Deformation and Failure Mechanism of a Massive Ancient Anti-Dip River-Damming Landslide in the Upper Jinsha River
Abstract
:1. Introduction
2. Geological Setting
3. Methods
3.1. Landslide Description
3.2. Landslide Numerical Replication
4. Results and Discussion
4.1. Numerical Model Verification
4.2. Results Description
4.3. Potential Mechanism of Toppling
4.4. Potential Causes of Slope Failure
4.5. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef] [Green Version]
- Huang, R. Some catastrophic landslides since the twentieth century in the southwest of China. Landslides 2009, 6, 69–81. [Google Scholar] [CrossRef]
- Xu, L.; Meng, X.; Xu, X. Natural hazard chain research in China: A review. Nat. Hazards 2014, 70, 1631–1659. [Google Scholar] [CrossRef]
- Zhu, S.; Shi, Y.; Lu, M.; Xie, F. Dynamic mechanisms of earthquake-triggered landslides. Sci. China Earth Sci. 2013, 56, 1769–1779. [Google Scholar] [CrossRef]
- Keefer, D.K.; Larsen, M.C. Assessing Landslide Hazards. Science 2007, 316, 1136–1138. Available online: https://www.jstor.org/stable/20036323 (accessed on 20 April 2022). [CrossRef]
- Fan, X.; Xu, Q.; van Westen, C.J.; Huang, R.; Tang, R. Characteristics and classification of landslide dams associated with the 2008 Wenchuan earthquake. Geoenvironmental Disasters 2017, 4, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Dufresne, A.; Subramanian, S.S.; Strom, A.; Hermanns, R.; Stefanelli, C.T.; Hewitt, K.; Yunus, A.P.; Dunning, S.; Capra, L.; et al. The formation and impact of landslide dams—State of the art. Earth-Sci. Rev. 2020, 203, 103116. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, C.C.; Pang, J.; Zhou, Y.; Shang, R.; Zhou, Q.; Guo, Y.; Liu, T.; Hu, G. OSL dating of the massive landslide-damming event in the Jishixia Gorge, on the upper Yellow River, NE Tibetan Plateau. Holocene 2015, 25, 745–757. [Google Scholar] [CrossRef]
- Tian, S.; Chen, N.; Wu, H.; Yang, C.; Zhong, Z.; Rahman, M. New insights into the occurrence of the Baige landslide along the Jinsha River in Tibet. Landslides 2020, 17, 1207–1216. [Google Scholar] [CrossRef]
- Wartman, J.; Montgomery, D.R.; Anderson, S.A.; Keaton, J.R.; Benoît, J.; Chapelle, J.D.; Gilbert, R. The 22 March 2014 Oso landslide, Washington, USA. Geomorphology 2016, 253, 275–288. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Zhou, F.; Song, S.; Zhang, Y.; Gu, F.; Cao, C. Identification of ancient river-blocking events and analysis of the mechanisms for the formation of landslide dams in the Suwalong section of the upper Jinsha River, SE Tibetan Plateau. Geomorphology 2020, 368, 107351. [Google Scholar] [CrossRef]
- Wu, L.Z.; Zhao, D.J.; Zhu, J.D.; Peng, J.B.; Zhou, Y. A Late Pleistocene river-damming landslide, Minjiang River, China. Landslides 2020, 17, 433–444. [Google Scholar] [CrossRef]
- Huang, S.-Y.; Chen, Y.-G.; Burr, G.S.; Jaiswal, M.K.; Lin, Y.N.; Yin, G.; Liu, J.; Zhao, S.; Cao, Z. Late Pleistocene sedimentary history of multiple glacially dammed lake episodes along the Yarlung-Tsangpo river, southeast Tibet. Quat. Res. 2014, 82, 430–440. [Google Scholar] [CrossRef]
- Dortch, J.M.; Owen, L.A.; Haneberg, W.C.; Caffee, M.W.; Dietsch, C.; Kamp, U. Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quat. Sci. Rev. 2009, 28, 1037–1054. [Google Scholar] [CrossRef]
