R. Site suitability analysis for urban development using GIS based multicriteria evaluation technique: A case study of mussoorie municipal area, dehradun district, uttarakhand, India. J. Indian Soc. Remote Sens. 2013, 41, 417–424. [Google Scholar] [CrossRef]
- Kumar, S.; Bansal, V.K. A GIS-based methodology for safe site selection of a building in a hilly region. Front. Archit. Res. 2016, 5, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Dinler, D.; Tural, M.K.; Iyigun, C. Heuristics for a continuous multi-facility location problem with demand regions. Comput. Oper. Res. 2015, 62, 237–256. [Google Scholar] [CrossRef]
- Tomić, V.; Marinković, D.; Marković, D. The Selection of Logistic Centers Location Using Multi-Criteria Comparison: Case Study of the Balkan Peninsula. Acta Polytech. Hung. 2014, 11, 97–113. [Google Scholar]
- Awasthi, A.; Chauhan, S.; Goyal, S. A multi-criteria decision making approach for location planning for urban distribution centers under uncertainty. Math. Comput. Model. 2011, 53, 98–109. [Google Scholar] [CrossRef]
- Forzieri, G.; Guarnieri, L.; Vivoni, E.R.; Castelli, F.; Preti, F. Multiple attribute decision making for individual tree detection using high-resolution laser scanning. For. Ecol. Manag. 2009, 258, 2501–2510. [Google Scholar] [CrossRef]
- Erensal, Y.C.; Öncan, T.; Demircan, M.L. Determining key capabilities in technology management using fuzzy analytic hierarchy process: A case study of Turkey. Inf. Sci. 2006, 176, 2755–2770. [Google Scholar] [CrossRef]
- Vahidnia, M.H.; Alesheikh, A.; Alimohammadi, A.; Bassiri, A. Fuzzy Analytical Hierarchy Process In Gis Application. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, XXXVII, 593–596. [Google Scholar]
- Waly, A.F.; Thabet, W.Y. A virtual construction environment for preconstruction planning. Autom. Constr. 2003, 12, 139–154. [Google Scholar] [CrossRef]
- SBC_2018. Available online: https://www.sbc.gov.sa/En/Feedback/Pages/SBC_2018.aspx (accessed on 19 April 2021).
- Graham, S.R.; Carlton, C.; Gaede, D.; Jamison, B. Student column: The benefits of using geographic information systems as a community assessment tool. Public Health Rep. 2011, 126, 298–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greene, R.; Devillers, R.; Luther, J.E.; Eddy, B.G. GIS-Based Multiple-Criteria Decision Analysis. Geogr. Compass 2011, 5, 412–432. [Google Scholar] [CrossRef]
- Chang, Q.; Liu, X.; Wu, J.; He, P. MSPA-based urban green infrastructure planning and management approach for urban sustainability: Case study of longgang in China. J. Urban Plan. Dev. 2014, 141, A5014006. [Google Scholar] [CrossRef]
- Bansal, V.K.; Pal, M. Generating, evaluating, and visualizing construction schedule with geographic information systems. J. Comput. Civ. Eng. 2008, 22, 233–242. [Google Scholar] [CrossRef]
- Bansal, V.K. Use of GIS and topology in the identification and resolution of space conflicts. J. Comput. Civ. Eng. 2011, 25, 159–171. [Google Scholar] [CrossRef]
- Li, H.; Yu, L.; Cheng, E.W.L. A GIS-based site selection system for real estate projects. Constr. Innov. 2005, 5, 231–241. [Google Scholar]
- Mallick, J. Municipal solid waste landfill site selection based on fuzzy-AHP and geoinformation techniques in asir region Saudi Arabia. Sustainability 2021, 13, 1538. [Google Scholar] [CrossRef]
- Hernández, J.; García, L.; Ayuga, F. Assessment of the visual impact made on the landscape by new buildings: A methodology for site selection. Landsc. Urban Plan. 2004, 68, 15–28. [Google Scholar] [CrossRef]
- Isikdag, U.; Underwood, J.; Aouad, G. An investigation into the applicability of building information models in geospatial environment in support of site selection and fire response management processes. Adv. Eng. Inform. 2008, 22, 504–519. [Google Scholar] [CrossRef]
- Karan, E.P.; Ardeshir, A. Safety assessment of construction site layout using geographic information system. In Proceedings of the Architectural Engineering Conference (AEI), Building Integration Solutions, Denver, CO, USA, 24–27 September 2008; Volume 328. [Google Scholar]
