Role of Combined Inoculation with Arbuscular Mycorrhizal Fungi, as a Sustainable Tool, for Stimulating the Growth, Physiological Processes, and Flowering Performance of Lavender
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Data and Measurements
2.3. Data Analysis
3. Results and Discussion
3.1. Effects of the Community of Six Arbuscular Mycorrhizal Fungi on Plant Growth and Flowering Potential in Lavender
3.2. Physiological Response as the Effect of the Community of Six Arbuscular Mycorrhizal Fungi Application
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pirzad, A.; Mohammadzadeh, S. Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula officinalis, Rosmarinus officinalis and Thymus vulgaris). Agric. Water Manag. 2018, 204, 1–10. [Google Scholar] [CrossRef]
- Denner, S.S. Lavandula angustifolia miller: English lavender. Holist. Nurs. Pract. 2009, 23, 57–64. [Google Scholar] [CrossRef]
- Hassiotis, C.N.; Orfanoudakis, M. The impact of Lavandula stoechas L. degradation on arbuscular mycorrhizal fungi, in a Mediterranean ecosystem. Appl. Soil Ecol. 2018, 126, 182–188. [Google Scholar] [CrossRef]
- Turrini, F.; Beruto, M.; Mela, L.; Curir, P.; Triglia, G.; Boggia, R.; Zunin, P.; Monroy, F. Ultrasound-Assisted Extraction of Lavender (Lavandula angustifolia Miller, Cultivar Rosa) Solid By-Products Remaining after the Distillation of the Essential Oil. Appl. Sci. 2021, 11, 5495. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Panayiotou, C.; Tzortzakis, N. Nitrogen and phosphorus levels affected plant growth, essential oil composition and antioxidant status of lavender plant (Lavandula angustifolia Mill.). Ind. Crops Prod. 2016, 83, 577–586. [Google Scholar] [CrossRef]
- Upson, T. The taxonomy of the genus Lavandula L. In Lavender; CRC Press: Boca Raton, FL, USA, 2002; pp. 16–48. [Google Scholar]
- Essiane-Ondo, O.; Zerbib, J.; Gianinazzi, S.; Wipf, D. Wheat landraces with low mycorrhizing ability at field respond differently to inoculation with artificial or indigenous arbuscular mycorrhizal fungal communities. Symbiosis 2019, 78, 229–240. [Google Scholar] [CrossRef]
- Golubkina, N.; Krivenkov, L.; Sekara, A.; Vasileva, V.; Tallarita, A.; Caruso, G. Prospects of arbuscular mycorrhizal fungi utilization in production of Allium plants. Plants 2020, 9, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Qiu, Y.L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 2006, 16, 299–363. [Google Scholar] [CrossRef]
- Corradi, N.; Brachmann, A. Fungal mating in the most widespread plant symbionts? Trends Plant Sci. 2017, 22, 175–183. [Google Scholar] [CrossRef]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front. Microbiol. 2016, 6, 1559. [Google Scholar] [CrossRef] [Green Version]
- Popescu, G.C. Arbuscular mycorrhizal fungi-an essential tool to sustainable vineyard development: A review. Curr. Trends Nat. Sci. 2016, 5, 107–116. [Google Scholar]
- Li, Z.; Wu, N.; Liu, T.; Chen, H.; Tang, M. Sex-related responses of Populus cathayana shoots and roots to AM fungi and drought stress. PLoS ONE 2015, 10, e0128841. [Google Scholar] [CrossRef] [Green Version]
- Birhane, E.; Sterck, F.J.; Fetene, M.; Bongers, F.; Kuyper, T.W. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 2012, 169, 895–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharif, M.; Claassen, N. Action mechanisms of arbuscular mycorrhizal fungi in phosphorus uptake by Capsicum annuum L. Pedosphere 2011, 21, 502–511. [Google Scholar] [CrossRef]
