Basin-Scale Approach to Integration of Agro- and Hydroecological Monitoring for Sustainable Environmental Management: A Case Study of Belgorod Oblast, European Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Study Objects
2.2. Methodology for Solving the Problem
2.3. Justification of the Initial Data
2.4. Methods of Data Preparation
2.5. Classification of Objects
2.6. Evaluation Criteria
3. Results
3.1. Development of Soil Protection Projects for River Basins
3.2. Typification of River Basins by Environmental and Erosion Criteria
3.3. Justification for a Sustainable Network of Hydroecological Monitoring
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lehner, B.; Grill, G. Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrol. Processes 2013, 27, 2171–2186. [Google Scholar] [CrossRef]
- Nian, Y.Y.; Li, X.; Zhou, J.; Hu, X.L. Impact of land use change on water resource allocation in the middle reaches of the Heihe River Basin in northwestern China. J. Arid. Land 2014, 6, 273–286. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, Z.; Zhang, B.; Lu, C.; Ren, C. Impact of land use/land cover changes on ecosystem services in the Nenjiang River Basin, Northeast China. Ecol. Processes 2015, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Astashin, A.E.; Pashkin, O.N.; Vatina, O.E.; Astashina, N.I.; Fomina, A.I. Dynamics of the length of the river network of elementary watercourses in the zone of broad-leaved forests under high anthropogenic pressure in the XXI Century (on the example of the catchment area of the Birlya river in the Republic of Tatarstan, Russia). IOP Conf. Ser. Earth Environ. Sci. 2021, 688, 012023. [Google Scholar] [CrossRef]
- Ivanov, M.A.; Yermolaev, O.P.; Maltsev, K.A.; Shynbergenov, Y.A. Geomorphometric analysis of river basins in East European Russia using SRTM and ASTER GDEM data. J. Eng. Appl. Sci. 2016, 14, 3080–3087. [Google Scholar]
- Koshovskii, T.S.; Zhidkin, A.P.; Gennadiev, A.N.; Ivanova, N.N. Diagnostics, genesis, and localization of pedosediments within a small catchment (Central Russian Upland). Eurasian Soil Sci. 2019, 5, 481–493. [Google Scholar] [CrossRef]
- Yermolaev, O.P.; Mukharamova, S.S.; Maltsev, K.A.; Ivanov, M.A.; Ermolaeva, P.O.; Gayazov, A.I.; Mozzherin, V.V.; Kharchenko, S.V.; Marinina, O.A.; Lisetskii, F.N. Geographic information system and geoportal river basins of the European Russia. IOP Conf. Ser. Earth Environ. Sci. 2018, 107, 012108. [Google Scholar] [CrossRef]
- Tagne, G.V.; Dowling, C. Land-use controls on nutrient loads in aquifers draining agricultural and mixed-use karstic watersheds. Environ. Monit. Assess. 2020, 192, 168. [Google Scholar] [CrossRef]
- Zhu, P.-Z.; Zhang, G.-H.; Zhang, B.-J.; Wang, H.-X. Variation in soil surface roughness under different land uses in a small watershed on the Loess Plateau, China. Catena 2020, 188, 104465. [Google Scholar] [CrossRef]
- Dukhovny, V.A.; Sokolov, V.I.; Ziganshina, D.R. Integrated water resources management in Central Asia, as a way of survival in conditions of water scarcity. Quat. Int. 2013, 311, 181–188. [Google Scholar] [CrossRef]
- Mukharamova, S.; Ivanov, M.; Yermolaev, O. Assessment of anthropogenic pressure on the Volga federal district territory using river basin approach. Geosciences 2020, 10, 139. [Google Scholar] [CrossRef] [Green Version]
- Sultana, J.; Tibby, J.; Recknagel, F.; Maxwell, S.; Goonan, P. Comparison of two commonly used methods for identifying water quality thresholds in freshwater ecosystems using field and synthetic data. Sci. Total Environ. 2020, 724, 137999. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, S.; Han, X.; Zhang, L.; Ding, S.; Li, Y.; Zhang, D.; Zarin, K. Occurrence, distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of Chongqing city, southwest China. J. Hazard. Mater. 2020, 389, 122110. [Google Scholar] [CrossRef]
- Jabbar, F.K.; Grote, K. Statistical assessment of nonpoint source pollution in agricultural watersheds in the Lower Grand River watershed, MO, USA. Environ. Sci. Pollut. Res. 2019, 26, 1487–1506. [Google Scholar] [CrossRef] [Green Version]
- Stefanidis, K.; Panagopoulos, Y.; Mimikou, M. Response of a multi-stressed Mediterranean river to future climate and socio-economic scenarios. Sci. Total Environ. 2018, 627, 756–769. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Fu, Z.; Lu, W.; Guo, H. A risk analysis of interactive region of river and land area environmental systems. Acta Sci. Circumstantiae 2018, 38, 372–379. [Google Scholar]
- Kochurov, A.I.; Marunich, N.A.; Khaziakhmetova, Y.A.; Krasnov, E.V. The ecologically balanced structure of lands and energy efficiency of forestry management in Transnistria. Geogr. Nat. Resour. 2017, 38, 394–398. [Google Scholar] [CrossRef]
- Gagarinova, O.V.; Kovalchuk, O.A. Assessment of anthropogenic impacts on landscape-hydrological complexes. Geogr. Nat. Resour. 2010, 31, 291–295. [Google Scholar] [CrossRef]