- Malczewski, J. GIS-based land-use suitability analysis: A critical overview. Prog. Plann. 2004, 62, 3–65. [Google Scholar] [CrossRef]
- Long, Y.; Shen, Z.; Mao, Q. An urban containment planning support system for Beijing. Comput. Environ. Urban Syst. 2011, 35, 297–307. [Google Scholar] [CrossRef]
- Baz, I.; Geymen, A.; Er, S.N. Development and application of GIS-based analysis/synthesis modeling techniques for urban planning of Istanbul Metropolitan Area. Adv. Eng. Softw. 2009, 40, 128–140. [Google Scholar] [CrossRef]
- Faizi, S.; Sałabun, W.; Nawaz, S.; ur Rehman, A.; Wątróbski, J. Best-Worst method and Hamacher aggregation operations for intuitionistic 2-tuple linguistic sets. Expert Syst. Appl. 2021, 181, 115088. [Google Scholar] [CrossRef]
- Kizielewicz, B.; Shekhovtsov, A.; Sałabun, W. Application of similarity measures for triangular fuzzy numbers in modified TOPSIS technique to handling data uncertainty. Lect. Notes Netw. Syst. 2021, 307, 409–416. [Google Scholar]
- Mallick, J.; Singh, R.K.; AlAwadh, M.A.; Islam, S.; Khan, R.A.; Qureshi, M.N. GIS-based landslide susceptibility evaluation using fuzzy-AHP multi-criteria decision-making techniques in the Abha Watershed, Saudi Arabia. Environ. Earth Sci. 2018, 77, 1–25. [Google Scholar] [CrossRef]
- Chowdhury, A.; Jha, M.K.; Chowdary, V.M. Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environ. Earth Sci. 2010, 59, 1209–1222. [Google Scholar] [CrossRef]
- Singh, L.K.; Jha, M.K.; Chowdary, V.M. Multi-criteria analysis and GIS modeling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply. J. Clean. Prod. 2017, 142, 1436–1456. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process. In Planning, Priority Setting, Resource Allocation (Decision Making Series); CiteSeer: Princeton, NJ, USA, 1980. [Google Scholar]
- Mallick, J.; Singh, C.K.; Al-Wadi, H.; Ahmed, M.; Rahman, A.; Shashtri, S.; Mukherjee, S. Geospatial and geostatistical approach for groundwater potential zone delineation. Hydrol. Process. 2015, 29, 395–418. [Google Scholar] [CrossRef]
- Chen, V.Y.C.; Lien, H.P.; Liu, C.H.; Liou, J.J.H.; Tzeng, G.H.; Yang, L.S. Fuzzy MCDM approach for selecting the best environment-watershed plan. Appl. Soft Comput. J. 2011, 11, 265–275. [Google Scholar] [CrossRef]
- Shahabi, H.; Hashim, M. Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Sci. Rep. 2015, 5, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millet, I.; Saaty, T.L. On the relativity of relative measures—Accommodating both rank preservation and rank reversals in the AHP. Eur. J. Oper. Res. 2000, 121, 205–212. [Google Scholar] [CrossRef]
- Hsieh, T.Y.; Lu, S.T.; Tzeng, G.H. Fuzzy MCDM approach for planning and design tenders selection in public office buildings. Int. J. Proj. Manag. 2004, 22, 573–584. [Google Scholar] [CrossRef]
- Li, S.-P.; Will, B.F. A Fuzzy Logic system for visual evaluation. Environ. Plan. B Plan. Des. 2005, 32, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Feizizadeh, B.; Blaschke, T.; Moghaddam, R. Landslide susceptibility mapping for the Urmia lake basin, Iran: A multi-criteria evaluation approach using GIS. Int. J. Environ. Res 2013, 7, 319–336. [Google Scholar]
- Gorsevski, P.V.; Jankowski, P. An optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter. Comput. Geosci. 2010, 36, 1005–1020. [Google Scholar] [CrossRef]
- Pettit, C.; Pullar, D. An integrated planning tool based upon multiple criteria evaluation of spatial information. Comput. Environ. Urban Syst. 1999, 23, 339–357. [Google Scholar] [CrossRef]
- Bansal, V.K. Application areas of GIS in construction projects and future research directions. Int. J. Constr. Manag. 2012, 12, 17–36. [Google Scholar] [CrossRef]
- Vincent, P. Saudi Arabia: An Environmental Overview—1st Edition. Available online: https://www.routledge.com/Saudi-Arabia-An-Environmental-Overview/Vincent/p/book/9780367387815 (accessed on 19 April 2021).