- Bücking, H.; Kafle, A.; Krapp, A.; Hirel, B. Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: Current knowledge and research gaps. Agronomy 2015, 5, 587–612. [Google Scholar] [CrossRef] [Green Version]
- Zubek, S.; Stefanowicz, A.M.; Błaszkowski, J.; Niklińska, M.; Seidler-Łożykowska, K. Arbuscular mycorrhizal fungi and soil microbial communities under contrasting fertilization of three medicinal plants. Appl. Soil Ecol. 2012, 59, 106–115. [Google Scholar] [CrossRef]
- Wulandari, D.; Cheng, W.; Tawaraya, K. Arbuscular mycorrhizal fungal inoculation improves Albizia saman and Paraserianthes falcataria growth in post-opencast coal mine field in East Kalimantan, Indonesia. For. Ecol. Manag. 2016, 376, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Bharti, N.; Barnawal, D.; Shukla, S.; Tewari, S.K.; Katiyar, R.S.; Kalra, A. Integrated application of Exiguobacterium oxidotolerans, Glomus fasciculatum, and vermicompost improves growth, yield and quality of Mentha arvensis in salt-stressed soils. Ind. Crops Prod. 2016, 83, 717–728. [Google Scholar] [CrossRef]
- Tarraf, W.; Ruta, C.; Tagarelli, A.; De Cillis, F.; De Mastro, G. Influence of arbuscular mycorrhizae on plant growth, essential oil production and phosphorus uptake of Salvia officinalis L. Ind. Crops Prod. 2017, 102, 144–153. [Google Scholar] [CrossRef]
- Sabatino, L.; D’anna, F.; Torta, L.; Ferrara, G.; Iapichino, G. Arbuscular mycorrhizal inoculation and shading enhance crop performance and quality of greenhouse Begonia semperflorens. Acta Sci. Pol.-Hortorum Cultus 2019, 18, 17–33. [Google Scholar] [CrossRef]
- Wu, Q.S.; Zou, Y.N.; Liu, C.Y.; Ting, L.U. Interacted effect of arbuscular mycorrhizal fungi and polyamines on root system architecture of citrus seedlings. J. Integr. Agric. 2012, 11, 1675–1681. [Google Scholar] [CrossRef]
- Bizos, G.; Papatheodorou, E.M.; Chatzistathis, T.; Ntalli, N.; Aschonitis, V.G.; Monokrousos, N. The role of microbial inoculants on plant protection, growth stimulation, and crop productivity of the olive tree (Olea europea L.). Plants 2020, 9, 743. [Google Scholar] [CrossRef] [PubMed]
- Popescu, G.C.; Popescu, M. Effects of different potting growing media for Petunia grandiflora and Nicotiana alata Link & Otto on photosynthetic capacity, leaf area, and flowering potential. Chil. J. Agric. Res. 2015, 75, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Kotsiris, G.; Nektarios, P.A.; Paraskevopoulou, A.T. Lavandula angustifolia growth and physiology is affected by substrate type and depth when grown under Mediterranean semi-intensive green roof conditions. HortScience 2012, 47, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Ouledali, S.; Ennajeh, M.; Ferrandino, A.; Khemira, H.; Schubert, A.; Secchi, F. Influence of arbuscular mycorrhizal fungi inoculation on the control of stomata functioning by abscisic acid (ABA) in drought-stressed olive plants. S. Afr. J. Bot. 2019, 121, 152–158. [Google Scholar] [CrossRef]
- Vo, A.T.; Haddidi, I.; Daood, H.; Mayer, Z.; Posta, K. Impact of Arbuscular Mycorrhizal Inoculation and Growth Substrate on Biomass and Content of Polyphenols in Eclipta prostrata. HortScience 2019, 54, 1976–1983. [Google Scholar] [CrossRef] [Green Version]
- Rydlova, J.; Püschel, D. Arbuscular mycorrhiza, but not hydrogel, alleviates drought stress of ornamental plants in peat-based substrate. Appl. Soil Ecol. 2020, 146, 103394. [Google Scholar] [CrossRef]