- Prykhodko, M.M.; Romaniuk, V.V.; Kukhtar, D.V.; Bodnaruk, I.L.; Adamovych, M.V. Use of geoinformation technology to study the structure and morphometric parameters of river basins. In Proceedings of the Geoinformatics 2020—XIXth International Conference “Geoinformatics: Theoretical and Applied Aspects”, Kiev, Ukraine, 11–14 May 2020; p. 17532. [Google Scholar]
- Panchenko, E.M.; Dyukarev, A.G. The ecological-economic balance of the Ob’-Tom’ interfluve. Geogr. Nat. Resour. 2016, 4, 123–129. [Google Scholar]
- Miserendino, M.L.; Kutschker, A.; Brand, C.; Manna La, L.; Di Cecilia, P.Y.; Papazian, G.; Bava, J. Ecological status of a Patagonian mountain river: Usefulness of environmental and biotic metrics for rehabilitation assessment. Environ. Manag. 2016, 57, 1166–1187. [Google Scholar]
- Rulev, A.S.; Pugacheva, A.M. Formation of a new agroforestry paradigm. Her. Russ. Acad. Sci. 2019, 89, 495–501. [Google Scholar] [CrossRef]
- Fang, L.; Wang, L.; Chen, W.; Sun, J.; Cao, Q.; Wang, S.; Wang, L. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Moiseenko, T.I.; Soromotin, A.V.; Shalabodov, A.D. Kachestvo vod i metodologija normirovanija zagrjaznenija [Water quality and methodology of valuation of pollution]. Bull. Tyumen State Univ. 2010, 7, 4–13. (In Russian) [Google Scholar]
- DeLonge, M.; Basche, A. Leveraging agroecology for solutions in food, energy, and water. Elem. Sci. Anth. 2017, 5, 6. [Google Scholar] [CrossRef]
- Chen, Y.P.; Fu, B.J.; Zhao, Y.; Wang, K.B.; Zhao, M.M.; Ma, J.F.; Wang, H. Sustainable development in the Yellow River Basin: Issues and strategies. J. Clean. Prod. 2020, 263, 121223. [Google Scholar] [CrossRef]
- Li, Y.; Yen, H.; Harmel, R.D.; Lei, Q.; Zhou, J.; Hu, W.; Li, W.; Lian, H.; Zhu, A.-X.; Zhai, L.; et al. Effects of sampling strategies and estimation algorithms on total nitrogen load determination in a small agricultural headwater watershed. J. Hydrol. 2019, 579, 124114. [Google Scholar] [CrossRef]
- Brownson, K.; Fowler, L. Evaluating how we evaluate success: Monitoring, evaluation and adaptive management in Payments for Watershed Services programs. Land Use Policy 2020, 94, 104505. [Google Scholar] [CrossRef]
- Jerves-Cobo, R.; Benedetti, L.; Amerlinck, Y.; Lock, K.; De Mulder, C.; Van Butsel, J.; Cisneros, F.; Goethals, P.; Nopens, I. Integrated ecological modelling for evidence-based determination of water management interventions in urbanized river basins: Case study in the Cuenca River basin (Ecuador). Sci. Total Environ. 2020, 709, 136067. [Google Scholar] [CrossRef]
- Yang, G.; Moyer, D.L. Estimation of nonlinear water-quality trends in high-frequency monitoring data. Sci. Total Environ. 2020, 715, 136686. [Google Scholar] [CrossRef]
- Chalov, S.; Ermakova, G. Fluvial response to climate change: A case study of northern Russian rivers. IAHS Publ. 2011, 346, 111–119. [Google Scholar]
- Kairis, O.; Kosmas, C.; Karavitis, C.; Ritsema, C.; Salvati, L.; Acikalin, S.; Belgacem, A.; Solé-Benet, A.; Brito, J.; Chaker, M.; et al. Evaluation and selection of indicators for land degradation and desertification monitoring: Types of degradation, causes, and implications for management. Environ. Manag. 2014, 54, 971–982. [Google Scholar] [CrossRef]
- Marinina, O.A. Soil evaluation for land use optimizing. IOP Conf. Ser. Earth Environ. Sci. 2018, 107, 012015. [Google Scholar] [CrossRef]
- Golosov, V.; Belyaev, V. The history and assessment of effectiveness of soil erosion control measures deployed in Russia. Int. Soil Water Conserv. Res. 2013, 1, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Yermolaev, O.; Mukharamova, S.; Vedeneeva, E. River runoff modeling in the European territory of Russia. Catena 2021, 203, 105327. [Google Scholar] [CrossRef]
- Simonov, Y.G.; Simonova, T.Y. River basin and basin organization of the landscape geosphere. Soil Eros. Channel Processes 2004, 14, 7–32. (In Russian) [Google Scholar]
- Ermolaev, O.P.; Mal’tsev, K.A.; Mukharamova, S.S.; Kharchenko, S.V.; Vedeneeva, E.A. Cartographic model of river basins of European Russia. Geogr. Nat. Resour. 2017, 38, 131–138. [Google Scholar] [CrossRef]
- Korytny, L.M. The basin concept: From hydrology to nature management. Geogr. Nat. Resour. 2017, 2, 111–121. [Google Scholar] [CrossRef]
- Puzachenko, Y.G. Application of fractal theory to the study of landscape structure. News Acad. Sci. Russ. Fed. Geogr. Ser. 1997, 2, 24–40. [Google Scholar]
- Ibrahim-Bathis, K.; Ahmed, S.A. Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. Egypt. J. Remote Sens. Space Sci. 2016, 19, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, W.; Shao, H.; Yu, Z.; Lindsay, J. Development of an integrated modelling system for evaluating water quantity and quality effects of individual wetlands in an agricultural watershed. Water 2018, 10, 774. [Google Scholar] [CrossRef] [Green Version]
- Buryak, Z.; Grigoreva, O. A project-based approach to reduce the risk of soil erosion in agricultural landscapes of small river basins using GIS technologies. SGEM 2019, 19, 19–26. [Google Scholar]
- Abedin, S.J.H.; Stephen, H. GIS framework for spatiotemporal mapping of urban flooding. Geosciences 2019, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Voda, M.; Sarpe, C.A.; Voda, A.I. Romanian river basins lag time analysis. The SCS-CN versus RNS comparative approach developed for small watersheds. Water Resour. Manag. 2019, 33, 245–259. [Google Scholar] [CrossRef]