- Bindajam, A.A.; Mallick, J. Impact of the spatial configuration of streets networks on urban growth: A case study of Abha city, Saudi Arabia. Sustainability 2020, 12, 1856. [Google Scholar] [CrossRef] [Green Version]
- ALOS PALSAR—Radiometric Terrain Correction ASF. Available online: https://asf.alaska.edu/data-sets/derived-data-sets/alos-palsar-rtc/alos-palsar-radiometric-terrain-correction/ (accessed on 19 April 2021).
- Bozdağ, A.; Yavuz, F.; Günay, A.S. AHP and GIS based land suitability analysis for Cihanbeyli (Turkey) County. Environ. Earth Sci. 2016, 75, 1–15. [Google Scholar] [CrossRef]
- Mu, Y. Developing a Suitability Index for Residential Land Use: A case study in Dianchi Drainage Area; University of Waterloo: Waterloo, ON, Canada, 2006. [Google Scholar]
- Star, J.; Estes, J. Geographic information systems: An introduction. Geocarto Int. 1991, 6, 46. [Google Scholar] [CrossRef]
- International Building Code 2009 (International Code Council Series): International Code Council: 9781580017251: Amazon.com: Books. Available online: https://www.amazon.com/2009-International-Building-Code-Council/dp/1580017258 (accessed on 19 April 2021).
- Rawat, J.S. Database management system for Khulgad Watershed, Kumaun Lesser Himalaya, Uttarakhand, India. Curr. Sci. 2010, 98, 1340–1348. [Google Scholar]
- Kumar, M.; Biswas, V. Identification of potential sites for urban development using GIS based multi criteria evaluation technique. A case study of shimla municipal area, shimla district, himachal pradesh, India. J. Settl. Spat. Plan. 2013, 4, 45–51. [Google Scholar]
- The Best Types of Soils for Home Building|2–10 Blog|2–10 HBW. Available online: https://www.2-10.com/blog/the-best-types-of-for-home-building/ (accessed on 19 April 2021).
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis—2nd Edition. Available online: https://www.routledge.com/Soil-Sampling-and-Methods-of-Analysis/Carter-Gregorich/p/book/9780849335860 (accessed on 19 April 2021).
- Zadeh, L.A. Fuzzy sets and systems. Int. J. Gen. Syst. 1990, 17, 129–138. [Google Scholar] [CrossRef]
- Balezentiene, L.; Streimikiene, D.; Balezentis, T. Fuzzy decision support methodology for sustainable energy crop selection. Renew. Sustain. Energy Rev. 2013, 17, 83–93. [Google Scholar] [CrossRef]
- Kahraman, C.; Cebeci, U.; Ruan, D. Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey. Int. J. Prod. Econ. 2004, 87, 171–184. [Google Scholar] [CrossRef]
- Akgun, A.; Türk, N. Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Environ. Earth Sci. 2010, 61, 595–611. [Google Scholar] [CrossRef]
- Mason, P.J.; Rosenbaum, M.S. Geohazard mapping for predicting landslides: An example from the Langhe Hills in Piemonte, NW Italy. Q. J. Eng. Geol. Hydrogeol. 2002, 35, 317–326. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Shadman Roodposhti, M.; Jankowski, P.; Blaschke, T. A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Comput. Geosci. 2014, 73, 208–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.P.; Lee, C.H. Estimating ground-water recharge from streamflow records. Environ. Geol. 2003, 44, 257–265. [Google Scholar] [CrossRef]
- Mallick, J.; Singh, R.K.; Khan, R.A.; Singh, C.K.; Kahla, N.B.; Warrag, E.I.; Islam, S.; Rahman, A. Examining the rainfall–topography relationship using non-stationary modelling technique in semi-arid Aseer region, Saudi Arabia. Arab. J. Geosci. 2018, 11, 1–16. [Google Scholar] [CrossRef]
- Buckley, J.J. Fuzzy hierarchical analysis. Fuzzy Sets Syst. 1985, 17, 233–247. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, J. Study on fuzzy AHP group decision-making method based on set-valued statistics. Proc. Fourth Int. Conf. Fuzzy Syst. Knowl. Discov. 2007, 3, 689–693. [Google Scholar]
- Musumba, G.W.; Wario, R.D. Towards group fuzzy analytical hierarchy process. Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST 2017, 244, 283–307. [Google Scholar]
- Malczewski, J.; Rinner, C. GI Science, spatial analysis, and decision support. In Advances in Geographic Information Science; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–21. [Google Scholar]
- Gomez, B. Research Methods in Geography: A Critical Introduction; Wiley: Hoboken, NJ, USA, 2010; ISBN 1444327739. [Google Scholar]
- Madrucci, V.; Taioli, F.; de Araújo, C.C. Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, São Paulo State, Brazil. J. Hydrol. 2008, 357, 153–173. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation: 9781118343289: Amazon.com: Books. Available online: https://www.amazon.com/Remote-Sensing-Interpretation-Thomas-Lillesand/dp/111834328X (accessed on 19 April 2021).