- Huang, R.; Li, Y.; Yan, M. Engineering geological analysis of slope dumping deformation. J. Eng. Geol. 2017, 25, 1165–1181. (In Chinese) [Google Scholar] [CrossRef]
- Huang, R. Engineering Geological Analysis of High Rock Slope Stability; Science Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Azarafza, M.; Akgün, H.; Ghazifard, A.; Asghari-Kaljahi, E.; Rahnamarad, J.; Derakhshani, R. Discontinuous rock slope stability analysis by limit equilibrium approaches—A review. Int. J. Digit. Earth 2021, 14, 1918–1941. [Google Scholar] [CrossRef]
- Ashby, J. Sliding and Toppling Modes of Failure in Models and Jointed Rock Slopes; Imperial College, University of London: London, UK, 1971. [Google Scholar]
- Alejano, L.R.; Gómez-Márquez, I.; Martínez-Alegría, R. Analysis of a complex toppling-circular slope failure. Eng. Geol. 2010, 114, 93–104. [Google Scholar] [CrossRef]
- Alejano, L.R.; Carranza-Torres, C.; Giani, G.P.; Arzúa, J. Study of the Stability Against Toppling of Rock Blocks with Rounded Edges Based on Analytical and Experimental Approaches. Eng. Geol. 2015, 195, 172–184. [Google Scholar] [CrossRef]
- Alejano, L.R.; Sánchez–Alonso, C.; Pérez–Rey, I.; Arzúa, J.; Alonso, E.; González, J.; Beltramone, L.; Ferrero, A.M. Block Toppling Stability in the Case of Rock Blocks with Rounded Edges. Eng. Geol. 2018, 234, 192–203. [Google Scholar] [CrossRef]
- Amini, M.; Majdi, A.; Aydan, Ö. Stability Analysis and the Stabilisation of Flexural Toppling Failure. Rock Mech. Rock Eng. 2009, 42, 751–782. [Google Scholar] [CrossRef]
- Goodman, R.E. Toppling of Rock Slope, ASCE. Speciality Conf. Rock Eng. Found. Slopes 1976, 2, 201–234. [Google Scholar]
- Amini, M.; Majdi, A.; Veshadi, M.A. Stability Analysis of Rock Slopes Against Block Flexure Toppling Failure. Rock Mech. Rock Eng. 2012, 45, 519–532. [Google Scholar] [CrossRef]
- Azarafza, M.; Asghari-Kaljahi, E.; Ghazifard, A.; Akgün, H. Application of fuzzy expert decision-making system for rock slope block-toppling modeling and assessment: A case study. Model. Earth Syst. Environ. 2021, 7, 159–168. [Google Scholar] [CrossRef]
- Azarafza, M.; Bonab, M.H.; Akgun, H. Numerical analysis and stability assessment of complex secondary toppling failures: A case study for the south pars special zone. Geomech. Eng. 2021, 27, 479–493. [Google Scholar] [CrossRef]
- Lv, Y.Q.; Liu, H.F.; Yang, J.J. Study of Failure Mechanism of Anti-Dip Rocks Materials Slope under Mining Subsidence. Adv. Mater. Res. 2010, 143-144, 1097–1101. [Google Scholar] [CrossRef]
- Dong, M.; Zhang, F.; Lv, J.; Fei, Y.; Li, Z. Study of Stability Influencing Factors of Excavated Anti-Dip Rock Slope. KSCE J. Civ. Eng. 2020, 24, 2293–2303. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Tao, Z.; Zhu, C. Research on the Controlling Effect of NPR Cables for Anti-Dip Slope Based on the Numerical Simulation. Shock Vib. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Zhigang, T.; Chun, Z.; Manchao, H.; Kuiming, L. Research on the safe mining depth of anti-dip bedding slope in Changshanhao Mine. Géoméch. Geophys. Geo-Energy Geo-Resour. 2020, 6, 1–20. [Google Scholar] [CrossRef]
- Azarafza, M.; Asghari-Kaljahi, E.; Akgün, H. Assessment of discontinuous rock slope stability with block theory and numerical modeling: A case study for the South Pars Gas Complex, Assalouyeh, Iran. Environ. Earth Sci. 2017, 76, 1–15. [Google Scholar] [CrossRef]