- Buryak, Z.A.; Zelenskaya, E.Y.; Poletaev, A.O.; Tsybenko, V.V. System approach to soil protection and ecological arrangement of watersheds at the regional level, Belgorod oblast. Ecol. Environ. Conserv. 2019, 25, 219–228. [Google Scholar]
- Ghorbani, M.A.; Kisi, O.; Aalinezhad, M. A probe into the chaotic nature of daily streamflow time series by correlation dimension and largest Lyapunov methods. Appl. Math. Model. 2010, 34, 4050–4057. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Li, X. Mechanism and forecasting methods for severe droughts and floods in Songhua River Basin in China. Chin. Geogr. Sci. 2011, 21, 531–542. [Google Scholar] [CrossRef]
- Singh, G.; Panda, R.K. Grid-cell based assessment of soil erosion potential for identification of critical erosion prone areas using USLE, GIS and remote sensing: A case study in the Kapgari watershed, India. Int. Soil Water Conserv. Res. 2017, 5, 202–211. [Google Scholar] [CrossRef]
- Pichura, V.I.; Domaratsky, Y.A.; Yaremko, Y.I.; Volochnyuk, Y.G.; Rybak, V.V. Strategic ecological assessment of the state of the transboundary catchment basin of the Dnieper River under extensive agricultural load. Indian J. Ecol. 2017, 44, 442–450. [Google Scholar]
- Nguyen, T.H.; Helm, B.; Hettiarachchi, H.; Caucci, S.; Krebs, P. The selection of design methods for river water quality monitoring networks: A review. Environ. Earth Sci. 2019, 78, 96. [Google Scholar] [CrossRef]
- Pichura, V.I.; Potravka, L.A.; Vasylivna, D.N.; Skrypchuk, P.M.; Stratichuk, N.V. Retrospective and forecast of heterochronal climatic fluctuations within territory of Dnieper basin. Indian J. Ecol. 2019, 46, 402–407. [Google Scholar]
- Guigues, N.; Desenfant, M.; Hance, E. Combining multivariate statistics and analysis of variance to redesign a water quality monitoring network. Environ. Sci. Process. Impacts 2013, 15, 1692–1705. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, B.H.; Wang, M.; Xu, Y.X.; Qin, Y.W. Optimization of sampling frequency for routine river water quality monitoring. Sci. China Chem. 2014, 57, 772–778. [Google Scholar] [CrossRef]
- Calazans, G.M.; Pinto, C.C.; da Costa, E.P.; Perini, A.F.; Oliveira, S.C. Using multivariate techniques as a strategy to guide optimization projects for the surface water quality network monitoring in the Velhas river basin, Brazil. Environ. Monit. Assess. 2018, 190, 726. [Google Scholar] [CrossRef]
- Loga, M.; Wierzchołowska-Dziedzic, A.; Martyszunis, A. The problem of water body status misclassification—A hierarchical approach. Environ. Monit. Assess. 2018, 190, 264. [Google Scholar] [CrossRef] [Green Version]
- Ovchinnikov, A.S.; Litvinov, E.A.; Rulev, A.S.; Kochkar, M.M.; Vorob’eva, O.M. Remote cartographic assessment of the erosion condition of agrolandscapes. J. For. Sci. 2017, 63, 485–489. [Google Scholar]
- Pichura, V.; Potravka, L.; Dudiak, N.; Stroganov, A.; Dyudyaeva, O. Spatial differentiation of regulatory monetary valuation of agricultural land in conditions of widespread irrigation of steppe soils. J. Water Land Develop. 2021, 48, 182–196. [Google Scholar]
- Batbayar, G.; Pfeiffer, M.; Kappas, M.; Karthe, D. Development and application of GIS-based assessment of land-use impacts on water quality: A case study of the Kharaa River Basin. Ambio 2019, 48, 1154–1168. [Google Scholar] [CrossRef]
- Bussan, D.D.; Ochs, C.A.; Jackson, C.R.; Anumol, T.; Snyder, S.A.; Cizdziel, J.V. Concentrations of select dissolved trace elements and anthropogenic organic compounds in the Mississippi River and major tributaries during the summer of 2012 and 2013. Environ. Monit. Assess. 2017, 189, 73. [Google Scholar] [CrossRef]
- Česonienė, L.; Sileikiene, D.; Dapkiene, M.; Radzevicius, A.; Räsänen, K. Assessment of chemical and microbiological parameters on the Leite River Lithuania. Environ. Sci. Pollut. Res. 2019, 26, 18752–18765. [Google Scholar] [CrossRef]
- Li, R.; Tang, X.; Guo, W.; Lin, L.; Zhao, L.; Hu, Y.; Liu, M. Spatiotemporal distribution dynamics of heavy metals in water, sediment, and zoobenthos in mainstream sections of the middle and lower Changjiang River. Sci. Total Environ. 2020, 714, 136779. [Google Scholar] [CrossRef]
- Chapman, D.V.; Bradley, C.; Gettel, G.M.; Hatvani, I.G.; Hein, T.; Kovács, J.; Várbíró, G. Developments in water quality monitoring and management in large river catchments using the Danube River as an example. Environ. Sci. Policy 2016, 64, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Jiang, T.; Xu, H.; Wang, Y. Potential threats from variations of hydrological parameters to the Yellow River and Pearl River Basins in China over the next 30 years. Water 2018, 10, 883. [Google Scholar] [CrossRef] [Green Version]
- Frolova, N.L.; Kireeva, M.B.; Magritckiy, D.V.; Bolgov, M.B.; Kopylov, V.N.; Hall, J.; Semenov, V.A.; Kosolapov, A.E.; Dorozhkin, E.V.; Korobkina, E.A.; et al. Hydrological hazards in Russia: Origin, classification, changes and risk assessment. Nat. Hazards 2017, 88, 103–131. [Google Scholar] [CrossRef]