- Mallick, J.; Alashker, Y.; Mohammad, S.A.-D.; Ahmed, M.; Hasan, M.A. Risk assessment of soil erosion in semi-arid mountainous watershed in Saudi Arabia by RUSLE model coupled with remote sensing and GIS. Geocarto Int. 2014, 29, 915–940. [Google Scholar] [CrossRef]
- Yeh, H.F.; Cheng, Y.S.; Lin, H.I.; Lee, C.H. Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustain. Environ. Res. 2016, 26, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Siqing, C. Land-use suitability analysis for urban development in Regional Victoria: A case study of Bendigo. J. Geogr. Reg. Plan. 2016, 9, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Duru, O.; Bulut, E.; Yoshida, S. Regime switching fuzzy AHP model for choice-varying priorities problem and expert consistency prioritization: A cubic fuzzy-priority matrix design. Expert Syst. Appl. 2012, 39, 4954–4964. [Google Scholar] [CrossRef]
- Mijani, N.; Samani, N.N. Comparison of fuzzy-based models in landslide hazard mapping. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives; International Society for Photogrammetry and Remote Sensing: Hannover, Germany, 2017; Volume 42, pp. 407–416. [Google Scholar]
- Milad Aburas, M.; Ho Abdullah, S.; Firuz Ramli, M.; Hanan Ash, Z.; Malaysia Serdang, P.; Darul Ehsan, S. A Review of Land Suitability Analysis for Urban Growth by using the GIS-Based Analytic Hierarchy Process. Asian J. Appl. Sci. 2015, 3, 6. [Google Scholar]
- Akbulut, A.; Ozcevik, O.; Carton, L. Evaluating suitability of a GIS-AHP combined method for sustainable Urban and environmental planning in Beykoz District, Istanbul. Int. J. Sustain. Dev. Plan. 2018, 13, 1103–1115. [Google Scholar] [CrossRef]
Cluster | Criteria | “Fuzzy and Shape Membership Functions” | Control Point |
---|---|---|---|
Geo-Environmental Aspects | Vegetation (NDVI) | “monotonically decreasing-linear” | C = 0 D = 0.2 |
Distance from Waste water treatment plant | “monotonically increasing-linear” | C = 1000 D = 26,000 | |
Distance from Municipal Solid waste site (MSW) | monotonically increasing -linear” | C = 1000 D = 29,000 | |
Distance to Airport | A = 3000; B = 3001; C = 6000; D = 40,000 | Symmetric | |
Distance from Industries | “monotonically increasing-linear” | A = 1000 B = 30,500 | |
Geo-Physical Aspects | Slope | “monotonically decreasing-linear” | C = 10° D = 30° |
LULC | Categorical | User defined Builtup = 0.0; Waterbodies = 0.0 Dense vege = 0.1 Sparse veg, −0.2 Agri = 0.1 Scrub = 0.6 Baresoil = 0.8 Exposed = 0.9 | |
ASPECT | Categorical | Flat = 1.0; North = 0.2; Northeast = 0.3; East = 0.4; Southeast = 0.6; South = 0.8; Southwest = 0.8; West = 0.6; Northwest = 0.4 | |
Drainage density | “monotonically increasing-linear” | C = 50 D = 5000 | |
Surface water | “monotonically decreasing-linear” | C = 500 D = 31,000 | |