- Navarro, A.; Elia, A.; Conversa, G.; Campi, P.; Mastrorilli, M. Potted mycorrhizal carnation plants and saline stress: Growth, quality and nutritional plant responses. Sci. Hortic. 2012, 140, 131–139. [Google Scholar] [CrossRef]
- Asrar, A.; Abdel-Fattah, G.M.; Elhindi, K.M.; Abdel-Salam, E.M. The impact of arbuscular mychorrhizal fungi in improving growth, flower yield and tolerance of kalanchoe (Kalanchoe blossfeldiana Poelin) plants grown in NaCl-stress conditions. J. Food Agric. Environ. 2014, 12, 105–112. [Google Scholar]
- Baum, C.; El-Tohamy, W.; Gruda, N. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Sci. Hortic. 2015, 187, 131–141. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Y.; Sun, S.; Mu, C.; Yan, X. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci. Total Environ. 2017, 576, 234–241. [Google Scholar] [CrossRef] [PubMed]
- ALHadidi, N.; Pap, Z.; Ladányi, M.; Szentpéteri, V.; Kappel, N. Mycorrhizal Inoculation Effect on Sweet Potato (Ipomoea batatas (L.) Lam) Seedlings. Agronomy 2021, 11, 2019. [Google Scholar] [CrossRef]
- Dhalaria, R.; Kumar, D.; Kumar, H.; Nepovimova, E.; Kuča, K.; Torequl Islam, M.; Verma, R. Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants. Agronomy 2020, 10, 815. [Google Scholar] [CrossRef]
- Mitra, D.; Uniyal, N.; Panneerselvam, P.; Senapati, A.; Ganeshamurthy, A.N. Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture. Int. J. Life Sci. Appl. Sci. 2019, 1, 1–10. [Google Scholar]
- Duc, N.H.; Vo, A.T.; Haddidi, I.; Daood, H.; Posta, K. Arbuscular mycorrhizal fungi improve tolerance of medicinal plant Eclipta prostrata (L.) and induce major changes in polyphenol profiles under salt stresses. Front. Plant Sci. 2021, 11, 2209. [Google Scholar] [CrossRef] [PubMed]
- Vosnjak, M.; Likar, M.; Osterc, G. The Effect of Mycorrhizal Inoculum and Phosphorus Treatment on Growth and Flowering of Ajania (Ajania pacifica (Nakai) Bremer et Humphries) Plant. Horticulturae 2021, 7, 178. [Google Scholar] [CrossRef]
- Asrar, A.; Abdel-Fattah, G.; Elhindi, K. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 2012, 50, 305–316. [Google Scholar] [CrossRef]
- Zhu, X.Q.; Wang, C.Y.; Chen, H.; Tang, M. Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. Photosynthetica 2014, 52, 247–252. [Google Scholar] [CrossRef]
- Mayer, Z.; Duc, N.H.; Sasvári, Z.; Posta, K. How arbuscular mycorrhizal fungi influence the defense system of sunflower during different abiotic stresses. Acta Biol. Hung. 2017, 68, 376–387. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Singh Sidhu, G.P.; Bali, A.S.; Handa, N.; Kapoor, D.; Yadav, P.; Khanna, K.; et al. Photosynthetic response of plants under different abiotic stresses: A review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar] [CrossRef]
- Hashem, A.; Alqarawi, A.A.; Radhakrishnan, R.; Al-Arjani, A.B.F.; Aldehaish, H.A.; Egamberdieva, D.; Abd_Allah, E.F. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J. Biol. Sci. 2018, 25, 1102–1114. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhao, H.; Zou, C.; Li, Y.; Chen, Y.; Wang, Z.; Jiang, Y.; Liu, A.; Zhao, P.; Wang, M.; et al. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front. Microbiol. 2017, 8, 2516. [Google Scholar] [CrossRef] [PubMed]
Treatments 1 | Lavandula angustifolia | Lavandula hidcote | ||
---|---|---|---|---|
Floral Shoot Length (cm) | Number of Floral Shoots | Floral Shoot Length (cm) | Number of Floral Shoots | |
AMF-S10g | 31.91 ± 0.19 c | 64 ± 3.80 a | 22.97 ± 0.34 c | 70.2 ± 2.86 ab |