- Tanos, P.; Kovács, J.; Kovács, S.; Anda, A.; Hatvani, I.G. Optimization of the monitoring network on the River Tisza (Central Europe, Hungary) using combined cluster and discriminant analysis, taking seasonality into account. Environ. Monit. Assessment 2015, 187, 575. [Google Scholar] [CrossRef]
- Ge, M.; Wu, F.; Chen, X. Using multiple discriminant analysis for the assignment of initial water entitlements at river basin-level under the strictest water resources management system constraints in China. Sustainability 2018, 10, 4414. [Google Scholar] [CrossRef] [Green Version]
- Eldho, T.I.; Jha, A.; Singh Anupam, K. Integrated watershed modeling using a Finite Element Method and GIS approach. Int. J. River Basin Manag. 2006, 4, 17–25. [Google Scholar] [CrossRef]
- Acreman, M.; Dunbar, M.J. Defining environmental river flow requirements—A review. Hydrol. Earth Syst. Sci. 2004, 8, 861–876. [Google Scholar] [CrossRef]
- King, R.S.; Baker, M.E.; Whigham, D.F.; Weller, D.E.; Jordan, T.E.; Kazyak, P.F.; Hurd, M.K. Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecol. Appl. 2005, 15, 137–153. [Google Scholar] [CrossRef] [Green Version]
- Nomquphu, W.; Braune, E.; Mitchell, S. The changing water resources monitoring environment in South Africa. S. Afr. J. Sci. 2007, 103, 306–310. [Google Scholar]
- Tran, C.P.; Bode, R.W.; Smith, A.J.; Kleppel, G.S. Land-use proximity as a basis for assessing stream water quality in New York State (USA). Ecol. Indic. 2010, 10, 727–733. [Google Scholar] [CrossRef]
- Keeler, B.L.; Polasky, S.; Brauman, K.A.; Johnson, K.A.; Finlay, J.C.; O’Neille, A.; Kovacs, K.; Dalzell, B. Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proc. Natl. Acad. Sci. USA 2012, 109, 18619–18624. [Google Scholar] [CrossRef] [Green Version]
- King, J.M.; Brown, C. Environmental flow assessments are not realizing their potential as an aid to basin planning. Front. Environ. Sci. 2018, 6, 113. [Google Scholar] [CrossRef]
- Schuwirth, N.; Honti, M.; Logar, I.; Stamm, C. Multi-criteria decision analysis for integrated water quality assessment and management support. Water Res. X 2018, 1, 100010. [Google Scholar] [CrossRef] [PubMed]
- Andrew, R.G.; Burns, R.C.; Allen, M.E. The influence of location on water quality perceptions across a geographic and socioeconomic gradient in Appalachia. Water 2019, 11, 2225. [Google Scholar] [CrossRef] [Green Version]
- Eamen, L.; Brouwer, R.; Razavi, S. The economic impacts of water supply restrictions due to climate and policy change: A transboundary river basin supply-side input-output analysis. Ecol. Econ. 2020, 172, 106532. [Google Scholar] [CrossRef]
- A Handbook for Integrated Water Resources Management in Basins; Global Water Partnership (GWP); International Network of Basin Organizations (INBO): Stockholm, Sweden, 2009.
- Fritsch, O.; Benson, D. Mutual learning and policy transfer in integrated water resources management: A research agenda. Water 2020, 12, 72. [Google Scholar] [CrossRef] [Green Version]
- Haroun, M.; Punjabi, S.; Suboyin, A.; Anastasiou, S.; de Bakker, J. Integrated management of water resources: A novel approach for water-stressed regions. Syst. Res. Behav. Sci. 2019, 36, 827–834. [Google Scholar] [CrossRef]
- Krol, M.S.; de Vries, M.J.; van Oel, P.R.; de Araújo, J.C. Sustainability of small reservoirs and large-scale water availability under current conditions and climate change. Water Resour. Manag. 2011, 25, 3017–3026. [Google Scholar] [CrossRef] [Green Version]
- Margerum, R.D.; Whitall, D. The challenges and implications of collaborative management on a river basin scale. J. Environ. Plan. Manag. 2004, 47, 407–427. [Google Scholar] [CrossRef]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000, establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities 2000, L. 327, 1–72.
- Naddeo, V.; Scannapieco, D.; Zarra, T.; Belgiorno, V. River water quality assessment: Implementation of non-parametric tests for sampling frequency optimization. Land Use Policy 2013, 30, 197–205. [Google Scholar] [CrossRef]
- Ly, K.; Metternicht, G.; Marshall, L. Transboundary river catchment areas of developing countries: Potential and limitations of watershed models for the simulation of sediment and nutrient loads. A review. J. Hydrol. Reg. Stud. 2019, 24, 100605. [Google Scholar] [CrossRef]
- Yu, Y.; Tang, P.; Zhao, J.; Liu, B.; Mclaughlin, D. Evolutionary cooperation in transboundary river basins. Water Resour. Res. 2019, 55, 9977–9994. [Google Scholar] [CrossRef]
- Yuan, L.; He, W.; Degefu, D.M.; Liao, Z.; Wu, X.; An, M.; Zhang, Z.; Ramsey, T.S. Transboundary water sharing problem: A theoretical analysis using evolutionary game and system dynamics. J. Hydrol. 2020, 582, 124521. [Google Scholar] [CrossRef]
- The Order of the Ministry of Agriculture of the Russian Federation of December 22, 2011 N 110-r “About the System of Indicators for State Monitoring of Agricultural Lands”. Available online: http://www.consultant.ru/cons/cgi/online.cgi?req=doc&base=EXP&n=523215#0603810253920906 (accessed on 17 March 2020).