Socio-economical aspect | Distance to Road | monotonically decreasing-linear | C = 100 D = 6500 |
Distance to Existing Malls | monotonically decreasing-linear | C = 500 D = 31,500 | |
Distance to Health services | monotonically decreasing-linear | C = 500 D = 31,000 | |
Distance to Institutions | monotonically decreasing-linear | C = 500 D = 30,000 | |
Restricted Area | Categorical | ||
Geotechnical properties | Categorical | User defined Exposed rock = 1.00 Sand = 0.8 Sandy loam = 0.6 Loamy sand = 0.4 Loam = 0.2 Silty loam = 0.2 Sandy clay loam = 0.1 |
LULC | Area in km | % of the Total Area |
---|---|---|
Built-up | 277.45 | 21.60 |
Waterbodies | 0.52 | 0.04 |
Dense Vegetation | 9.44 | 0.73 |
Sparse Vegetation | 75.47 | 5.87 |
Agricultural Cropland | 17.75 | 1.38 |
Scrubland | 332.04 | 25.85 |
Baresoil | 113.94 | 8.87 |
Exposed Rocks | 458.08 | 35.66 |
Total | 1284.68 | 100.00 |
AHP Priority | |||||
---|---|---|---|---|---|
Geo-physical Aspects | Slope | Aspect | LULC | Surface water | Drainage net. |
Slope | 1.00 | 5.00 | 6.00 | 7.00 | 9.00 |
Aspect | 0.20 | 1.00 | 3.00 | 4.00 | 5.00 |
LULC | 0.17 | 0.33 | 1.00 | 2.00 | 3.00 |
Surface water | 0.14 | 0.25 | 0.50 | 1.00 | 2.00 |
Drainage network | 0.11 | 0.20 | 0.33 | 0.50 | 1.00 |
Geo-environmental Aspects | Vegetation | Distance to Industries | Distance to Airport | Distance to WWTP | Distance to MWS |
Vegetation | 1.00 | 8.00 | 3.00 | 9.00 | 4.00 |
Distance to Industries | 0.13 | 1.00 | 0.50 | 8.00 | 3.00 |
Distance to Airport | 0.33 | 2.00 | 1.00 | 7.00 | 3.00 |
Distance to WWTP | 0.11 | 0.13 | 0.14 | 1.00 | 0.25 |
Distance to MWS | 0.25 | 0.33 | 0.33 | 4.00 | 1.00 |
Socio-economic Aspects | Geotechnical properties | Distance to road | Distance to institution | Distance to Health services | Distance to Mall |
Geotechnical properties | 1.00 | 2.00 | 7.00 | 6.00 | 9.00 |
Distance to road | 0.50 | 1.00 | 3.00 | 7.00 | 6.00 |
Distance to institution | 0.14 | 0.33 | 1.00 | 2.00 | 4.00 |
Distance to Health services | 0.17 | 0.14 | 0.50 | 1.00 | 2.00 |
Distance to Mall | 0.11 | 0.17 | 0.25 | 0.50 | 1.00 |
Fuzzy-AHP Priority | |||||
Geo-physical Aspects | Slope | Aspect | LULC | Surface water | Drainage net. |
Slope | 1,1,1 | 3,5,7 | 4,6,8 | 5,7,9 | 7,9,9 |
Aspect | 1/7,1/5,1/3 | 1,1,1 | 1,3,5 | 2,4,6 | 3,5,7 |
LULC | 1/8,1/6,1/4 | 1/5,1/3,1 | 1,1,1, | 1,2,3 | 1,3,5 |
Surface water | 1/9,1/7,1/5 | 1/6,1/4,1/2 | 1/3,1/2,1 | 1,1,1 | 1,2,3 |
Drainage network | 1/9,1/9,1/7 | 1/7,1/5,1/3 | 1/5,1/3,1 | 1/3,1/2,1 | 1,1,1 |
Geo-environmental Aspects | Vegetation | Distance to Industries | Distance to Airport | Distance to WWTP | Distance to MWS |
Vegetation | 1,1,1 | 6,8,9 | 1,3,5 | 7,9,9 | 2,4,6 |
Distance to Industries | 1/9,1/8,1/6 | 1,1,1 | 1/3,1/2,1 | 6,8,9 | 1,3,5 |