- Azarafza, M.; Akgün, H.; Ghazifard, A.; Asghari-Kaljahi, E. Key-block based analytical stability method for discontinuous rock slope subjected to toppling failure. Comput. Geotech. 2020, 124, 103620. [Google Scholar] [CrossRef]
- Xie, L.; Yan, E.; Wang, J.; Lu, G.; Yu, G. Study on evolutionary characteristics of toppling deformation of reverse-dip layered rock slope based on surface displacement monitoring data. Environ. Earth Sci. 2018, 77, 156. [Google Scholar] [CrossRef]
- Zhang, S.-L.; Lv, P.-F.; Yang, X.-G.; Chen, X.-Z.; Zhou, J.-W. Spatiotemporal distribution and failure mechanism analyses of reservoir landslides in the Dagangshan reservoir, south-west China. Geomat. Nat. Hazards Risk 2018, 9, 791–815. [Google Scholar] [CrossRef] [Green Version]
- Sardana, S.; Verma, A.K.; Verma, R.; Singh, T.N. Rock slope stability along road cut of Kulikawn to Saikhamakawn of Aizawl, Mizoram, India. Nat. Hazards 2019, 99, 753–767. [Google Scholar] [CrossRef]
- Tu, G.; Deng, H.; Shang, Q.; Zhang, Y.; Luo, X. Deep-Seated Large-Scale Toppling Failure: A Case Study of the Lancang Slope in Southwest China. Rock Mech. Rock Eng. 2020, 53, 3417–3432. [Google Scholar] [CrossRef]
- Hoek, E.; Bray, J. Rock Slope Engineering, 2nd ed.; Publication of Institution of Mining & Metallurgy: London, UK, 1977. [Google Scholar]
- Mohtarami, E.; Jafari, A.; Amini, M. Stability analysis of slopes against combined circular–toppling failure. Int. J. Rock Mech. Min. Sci. 2014, 67, 43–56. [Google Scholar] [CrossRef]
- Amini, M.; Ardestani, A.; Khosravi, M.H. Stability analysis of slide-toe-toppling failure. Eng. Geol. 2017, 228, 82–96. [Google Scholar] [CrossRef]
- Amini, M.; Sarfaraz, H.; Esmaeili, K. Stability analysis of slopes with a potential of slide-head-toppling failure. Int. J. Rock Mech. Min. Sci. 2018, 112, 108–121. [Google Scholar] [CrossRef]
- Chang, Z. Seismological and geological background of the 2013 Benzilan M5.9 earthquake in Yunnan. Seismol. Geol. 2015, 37, 192–207. (In Chinese) [Google Scholar] [CrossRef]
- Gong, Y.; Yao, A.; Li, Y.; Li, Y.; Tian, T. Classification and distribution of large-scale high-position landslides in southeastern edge of the Qinghai–Tibet Plateau, China. Environ. Earth Sci. 2022, 81, 1–19. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Xu, W.; Yan, L.; Qu, X.; Xie, W.-C. Numerical investigation on the sliding process and deposit feature of an earthquake-induced landslide: A case study. Landslides 2020, 17, 2671–2682. [Google Scholar] [CrossRef]
- Hoek, E.; Bray, J. Rock Slope Engineering; The Institute of Mining and Metallurgy: London, UK, 1981. [Google Scholar]
- Adhikary, D.P.; Dyskin, A.V.; Jewell, R.J.; Stewart, D.P. A study of the mechanism of flexural toppling failure of rock slopes. Rock Mech. Rock Eng. 1997, 30, 75–93. [Google Scholar] [CrossRef]
- Brideau, M.-A.; Stead, D. Controls on Block Toppling Using a Three-Dimensional Distinct Element Approach. Rock Mech. Rock Eng. 2009, 43, 241–260. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, S.; Liu, Y.; He, C.; Yang, W. Dynamic stability analysis of bedding and anti-dipping rock slopes under repeated microseisms. Chin. J. Geotech. Eng. 2018, 40, 1277–1286. (In Chinese) [Google Scholar] [CrossRef]