- Shapovalov, D.A.; Koroleva, P.V.; Kalinina, N.V.; Rukhovich, D.I.; Suleiman, G.A.; Dolinina, E.A. Differences in inventories of waterlogged territories in soil surveys of different years and in land management documents. Eurasian Soil Sci. 2020, 53, 294–309. [Google Scholar] [CrossRef]
- Kiryushin, V.I. Methodology for integrated assessment of agricultural land. Eurasian Soil Sci. 2020, 53, 960–967. [Google Scholar] [CrossRef]
- Sadretdinov, O.E. Topical issues of Russian Federalism. Multiple States: Experience and development prospects. In Proceedings of the All-Russian Scientific and Practical Conference, Penza, Russian Federation, 29–30 May 2019; Gulyakova, A.D., Ed.; Publishing house of PSU: Penza, Russia, 2019; pp. 196–200. (In Russian). [Google Scholar]
- Bulygin, S.Y.; Lisetskii, F.N. Soil microaggregation as an index of erosion resistance. Eurasian Soil Sci. 1992, 24, 59–65. [Google Scholar]
- Basaran, M.; Erpul, G.; Ozcan, A.U. Variation of macro-aggregate stability and organic matter fractions in the basin of Saraykoy II irrigation dam, Cankiri, Turkey. Fresenius Environ. Bull. 2008, 17, 224–239. [Google Scholar]
- Zelenskaya, E.; Pichura, V.; Domaratsky, Y. Priorities of agroecological monitoring of the composition of soil trace elements taking into account the peculiarities of its formation over time. J. Eng. Appl. Sci. 2018, 14, 5807–5813. [Google Scholar]
- Ahmed, B.; Rizvi, A.; Zaidi, A.; Khan, M.S.; Musarrat, J. Understanding the phyto-interaction of heavy metal oxide bulk and nanoparticles: Evaluation of seed germination, growth, bioaccumulation, and metallothionein production. RSC Adv. 2019, 9, 4210–4225. [Google Scholar] [CrossRef] [Green Version]
- Plotnikova, O.O.; Lebedeva, M.P.; Demidov, V.V.; Karpova, D.V. Comparison of micromorphometric characteristics of aggregates from noneroded and moderately eroded typical Chernozem in a laboratory experiment. Eurasian Soil Sci. 2019, 10, 1258–1265. [Google Scholar] [CrossRef]
- Shtompel, Y.A.; Lisetskii, F.N.; Sukhanovskii, Y.P.; Strelnikova, A.V. Soil loss tolerance of Brown Forest Soils of Northwestern Caucasus under intensive agriculture. Eurasian Soil Sci. 1998, 2, 185–190. [Google Scholar]
- Lisetskii, F.; Chepelev, O. Quantitative substantiation of pedogenesis model key components. Adv. Environ. Biol. 2014, 4, 996–1000. [Google Scholar]
- Lisetskii, F.N.; Stolba, V.F.; Goleusov, P.V. Modeling of the evolution of steppe chernozems and development of the method of pedogenetic chronology. Eurasian Soil Sci. 2016, 8, 846–858. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, I.V.; Prikhodko, V.E.; Zamotaev, I.V.; Manakhov, D.V.; Novenko, E.Y.; Kalinin, P.I.; Markova, L.M.; Plaksina, A.L. Synlithogenic evolution of floodplain soils in valleys of small rivers in the Trans-Ural Steppe. Eurasian Soil Sci. 2019, 6, 593–609. [Google Scholar] [CrossRef]
- Roose, A.; Sepp, K.; Saluveer, E.; Kaasik, A.; Oja, T. Neighbourhood-defined approaches for integrating and designing landscape monitoring in Estonia. Landsc. Urban Plan. 2007, 79, 177–189. [Google Scholar] [CrossRef]
- Shamova, V.; Murin, P. Creation of a cartographic geoinformation system of the river basin with plotted riverbed quarries. IOP Conf. Ser. Earth Environ. Sci. 2021, 937, 042072. [Google Scholar] [CrossRef]
- Erba, S.; Furse, M.T.; Balestrini, R.; Christodoulides, A.; Ofenböck, T.; Bund, W.V.D.; Wasson, J.-G.; Buagni, A. The validation of common European class boundaries for river benthic macroinvertebrates to facilitate the intercalibration process of the Water Framework Directive. Hydrobiologia 2009, 633, 17–31. [Google Scholar] [CrossRef]
- Kolarevic, S.; Knezevic-Vukcevic, J.; Paunovic, M.; Tmovic, J.; Gagic, Z.; Vukovic-Gacic, B. The anthropogenic impact on water quality of the river Danube in Serbia: Microbiological analysis and genotoxicity monitoring. Arch. Biol. Sci. 2011, 63, 1209–1217. [Google Scholar] [CrossRef]
- Yurova, Y.; Shirokova, V. Geoecological assessment of anthropogenic impacts on the Osetr River basin. Geosciences 2020, 10, 121. [Google Scholar] [CrossRef] [Green Version]
- Korytnyi, L.M. Basin Concept in Nature Management; V.B. Sochava Institute of Geography, Siberian Branch of the Russian Academy of Sciences (Irkutsk): Irkutsk, Russia, 2001. (In Russian) [Google Scholar]
- Lisetsky, F.N.; Buryak, J.A.; Grigoreva, O.I.; Marinina, O.A.; Martsinevskaya, L.V. Implementation of the basin-administrative and ecoregional approaches to environmentally oriented arrangement inter-settlement areas of the Belgorod Region. Biogeosystem Tech. 2015, 1, 50–63. [Google Scholar] [CrossRef]
- Duchene, O.; Celette, F.; Ryan, M.R.; DeHaan, L.R.; Crews, T.E.; David, C. Integrating multipurpose perennial grains crops in Western European farming systems. Agric. Ecosyst. Environ. 2019, 284, 106591. [Google Scholar] [CrossRef]