AMF-S20g | 33.27 ± 0.16 b | 65 ± 2.64 a | 23.91 ± 0.43 b | 72.8 ± 2.86 ab |
AMF-S30g | 33.86 ± 0.48 a | 66 ± 3.16 a | 24.46 ± 0.13 a | 73.6 ± 2.07 a |
Control (non-inoculated) | 29.46 ± 0.16 d | 61 ± 4.12 a | 21.42 ± 0.30 d | 69.0 ± 3.53 b |
Cultivars | Treatments 1 | Fresh Shoot Biomass (g plant−1) | Root Biomass (g plant−1) | Total Plant Biomass (g plant−1) | Shoot/Root Biomass Ratio |
---|---|---|---|---|---|
Lavandula angustifolia | AMF-S10g | 140.78 ± 1.43 c | 61.18 ± 1.97 c | 201.96 ± 2.46 c | 2.30 ± 0.03 c |
AMF-S20g | 146.06 ± 1.46 b | 65.95 ± 1.52 b | 212.01 ± 1.33 b | 2.21 ± 0.06 b | |
AMF-S30g | 149.61 ± 0.45 a | 70.64 ± 1.40 a | 220.25 ± 1.67 a | 2.12 ± 0.04 a | |
Control (non-inoculated) | 128.62 ± 1.45 d | 52.25 ± 0.90 d | 180.87 ± 2.19 d | 2.46 ± 0.07 d | |
Lavandula hidcote | AMF-S10g | 64.10 ± 0.91 c | 32.31 ± 0.66 c | 96.41 ± 1.34 c | 1.98 ± 0.03 b |
AMF-S20g | 74.35 ± 1.01 b | 35.02 ± 1.01 b | 109.37 ± 1.82 b | 2.12 ± 0.04 a | |
AMF-S30g | 81.07 ± 2.19 a | 37.56 ± 1.06 a | 118.63 ± 2.37 a | 2.16 ± 0.08 a | |
Control (non-inoculated) | 60.44 ± 1.50 d | 29.86 ±. 1.41 d | 90.30 ±. 2.53 d | 2.02 ± 0.08 b |
Treatments 1 | Lavandula Angustifolia | Lavandula Hidcote |
---|---|---|
Leaf Area (cm2) | Leaf Area (cm2) | |
AMF-S10g | 3.92 ± 0.19 c | 3.06 ± 0.11 c |
AMF-S20g | 4.61 ± 0.17 b | 3.36 ± 0.11 b |
AMF-S30g | 4.95 ± 0.23 a | 3.58 ± 0.10 a |
Control (non-inoculated) | 3.76 ± 0.19 c | 2.89 ± 0.11 d |
Pearson Correlation | Fresh Shoot Biomass (g plant−1) | Root Biomass (g plant−1) | Total Plant Biomass (g plant−1) | Shoot/Root Biomass Ratio | Floral Shoot Length (cm) | Number of Floral Shoots | Leaf Area (cm2) |
---|---|---|---|---|---|---|---|
Lavandula angustifolia | 0.950 ** | 0.967 ** | 0.967 ** | 0.915 ** | 0.951 ** | 0.492 * | 0.916 ** |
Lavandula hidcote | 0.973 ** | 0.949 ** | 0.978 ** | 0.647 ** | 0.947 ** | 0.576 ** | 0.927 ** |
Pearson Correlation | Photosynthesis Rate (µmol CO2 m−2 s−1) | Chlorophyll a (mg g−1) | Chlorophyll b (mg g−1) | Carotenoids (mg g−1) | Total Photosynthetic Pigments (mg g−1) |
---|---|---|---|---|---|
Lavandula angustifolia | 0.832 ** | 0.942 ** | 0.870 ** | 0.894 ** | 0.945 ** |
Lavandula hidcote | 0.606 ** | 0.948 ** | 0.912 ** | 0.861 ** | 0.945 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, G.C.; Popescu, M. Role of Combined Inoculation with Arbuscular Mycorrhizal Fungi, as a Sustainable Tool, for Stimulating the Growth, Physiological Processes, and Flowering Performance of Lavender. Sustainability 2022, 14, 951. https://doi.org/10.3390/su14020951
Popescu GC, Popescu M. Role of Combined Inoculation with Arbuscular Mycorrhizal Fungi, as a Sustainable Tool, for Stimulating the Growth, Physiological Processes, and Flowering Performance of Lavender. Sustainability. 2022; 14(2):951. https://doi.org/10.3390/su14020951
Chicago/Turabian StylePopescu, Gheorghe Cristian, and Monica Popescu. 2022. "Role of Combined Inoculation with Arbuscular Mycorrhizal Fungi, as a Sustainable Tool, for Stimulating the Growth, Physiological Processes, and Flowering Performance of Lavender" Sustainability 14, no. 2: 951. https://doi.org/10.3390/su14020951
APA StylePopescu, G. C., & Popescu, M. (2022). Role of Combined Inoculation with Arbuscular Mycorrhizal Fungi, as a Sustainable Tool, for Stimulating the Growth, Physiological Processes, and Flowering Performance of Lavender. Sustainability, 14(2), 951. https://doi.org/10.3390/su14020951