- Cavallaro, A.; Abate, G.; Ferraro, A.; Giannone, A.; Grasso, S. Seismic slope stability analysis of rainfall-induced landslides in Sicily (Italy). In Proceedings of the 7th International Conference on Earthquake Geotechnical Engineering, Rome, Italy, 22 October 2019; pp. 1672–1680. [Google Scholar]
Methods Type | Advantage | Disadvantage |
---|---|---|
Analytical methods | Concise and easy to use | Many assumptions |
Physical model tests | Effective and easy to observe the whole process | Expensive and time-consuming |
Numerical simulation | Effective and not expensive | Model needs verification |
Lithology | T3δo Quartz Diorite | Pt2X3 Mesoproterozoic Mica Mchist | DTJ Paleozoic Ophiolite |
---|---|---|---|
Unit weight (kN/m3) | 25.4 | 26.3 | 28.6 |
Uniaxial compressive strength (GPa) | 1.104 | 0.891 | 0.96 |
Uniaxial tensile strength (GPa) | 0.0123 | 0.0092 | 0.0102 |
Elastic modulus (GPa) | 25.371 | 23.07 | 23.844 |
Poisson ratio | 0.19 | 0.19 | 0.19 |
Cohesive force (MPa) | 18.4 | 14.3 | 15.6 |
Internal friction angle | 47.8° | 48.9° | 48.5° |
Layer thickness | 9~12 m/layer | 3~5 m/layer | 6~9 m/layer |
Name | Position | Dip Direction | Dip Angle | Quantity |
---|---|---|---|---|
Rock contact surface | Interface of mica schist and diorite | 90° | 88° | 1 |
Fault f5 | Interbed interface of mica schist and Plagioamphibolite | 90° | 70° | 1 |
Joint group 1 | Plagioamphibolite | 13° | 47° | Spacing 20 m |
Joint group 2 | Plagioamphibolite | 65° | 82° | Spacing 20 m |
Joint group 3 | Plagioamphibolite | 270° | 38° | Spacing 20 m |
Schistosity | Mica schist | 287° | 68° | Spacing 20 m |
Main control structural plane of headscarp | Plagioamphibolite (Slope headscarp) | 264° | 47° | 1 |
Name | Tangential Stiffness (GPa) | Normal Stiffness (GPa) | Tensile Strength (kPa) | Cohesive Force (MPa) | Internal Friction Angle |
---|---|---|---|---|---|
Rock contact surface | 0.6 | 0.2 | 20 | 0.26 | 30° |
Fault f5 | 0.6 | 0.1 | 18 | 0.26 | 10° |
Joint 1 | 0.1 | 0.1 | 22 | 0.24 | 28° |
Joint 2 | 0.1 | 0.1 | 23 | 0.10 | 15° |
Joint 3 | 0.1 | 0.1 | 25 | 0.05 | 5° |
Schistosity, | 0.1 | 0.1 | 26 | 0.05 | 5° |
Structural plane in headscarp of landslide | 0.1 | 0.1 | 16 | 0.01 | 5° |
Steps | Case 1 (Rain Infiltration Softening, Total Reduction Factor) | Case 2 (River Undercut, Total Undercut Depth) (m) | Case 3 (Rainfall + River Cut) |
---|---|---|---|
1 | 10% | 3 | 10% + 6 m |
2 | 20% | 6 | 20% + 6 m |
3 | 30% | 30% + 6 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yao, A.; Gong, Y. Deformation and Failure Mechanism of a Massive Ancient Anti-Dip River-Damming Landslide in the Upper Jinsha River. Sustainability 2022, 14, 13048. https://doi.org/10.3390/su142013048
Li Y, Yao A, Gong Y. Deformation and Failure Mechanism of a Massive Ancient Anti-Dip River-Damming Landslide in the Upper Jinsha River. Sustainability. 2022; 14(20):13048. https://doi.org/10.3390/su142013048
Chicago/Turabian StyleLi, Yanlin, Aijun Yao, and Yifei Gong. 2022. "Deformation and Failure Mechanism of a Massive Ancient Anti-Dip River-Damming Landslide in the Upper Jinsha River" Sustainability 14, no. 20: 13048. https://doi.org/10.3390/su142013048
APA StyleLi, Y., Yao, A., & Gong, Y. (2022). Deformation and Failure Mechanism of a Massive Ancient Anti-Dip River-Damming Landslide in the Upper Jinsha River. Sustainability, 14(20), 13048. https://doi.org/10.3390/su142013048