- Narozhnyaya, A.G.; Buryak, Z.A. Morphometric analysis of digital elevation models of the Belgorod region at different degrees of generalization. Nauch. Ved. Belgorod. Gos. Univ. Ser. Estestv. Nauki 2016, 25, 169–178. (In Russian) [Google Scholar]
- Chendev, Y.G.; Khokhlova, O.S.; Alexandrovskiy, A.L. Agrogenic evolution of automorphic chernozems in the forest-steppe zone (Belgorod Oblast). Eurasian Soil Sci. 2017, 50, 499–514. [Google Scholar] [CrossRef] [Green Version]
- Golosov, V.; Gusarov, A.; Litvin, L.; Yermolaev, O.; Chizhikova, N.; Safina, G.; Kiryukhina, Z. Evaluation of soil erosion rates in the southern half of the Russian plain: Methodology and initial results. Proc. Int. Assoc. Hydrol. Sci. 2017, 375, 23–27. [Google Scholar] [CrossRef]
- Goleusov, P.; Malyshev, A. Resource characteristics of post-agrogenic chernozems in multiple-aged fallow lands of the Belgorod Region. IOP Conf. Ser. Earth Environ. Sci. 2021, 817, 012036. [Google Scholar] [CrossRef]
- Volungevičius, J.; Feiza, V.; Amalevičiūtė-Volungė, K.; Liaudanskienė, I.; Šlepetienė, A.; Kuncevičius, A.; Vengalis, R.; Vėlius, G.; Prapiestienė, R.; Poškienė, J. Transformations of different soils under natural and anthropogenized land management. Zemdirbyste 2019, 106, 3–14. [Google Scholar] [CrossRef]
- Tsaregorodtsev, A.; Akhtyrtsev, A.; Golyadkina, I. The effect of hydromorphic processes on the soil organic matter in the Central Russia (case study of the Voronezh and Kursk regions). IOP Conf. Ser. Earth Environ. Sci. 2010, 595, 012030. [Google Scholar] [CrossRef]
- Prăvălie, R.; Săvulescu, I.; Patriche, C.; Dumitraşcu, M.; Bandoc, G. Spatial assessment of land degradation sensitive areas in southwestern Romania using modified MEDALUS method. Catena 2017, 153, 114–130. [Google Scholar] [CrossRef]
- Mathur, M.; Sundaramoorthy, S. Evaluation of land degradation assessment studies: Attributes applicable to various geographical regions. Indian J. Ecol. 2019, 46, 714–721. [Google Scholar]
- Lisetskii, F.N.; Zemlyakova, A.V.; Terekhin, E.A.; Naroznyaya, A.G.; Pavlyuk, Y.V.; Ukrainskii, P.A.; Kirilenko, Z.A.; Marinina, O.A.; Samofalova, O.M. New opportunities of geoplanning in the rural area with the implementing of geoinformational technologies and remote sensing. Adv. Environ. Biol. 2014, 8, 536–539. [Google Scholar]
- Dmitrieva, V.; Zhigulina, E. Water dynamics of small water currents of the Upper Don basin and its role in the structural-dynamic organization of landscapes. Reg. Geosystems 2020, 4, 404–414. [Google Scholar] [CrossRef]
- Jiang, J.; Tang, S.; Han, D.; Fu, G.; Solomatine, D.; Zheng, Y. A comprehensive review on the design and optimization of surface water quality monitoring networks. Environ. Model. Softw. 2020, 132, 104792. [Google Scholar] [CrossRef]
- Müller, H.; Würriehausen, F. A case study on local SDI implementation in Germany. Survey Review. 2012, 325, 124–133. [Google Scholar] [CrossRef]
- Naddeo, V.; Zarra, T.; Belgiorno, V. Optimization of sampling frequency for river water quality assessment according to Italian implementation of the EU Water Framework Directive. Environ. Sci. Policy 2007, 10, 243–249. [Google Scholar] [CrossRef]
- Lebedeva, I.I.; Bazykina, G.S.; Grebennikov, A.M.; Smirnova, L.G.; Tyutyunov, S.I. Morphology, properties, and regimes of migrational–mycelial agrochernozems with different ground moistening (Belgorod oblast). Eurasian Soil Sci. 2016, 49, 1344–1354. [Google Scholar] [CrossRef]
- Morgan, R.P.C. Soil Erosion; Longman: London, UK, 1979. [Google Scholar]
- Larionov, G.A.; Dobrovolskaya, N.G.; Kiryukhina, Z.P.; Krasnov, S.F.; Litvin, L.F. Hydrophysical model of soil erosion: A basic equation and influence of bed load and suspended sediment on soil detachment by shallow water flow. IAHS-AISH Publ. 2004, 288, 361–369. [Google Scholar]
- Jeffers, J.N.R. An Introduction to Systems Analysis: With Ecological Applications; Edward Arnold: London, UK, 1978. [Google Scholar]
- Kochurov, B.I.; Ivanov, Y.G. Modern problems of land management in Russia. Izv. Akad. Nauk. Seriya Geogr. 2006, 2, 86–91. (In Russian) [Google Scholar]
- Chernikov, V.A.; Aleksakhin, R.M.; Golubev, A.V. Agroecology; Kolos Publishing: Moscow, Russia, 2000. (In Russian) [Google Scholar]
- Gusarov, A.V. Land-use/-cover changes and their effect on soil erosion and river suspended sediment load in different landscape zones of European Russia during 1970–2017. Water 2021, 13, 1631. [Google Scholar] [CrossRef]
- Gvozdeva, O.; Sinitsa, Y.; Ruleva, N.; Smirnova, M.; Podbolotova, L. Land use greening support system development. IOP Conf. Ser. Earth Environ. Sci. 2020, 579, 012124. [Google Scholar] [CrossRef]
- Sherafatpour, Z.; Roozbahani, A.; Hasani, Y. Agricultural water allocation by integration of hydro-economic modeling with bayesian networks and random forest approaches. Water Res. Manag. 2019, 7, 2277–2299. [Google Scholar] [CrossRef]