Distance to Airport | 1/5,1/3,1 | 1,2,3 | 1,1,1 | 5,7,9 | 1,3,5 |
Distance to WWTP | 1/9,1/9,1/7 | 1/9,1/8,1/6 | 1/9,1/7,1/5 | 1,1,1 | 1/6,1/4,1/2 |
Socio-economic Aspects | Geotechnical properties | Distance to road | Distance to institution | Distance to Health services | Distance to Mall |
Geotechnical properties | 1,1,1 | 1,2,3 | 5,7,9 | 4,6,8 | 7,9,9 |
Distance to road | 1/3,1/2,1 | 1,1,1 | 1,3,5 | 5,7,9 | 4,6,8 |
Distance to institution | 1/9,1/7,1/5 | 1/5,1/3,1 | 1,1,1 | 1,2,3 | 2,4,6 |
Distance to Health services | 1/8,1/6,1/4 | 1/9,1/7,1/5 | 1/3,1/2,1 | 1,1,1 | 1,2,3 |
Slope | Aspect | LULC | Surface Water | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Slope | 0.648 | 0.613 | 0.534 | 0.648 | 0.613 | 0.535 | 0.649 | 0.613 | 0.535 | 0.649 | 0.612 | 0.535 | ||
Aspect | 0.135 | 0.161 | 0.192 | 0.135 | 0.161 | 0.192 | 0.135 | 0.161 | 0.192 | 0.135 | 0.161 | 0.192 | ||
LULC | 0.086 | 0.099 | 0.121 | 0.086 | 0.099 | 0.121 | 0.086 | 0.099 | 0.121 | 0.086 | 0.099 | 0.121 | ||
Surface water | 0.070 | 0.075 | 0.084 | 0.070 | 0.075 | 0.084 | 0.070 | 0.075 | 0.084 | 0.070 | 0.075 | 0.084 | ||
Drainage network | 0.063 | 0.055 | 0.060 | 0.063 | 0.055 | 0.060 | 0.063 | 0.055 | 0.060 | 0.063 | 0.055 | 0.060 | ||
Drainage Network | l | m | n | defuzzify | Weight | |||||||||
Slope | 0.648 | 0.612 | 0.535 | 0.64849 | 0.61253 | 0.53471 | 0.5986 | 59.917 | ||||||
Aspect | 0.135 | 0.161 | 0.192 | 0.1346 | 0.16119 | 0.19217 | 0.1627 | 16.282 | ||||||
LULC | 0.086 | 0.099 | 0.121 | 0.08583 | 0.09866 | 0.12123 | 0.1019 | 10.201 | ||||||
Surface water | 0.070 | 0.075 | 0.084 | 0.07002 | 0.07519 | 0.0843 | 0.0765 | 7.6581 | ||||||
Drainage network | 0.063 | 0.055 | 0.060 | 0.06256 | 0.05513 | 0.06036 | 0.0594 | 5.9411 |
Vegetation | Distance to Industry | Distance to Airport | Distance to WWTP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Vegetation | 0.570 | 0.543 | 0.450 | 0.571 | 0.543 | 0.450 | 0.572 | 0.543 | 0.450 | 0.570 | 0.544 | 0.450 |
Distance to Industry | 0.094 | 0.107 | 0.115 | 0.094 | 0.107 | 0.115 | 0.094 | 0.107 | 0.115 | 0.094 | 0.107 | 0.115 |
Distance to Airport | 0.169 | 0.197 | 0.264 | 0.169 | 0.197 | 0.264 | 0.169 | 0.197 | 0.265 | 0.169 | 0.197 | 0.265 |
Distance to WWTP | 0.057 | 0.044 | 0.036 | 0.057 | 0.044 | 0.036 | 0.057 | 0.044 | 0.036 | 0.057 | 0.044 | 0.036 |
Distance to MWS | 0.106 | 0.106 | 0.134 | 0.107 | 0.106 | 0.134 | 0.107 | 0.106 | 0.134 | 0.106 | 0.107 | 0.134 |
Distance to MWS | l | m | n | defuzzify | Weight | |||||||
Vegetation | 0.570 | 0.544 | 0.450 | 0.571 | 0.543 | 0.450 | 0.521 | 52.183 | ||||
Distance to Industry | 0.094 | 0.107 | 0.115 | 0.094 | 0.107 | 0.115 | 0.105 | 10.539 | ||||
Distance to Airport | 0.169 | 0.197 | 0.265 | 0.169 | 0.197 | 0.265 | 0.210 | 21.021 | ||||
Distance to WWTP | 0.057 | 0.044 | 0.036 | 0.057 | 0.044 | 0.036 | 0.046 | 4.559 | ||||
Distance to MWS | 0.106 | 0.106 | 0.134 | 0.107 | 0.106 | 0.134 | 0.116 | 11.591 |
Geotechnical Properties | Distance to Road | Distance to Institution | Distance to Health Services | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Geotech. properties | 0.527 | 0.521 | 0.454 | 0.525 | 0.521 | 0.453 | 0.527 | 0.520 | 0.453 | 0.526 | 0.520 | 0.453 | ||
Distance to road | 0.269 | 0.276 | 0.312 | 0.268 | 0.277 | 0.312 | 0.269 | 0.276 | 0.312 | 0.269 | 0.276 | 0.312 | ||
Distance to institution | 0.081 | 0.089 | 0.120 | 0.081 | 0.089 | 0.120 | 0.081 | 0.089 | 0.120 | 0.081 | 0.089 | 0.120 | ||
Distance to Health ser. | 0.064 | 0.068 | 0.071 | 0.064 | 0.068 | 0.071 | 0.064 | 0.068 | 0.071 | 0.064 | 0.068 | 0.071 | ||
Distance to Mall | 0.056 | 0.049 | 0.048 | 0.056 | 0.049 | 0.048 | 0.056 | 0.049 | 0.048 | 0.056 | 0.049 | 0.048 | ||
Distance to Mall | l | m | n | defuzzify | Weight | |||||||||
Geotech. properties | 0.526 | 0.520 | 0.453 | 0.526 | 0.521 | 0.453 | 0.500 | 50.058 | ||||||
Distance to road | 0.269 | 0.276 | 0.312 | 0.269 | 0.276 | 0.312 | 0.286 | 28.587 | ||||||
Distance to institution | 0.081 | 0.089 | 0.120 | 0.081 | 0.089 | 0.120 | 0.096 | 9.651 | ||||||
Distance to Health ser. | 0.064 | 0.068 | 0.071 | 0.064 | 0.068 | 0.071 | 0.068 | 6.799 | ||||||
Distance to Mall | 0.056 | 0.049 | 0.048 | 0.056 | 0.049 | 0.048 | 0.051 | 5.101 |
AHP Priority | |||
Geophysical Aspect | Socio-Economic Aspect | Geoenvironmental Aspect | |
Geophysical Aspect | 1.00 | 1.00 | 2.00 |
Socio-Economic Aspect | 1.00 | 1.00 | 1.00 |
Geoenvironmental Aspect | 0.50 | 1.00 | 1.00 |
Fuzzy-AHP Priority | |||
Geophysical Aspect | Socio-Economic Aspect | Geoenvironmental Aspect | |
Geophysical Aspect | 1,1,1 | 1,1,1 | 1,2,3 |
Socio-Economic Aspect | 1,1,1 | 1,1,1 | 1,1,1 |
Geoenvironmental Aspect | 1/3,1/2,1 | 1,1,1 | 1,1,1 |
Geophysical Aspect | Socio-Economic Aspect | Geoenvironmental Aspect | |||||||
---|---|---|---|---|---|---|---|---|---|
Geophysical Aspect | 0.370 | 0.403 | 0.412 | 0.369 | 0.403 | 0.412 | 0.369 | 0.403 | 0.412 |
Socio-Economic Aspect | 0.370 | 0.339 | 0.294 | 0.369 | 0.339 | 0.294 | 0.369 | 0.339 | 0.294 |
Geoenvironmental Aspect | 0.264 | 0.258 | 0.294 | 0.264 | 0.258 | 0.294 | 0.264 | 0.258 | 0.294 |
l | m | n | defuzzify | Weight | |||||
Geophysical Aspect | 0.369 | 0.403 | 0.412 | 0.395 | 39.513 | ||||
Socio-Economic Aspect | 0.369 | 0.339 | 0.294 | 0.334 | 33.435 | ||||
Geoenvironmental Aspect | 0.264 | 0.258 | 0.294 | 0.272 | 27.221 |
Suitable Class | Area in Km | % of Total Area |
---|---|---|
No construction | 377.53 | 29.39 |
Very Low Suitable site | 28.75 | 2.24 |
Low Suitable site | 79.90 | 6.22 |