- Kiselev, V.V.; Pavlyuk, Y.V.; Kornilov, A.G.; Buryak, Z.A. Geoinformation methods for development of intensive animal husbandry in catchment basins of small rivers in the Belgorod Region. Indian J. Ecol. 2021, 48, 760–765. [Google Scholar]
- Buryak, Z.; Marinina, O. Using GIS technology for identification of agricultural land with an increased risk of erosion. E3S Web Conf. 2020, 176, 04007. [Google Scholar] [CrossRef]
- Zaslavsky, M.N. Erosiology; Higher School Publishing House: Moscow, Russia, 1983. (In Russian) [Google Scholar]
- Surmach, G.P. Relief Formation, Forest-Steppe Formation, Modern Erosion and Anti-Erosion Measures; Publishing House All-Union Research Institute of Agroforestry: Volgograd, Russia, 1992. (In Russian) [Google Scholar]
- Karabutov, A.P.; Tyutyunov, S.I.; Solovichenko, V.D. Humus status of typical black soil under different intensity of arable land usage. Eurasian J. Biosci. 2019, 13, 1317–1321. [Google Scholar]
- Kashtanov, A.N.; Shishov, L.L.; Kuznetsov, M.S.; Kochetov, I.S. Problems of soil erosion and soil conservation in Russia. Eurasian Soil Sci. 1999, 32, 83–90. [Google Scholar]
- Litvin, L.F. Soil erosion on agricultural lands in Russia. Eurasian Soil Sci. 1997, 30, 517–523. [Google Scholar]
- Sukhanovskii, Y.P. Commentary: Urgent problems of soil erosion and its effects prediction. In Soil Erosion: Causes, Processes and Effects; Fournier, A.J., Ed.; Nova Science Publishers: New York, NY, USA, 2011; pp. 235–240. [Google Scholar]
- Maltsev, K.A.; Yermolaev, O.P. Potential soil loss from erosion on arable lands in the European Part of Russia. Eurasian Soil Sci. 2019, 52, 1588–1597. [Google Scholar] [CrossRef]
- Yermolayev, O.P.; Rysin, I.I.; Golosov, V.N. Mapping assessment of gully erosion in the east of the Russian plain. Geomorfologiya 2017, 2, 38–51. [Google Scholar] [CrossRef]
- Rysin, I.; Grigoriev, I.; Zaytseva, M.; Golosov, V.; Sharifullin, A. Long-term monitoring of gully erosion in Udmurt Republic, Russia. Proc. Int. Assoc. Hydrol. Sci. 2017, 375, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Backlund, F.; Chronéer, D.; Sundqvist, E. Project management maturity models—A critical review: A case study within Swedish engineering and construction organizations. Procedia-Soc. Behav. Sci. 2014, 119, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Kiryushin, V.I. The management of soil fertility and productivity of agrocenoses in adaptive-landscape farming systems. Eurasian Soil Sci. 2019, 9, 1137–1145. [Google Scholar] [CrossRef]
- Savchenko, E. Problems of regulation of land relations at the present stage. Int. Agric. J. 2001, 1, 3–6. [Google Scholar]
- Guidelines for Accounting for the Impact of Economic Activity on the Flow of Small Rivers with Hydrological Calculations for Water Management Design; Gidrometeoizdat: Leningrad, Russia, 1986. (In Russian)
- Varlamov, A.A.; Khabarov, A.V. Land Use Ecology and Protection of Natural Resources; Kolos Publ.: Moscow, Russia, 1999. (In Russian) [Google Scholar]
- Sivapalan, M.; Blöeschl, G. The growth of hydrological understanding: Technologies, ideas, and societal needs shape the field. Water Resour. Res. 2017, 10, 8137–8146. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, A.A.; Bugaets, A.N. To the problem of verification of methods for short-range forecasting of hydrological parameters. Rus. Meteor. Hydrol. 2018, 8, 65–71. [Google Scholar] [CrossRef]
- Panin, A.V.; Ivanova, N.N.; Golosov, V.N. The river network and the processes of erosion and accumulation in the Upper Don basin. Water Resour. 1997, 24, 609–617. [Google Scholar]
- Karthe, D.; Abdullaev, I.; Boldgiv, B.; Borchardt, D.; Chalov, S.; Jarsjö, J.; Li, L.; Nittrouer, J.A. Water in Central Asia: An integrated assessment for science-based management. Environ. Earth Sci. 2017, 76, 690. [Google Scholar] [CrossRef] [Green Version]
- Vilmin, L.; Flipo, N.; Escoffier, N.; Groleau, A. Estimation of the water quality of a large urbanized river as defined by the European WFD: What is the optimal sampling frequency? Environ. Sci. Pollut. Res. 2018, 24, 23485–23501. [Google Scholar] [CrossRef] [Green Version]
Parameter | Woodland | Cropland | Ss | Es | LS | P | K, km km−2 |
---|---|---|---|---|---|---|---|
% | |||||||
Average | 9.7 | 56.0 | 26.4 | 0.2 | 2.4 | 8.4 | 0.17 |
Minimum | 0 | 0.7 | 6.9 | 0 | 0.7 | 7.8 | 0 |
Maximum | 50.1 | 82.3 | 61.6 | 0.5 | 4.6 | 9.1 | 0.93 |
Standard deviation (σ) | 10.0 | 14.0 | 6.7 | 0.1 | 0.8 | 0.4 | 0.12 |
Variation coefficient (V, %) | 103 | 25 | 25 | 48 | 32 | 5 | 70 |
Subtype 1 | Woodland | Cropland | Ss | Es | LS | P | K, km km–2 |
---|---|---|---|---|---|---|---|
% | |||||||
1.1 | 35.5 ± 10.4 | 34.6 ± 8.9 | 28.7 ± 5.8 | 0.2 ± 0.1 | 2.5 ± 1.1 | 8.4 ± 0.2 | 0.13 ± 0.07 |
1.2 | 12.7 ± 9.5 | 22.2 ± 12.6 | 26.8 ± 6.6 | 0.1 ± 0.1 | 1.5 ± 0.4 | 8.6 ± 0.1 | 0.12 ± 0.09 |