Moderate Suitable site | 339.14 | 26.40 |
High Suitable site | 412.61 | 32.12 |
Very High Suitable site | 46.76 | 3.64 |
Total | 1284.68 | 100.00 |
Sl. No | Theme | “Theoretical Weight (%)” | “Effective Weight (%)” | |||
---|---|---|---|---|---|---|
Min. | Max. | Mean | Std. Dev. | |||
Geo-Physical Aspect | Slope | 59.917 | 2.18 | 99.80 | 57.38 | 14.25 |
ASPECT | 16.282 | 0.00 | 38.65 | 17.56 | 8.460 | |
LULC | 10.201 | 0.00 | 35.85 | 11.86 | 4.568 | |
Surface water | 7.6581 | 0.00 | 25.85 | 7.21 | 5.673 | |
Drainage density | 5.9411 | 0.02 | 21.27 | 5.99 | 2.497 | |
Geo-Environmental Aspect | Vegetation (NDVI) | 52.183 | 0.00 | 88.69 | 51.45 | 13.57 |
Distance from Industries plant | 10.539 | 0.00 | 34.71 | 10.54 | 4.472 | |
Distance to Airport | 21.021 | 0.00 | 52.66 | 20.91 | 9.323 | |
Distance from Waste water treatment | 4.559 | 0.00 | 14.35 | 4.32 | 1.834 | |
Distance from site (MSW) | 11.591 | 0.00 | 37.54 | 12.78 | 4.635 | |
Socio-Economic Aspect | Geotechnical properties | 50.058 | 0.00 | 92.14 | 49.12 | 21.042 |
Distance to Road | 28.587 | 0.00 | 66.25 | 27.27 | 10.251 | |
Distance to Institutions | 9.651 | 0.00 | 30.45 | 10.15 | 4.035 | |
Distance to Health services | 6.799 | 0.00 | 28.12 | 7.14 | 4.589 | |
Distance to Shopping Malls | 5.101 | 0.00 | 12.12 | 6.32 | 2.120 | |
SSS index | Geo-Physical Aspect | 39.513 | 0.00 | 88.52 | 40.01 | 18.254 |
Geo-Environmental Aspect | 27.221 | 0.00 | 66.12 | 25.97 | 15.471 | |
Socio-Economic Aspect | 33.435 | 0.00 | 87.42 | 34.02 | 16.142 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallick, J.; Ibnatiq, A.A.; Kahla, N.B.; Alqadhi, S.; Singh, V.P.; Hoa, P.V.; Hang, H.T.; Hong, N.V.; Le, H.A. GIS-Based Decision Support System for Safe and Sustainable Building Construction Site in a Mountainous Region. Sustainability 2022, 14, 888. https://doi.org/10.3390/su14020888
Mallick J, Ibnatiq AA, Kahla NB, Alqadhi S, Singh VP, Hoa PV, Hang HT, Hong NV, Le HA. GIS-Based Decision Support System for Safe and Sustainable Building Construction Site in a Mountainous Region. Sustainability. 2022; 14(2):888. https://doi.org/10.3390/su14020888
Chicago/Turabian StyleMallick, Javed, Abdulaziz Awad Ibnatiq, Nabil Ben Kahla, Saeed Alqadhi, Vijay P. Singh, Pham Viet Hoa, Hoang Thi Hang, Nguyen Van Hong, and Hoang Anh Le. 2022. "GIS-Based Decision Support System for Safe and Sustainable Building Construction Site in a Mountainous Region" Sustainability 14, no. 2: 888. https://doi.org/10.3390/su14020888
APA StyleMallick, J., Ibnatiq, A. A., Kahla, N. B., Alqadhi, S., Singh, V. P., Hoa, P. V., Hang, H. T., Hong, N. V., & Le, H. A. (2022). GIS-Based Decision Support System for Safe and Sustainable Building Construction Site in a Mountainous Region. Sustainability, 14(2), 888. https://doi.org/10.3390/su14020888