2.1 | 7.7 ± 7.2 | 66.3 ± 9.5 | 21.2 ± 4.8 | 0.1 ± 0.0 | 1.7 ± 0.5 | 8.3 ± 0.2 | 0.18 ± 0.11 |
2.2 | 5.9 ± 4.1 | 65.4 ± 7.0 | 21.4 ± 4.1 | 0.1 ± 0.0 | 1.7 ± 0.3 | 8.9 ± 0.1 | 0.25 ± 0.07 |
3.1 | 14.9 ± 7.8 | 46.8 ± 9.9 | 28.3 ± 3.1 | 0.2 ± 0.1 | 3.0 ± 0.4 | 8.9 ± 0.1 | 0.28 ± 0.09 |
3.2a | 5.6 ± 3.9 | 63.0 ± 3.9 | 18.6 ± 4.9 | 0.3 ± 0.1 | 2.4 ± 0.6 | 8.4 ± 0.4 | 0.13 ± 0.08 |
3.2b | 7.3 ± 4.0 | 59.5 ± 8.4 | 28.7 ± 3.2 | 0.2 ± 0.1 | 2.4 ± 0.3 | 8.6 ± 0.1 | 0.16 ± 0.07 |
4.1 | 8.6 ± 4.5 | 53.4 ± 6.6 | 29.1 ± 4.3 | 0.3 ± 0.0 | 3.1 ± 0.6 | 8.2 ± 0.2 | 0.12 ± 0.06 |
4.2 | 3.5 ± 2 | 64.0 ± 5.7 | 27.2 ± 4.1 | 0.3 ± 0.1 | 2.5 ± 0.6 | 8.0 ± 0.2 | 0.09 ± 0.08 |
№ | River | Distance to the Mouth, km | Station Coordinates | River Order | (Sub)Basin Area, km2 | (Sub)Basin Subtype 1 | |
---|---|---|---|---|---|---|---|
Latitude | Longitude | ||||||
1 | Ilek | 22 | 50.910833 | 35.593071 | 5 | 248.35 | 2.2 |
2 | Gotnya | 0.6 | 50.718885 | 35.899074 | 4 | 35.78 | 3.1 |
3 | Gostenka | 4.1 | 50.578858 | 36.057886 | 4 | 157.14 | 2.2 |
4 | Pena | 12.6 | 51.033998 | 35.948687 | 5 | 916.42 | 2.2 |
5 | Psyol | 694 | 51.067101 | 36.490393 | 5 | 218.80 | 2.2 |
6 | Donetskaya Seymitsa | 41 | 51.173144 | 36.858024 | 4 | 478.47 | 2.2 |
7 | Seim | 49 | 51.328821 | 37.245266 | 4 | 165.02 | 2.2 |
8 | Nezhegolok | 1.2 | 50.533804 | 37.288257 | 4 | 365.30 | 2.1 |
9 | Plotva | 0.8 | 50.778289 | 37.600866 | 4 | 123.13 | 3.2a |
10 | Halan | 1.1 | 50.943837 | 37.781619 | 4 | 281.54 | 3.2b |
11 | Borovaya Potudan’ | 3.0 | 51.109235 | 38.406009 | 5 | 262.34 | 2.1 |
12 | Sosna | 0.7 | 50.588717 | 38.176864 | 4 | 165.51 | 4.1 |
13 | A tributary of the Userdets River | 0.9 | 50.706822 | 38.46453 | 4 | 137.42 | 1.1 |
14 | Chyornaya Kalitva | 120.0 | 50.316144 | 39.041207 | 6 | 941.83 | 4.2 |
15 | Sarma (Nagolnaya) | 0.3 | 49.969805 | 38.935362 | 4 | 353.04 | 4.2 |
16 | Aydar | 222.0 | 49.869108 | 38.901401 | 6 | 1041.19 | 4.2 |
Land Fund Structure | Square, km2 | Balance: +/− | |
---|---|---|---|
Actual (2011–2014) | After the Implementation of the Projects | km2 | |
Arable land, including: | 15,092.61 | 15,067.35 | –25.26 |
arable land rotation: | 0 | 14,590.13 | 0 |
cultivated field | 0 | 10,364.74 | 0 |
grain grass | 0 | 3290.36 | 0 |
soil protection | 0 | 935.03 | 0 |
vegetable growing | 2.58 | 2.58 | 0 |
bee parks (melliferous crops) | 0 | 337.74 | +337.74 |
arable land conservation | 0 | 87.45 | +87.45 |
grassed spillways | 0 | 32.10 | +32.10 |
Forest strips | 543.20 | 568.46 | +25.26 |
Remiza 1 | 0 | 10.85 | +10.85 |
Small zakaznik 2 | 0 | 9.01 | +9.01 |
Self-growth of wood and shrub vegetation of fodder land | 0 | 637.42 | +637.42 |
Afforestation | 242.79 | 883.74 | +640.95 |
No | Evaluation Criterion | Unit of Measurement |
---|---|---|
1 | The area of afforestation | km2 |
2 | The area of land under conservation | km2 |
3 | The area of meadows | km2 |
4 | The humus content of the topsoil (0–20 cm) | % |
5 | The content of mobile forms of phosphorus | mg/kg |
6 | The exchangeable potassium content | mg/kg |
7 | The easily hydrolysable nitrogen content | mg/kg |
8 | pH (actual/potential) | dimensionless |
9 | Total index of soil pollution | dimensionless |
10 | Module of soil losses from the watershed area | ×103 kg/km2 per annum |
11 | Water pollution index (WPI) | points |
12 | Water saprobity index | points |
13 | Fish productivity | kg/km2 |
14 | The coefficient of ecological stability | dimensionless |
15 | The coefficient of natural protection | dimensionless |
16 | Coefficient of environmental sustainability | dimensionless |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buryak, Z.; Lisetskii, F.; Gusarov, A.; Narozhnyaya, A.; Kitov, M. Basin-Scale Approach to Integration of Agro- and Hydroecological Monitoring for Sustainable Environmental Management: A Case Study of Belgorod Oblast, European Russia. Sustainability 2022, 14, 927. https://doi.org/10.3390/su14020927
Buryak Z, Lisetskii F, Gusarov A, Narozhnyaya A, Kitov M. Basin-Scale Approach to Integration of Agro- and Hydroecological Monitoring for Sustainable Environmental Management: A Case Study of Belgorod Oblast, European Russia. Sustainability. 2022; 14(2):927. https://doi.org/10.3390/su14020927
Chicago/Turabian StyleBuryak, Zhanna, Fedor Lisetskii, Artyom Gusarov, Anastasiya Narozhnyaya, and Mikhail Kitov. 2022. "Basin-Scale Approach to Integration of Agro- and Hydroecological Monitoring for Sustainable Environmental Management: A Case Study of Belgorod Oblast, European Russia" Sustainability 14, no. 2: 927. https://doi.org/10.3390/su14020927
APA StyleBuryak, Z., Lisetskii, F., Gusarov, A., Narozhnyaya, A., & Kitov, M. (2022). Basin-Scale Approach to Integration of Agro- and Hydroecological Monitoring for Sustainable Environmental Management: A Case Study of Belgorod Oblast, European Russia. Sustainability, 14(2), 927. https://doi.org/10.3390/su14020927